MTH 411: Final exam
 Fall 2015

Duration: 120 min
The problems are independent

Exercise 1:

What is the degree of $\mathbb{Q}\left({ }^{3} \sqrt{2},{ }^{5} \sqrt{3}\right)$ over \mathbb{Q} ?

Exercise 2:

Let p be a prime number and let G be the subgroup of S_{p} generated by $(1234 \ldots p)$.
Show that G is a Sylow p-subgroup of S_{p}.

Exercise 3:

Show that $\mathbb{Q}\left({ }^{5} \sqrt{2}, e^{\frac{2 i \pi}{5}}\right)$ is a splitting field of $X^{5}-2$.

Problem 1:

Let $\omega_{n}=e^{\frac{2 i \pi}{n}}$
$P_{n}(X)=X^{n}-1 \in \mathbb{Q}[x]$
$\mathbb{U}_{n}=\left\{\omega_{n}^{k}, k=0 \ldots n\right\}$

1) Show that \mathbb{U}_{n} is the set of all roots of P_{n}.
2) Show that $\mathbb{Q}\left(\omega_{n}\right)$ is the splitting field of P_{n} over \mathbb{Q}.
3) Show that \mathbb{U}_{n} is a group under multiplication, isomorphic to \mathbb{Z}_{n} and that ω_{n}^{k} is a generator of \mathbb{U}_{n} if and only if $\operatorname{gcd}(k, n)=1$
4) Show that if $\psi: \mathbb{Q}\left(\omega_{n}\right) \longrightarrow \mathbb{Q}\left(\omega_{n}\right)$ is an isomorphism of fields then $\varphi\left(\omega_{n}\right)$ is a generator of \mathbb{U}_{n}
5) Deduce from 4) that the degree $\left[\mathbb{Q}\left(\omega_{n}\right): \mathbb{Q}\right]$ is at $\operatorname{most} \varphi(n)$ the number of generators of \mathbb{U}_{n}.
(Hint: Show that the roots of the minimal polynomial of ω_{n} are all generators of \mathbb{U}_{n}.)

Problem 2:

Let

$$
A=\left\{a^{2}+b^{2}, \quad a, b \in \mathbb{Z}\right\}=\{N(z), z \in \mathbb{Z}[i]\}
$$

where $N: \mathbb{Z}[i] \rightarrow \mathbb{Z}$ is the norm function $N(a+b i)=a^{2}+b^{2}$.

1) Let $p \in \mathbb{Z}$ be prime.

Compute $N(p)$ and show that p is irreducible in $\mathbb{Z}[i]$ if and only if $p \notin A$

From now on we assume that p is prime and that $p=1+4 k$ with $k \in \mathbb{Z}$.
$2)$ Why is $\left(\mathbb{Z}_{p}^{*}, \times\right)$ a cyclic group? What is its order?
Let y be a generator of $\left(\mathbb{Z}_{p}^{*}, \times\right)$.
3) Show that y^{k} is a solution of the equation $z^{2}+1=0(\bmod p)$.
4) Let m such that $m^{2}+1=0(\bmod p)$.

We denote by (p) the ideal in $\mathbb{Z}[i]$ generated by p.
Using that $(m+i)(m-i) \in(p)$, show that (p) is not a prime ideal 5) Conclude that $p \in A$.

