MTH 411: Final exam, correction Fall 2015

Exercise 1:

$\mathbb{Q}\left({ }^{3} \sqrt{2},{ }^{5} \sqrt{3}\right)$ contains the simple extensions $\mathbb{Q}\left({ }^{3} \sqrt{2}\right)$ and $\mathbb{Q}(\sqrt{3})$. These extensions have degree 3 and 5 as the minimal polynomials of $\sqrt{2}$ and $\sqrt{3} \sqrt{3}$ are $X^{3}-2$ and $X^{5}-3$ respectively. These polynomials are indeed irreducible by Eisenstein criterion for $p=2$ and $p=3$ respectively.
Thus the degree $\left[\mathbb{Q}\left({ }^{3} \sqrt{2},{ }^{5} \sqrt{3}\right): \mathbb{Q}\right]$ must be divisible by 3 and 5 , thus by 15 . Now $X^{3}-2$ is a polynomial in $\mathbb{Q}\left({ }^{5} \sqrt{3}\right)$ with ${ }^{3} \sqrt{2}$ as a root, thus $\left[\mathbb{Q}\left(\sqrt{2},{ }^{5} \sqrt{3}\right): \mathbb{Q}\left({ }^{5} \sqrt{3}\right)\right] \leq 5$. Thus $\left[\mathbb{Q}\left({ }^{3} \sqrt{2},{ }^{5} \sqrt{3}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left({ }^{3} \sqrt{2},{ }^{5} \sqrt{3}\right): \mathbb{Q}\left({ }^{5} \sqrt{3}\right)\right]\left[\mathbb{Q}\left({ }^{5} \sqrt{3}\right): \mathbb{Q}\right] \leq 15$.
The degree of the extension is 15 .

Exercise 2:

The order of S_{p} is $p!=p \cdot(p-1) \cdot(p-2) \ldots 1$. Thus the highest power of p which divides S_{p} is p and any subgroup of order p of S_{p} is a Sylow- p subgroup.
The cyclic group generated by $(123 \ldots p)$ has order the order of $(123 \ldots p)$ which is p. Thus it is a Sylow- p subgroup.

Exercise 3:

The roots of the polynomial $X^{5}-2$ are the complex numbers $\sqrt{2} e^{\frac{2 i k \pi}{5}}$ with $k=0,1,2,3$ or 4. We can see that $\mathbb{Q}\left({ }^{5} \sqrt{2}, e^{\frac{2 i \pi}{5}}\right)$ contains all these roots, thus $X^{5}-2$ splits over $\mathbb{Q}\left({ }^{5} \sqrt{2}, e^{\frac{2 i \pi}{5}}\right)$.
Furthermore $\mathbb{Q}\left(5 \sqrt{2},{ }^{5} \sqrt{2} e^{\frac{2 i \pi}{5}}\right)$ contains $e^{\frac{2 i \pi}{5}}$ as $e^{\frac{2 i \pi}{5}}=\sqrt{2} e^{\frac{2 i \pi}{5}} /{ }^{5} \sqrt{2}$.
So $\mathbb{Q}\left({ }^{5} \sqrt{2}, e^{\frac{2 i \pi}{5}}\right)$ is generated by the roots of $X^{5}-2$ and thus is the splitting field of $X^{5}-2$.

Problem 1:

1) $P_{n}(X)=0 \Longleftrightarrow X^{n}=1 \Longleftrightarrow X=e^{\frac{2 i k \pi}{n}}$ for some $k \in\{0,1, \ldots, n-1\}$.
2) $\mathbb{Q}\left(\omega_{n}\right)$ contains all roots of P_{n}, as $\omega_{n}^{k} \in \mathbb{Q}\left(\omega_{n}\right)$. Moreover it is generated over \mathbb{Q} by the roots of P_{n}, as ω_{n} already generates $\mathbb{Q}\left(\omega_{n}\right)$. Thus it is the splitting field of $X^{n}-1$.
3)Let $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{U}_{n}$ such that $\phi(k)=\omega_{n}^{k}$. ϕ is well defined as $\omega_{n}^{n}=1$. It is obviously surjective, thus bijective as the two group have the same order.
Now ω_{n} is a generator of \mathbb{U}_{n} thus ω_{n}^{k} is a generator of \mathbb{U}_{n} if and only if $\exists l$ such that $\omega_{n}^{k l}=\omega_{n} \Longleftrightarrow k l=1(\bmod n)$.
Then $\exists u, l \in \mathbb{Z}$ such that $k l+u n=1$ which means that $\operatorname{gcd}(k, n)=1$.
3) If $x \in \mathbb{Q}\left(\omega_{n}\right)$ satisfies $x^{n}-1=0$ then $\varphi\left(x^{n}-1\right)=\varphi(x)^{n}-1=\varphi(0)=0$. Thus φ stabilizes the set \mathbb{U}_{n} of roots of $X^{n}-1$.
Furthermore, the restriction of φ to \mathbb{U}_{n} is a automorphism of the group \mathbb{U}_{n}, thus sends the generator ω_{n} to some other generator.
4) Let $p(x)$ be the minimal polynomial of ω_{n}. For any root y of p we know there is an isomorphism of $\mathbb{Q}\left(\omega_{n}\right)$ which sends ω_{n} to y. Thus y must be a generator of \mathbb{U}_{n}.
Furthermore p is separable as the characteristic of \mathbb{Q} is 0 .
Thus the degree of p is at most $\varphi(n)$.

Problem 2:

1) $N(p)=p^{2}+0^{2}=p^{2}$. Assume that p is not irreducible. For any decomposition $p=a b$ into a product of non-units, we must have that $N(a) N(b)=p^{2}$ and $N(a) \neq 1$ or p^{2}. Thus $N(a)=p$ and $p \in A$.
On the other hand, if $N(c+d i)=p$, then $(c+d i)(c-d i)=c^{2}+d^{2}=p$ is a decomposition of p into non-units.
2) We know that the group of units F^{*} of a finite field F is always cyclic, thus $\left(\mathbb{Z}_{p}^{*}, x\right)$ is cyclic. Its order is $p-1=4 k$.
3) We have that $y^{4 k}=1$ and $y^{2 k} \neq 1$ as the order of y is $4 k$. Thus $y^{2 k}$ is a solution of $x^{2}-1=0$ in $\mathbb{Z}_{\text {, }}$ which is not 1 , thus $y^{2 k}=-1$. Thus we have $\left(y^{k}\right)^{2}+1=0(\bmod p)$.
4) We have that $(m+i)(m-i)=m^{2}+1 \in(p)$. But $m \pm i \notin(p)$ as their imaginary part is not divisible by p. Thus the ideal (p) is not prime.
5) $\mathbb{Z}[i]$ is a unique factorization domain. Thus if (p) is not prime then p is not irreducible. Thus $p \in A$ by question 1).
