MTH 411: Final exam Fall 2015

Duration: 120 min

The problems are independent

Exercise 1:

What is the degree of $\mathbb{Q}({}^{3}\sqrt{2}, {}^{5}\sqrt{3})$ over \mathbb{Q} ?

Exercise 2:

Let p be a prime number and let G be the subgroup of S_p generated by (1234...p). Show that G is a Sylow p-subgroup of S_p .

Exercise 3:

Show that $\mathbb{Q}({}^{5}\sqrt{2}, e^{\frac{2i\pi}{5}})$ is a splitting field of $X^{5} - 2$.

Problem 1:

Let $\omega_n = e^{\frac{2i\pi}{n}}$ $P_n(X) = X^n - 1 \in \mathbb{Q}[x]$ $\mathbb{U}_n = \{\omega_n^k, \ k = 0 \dots n\}$ 1) Show that \mathbb{U}_n is the set of all roots of P_n . 2) Show that $\mathbb{Q}(\omega_n)$ is the splitting field of P_n over \mathbb{Q} .

3) Show that \mathbb{U}_n is a group under multiplication, isomorphic to \mathbb{Z}_n and that ω_n^k is a generator of \mathbb{U}_n if and only if gcd(k, n) = 1

4) Show that if $\psi : \mathbb{Q}(\omega_n) \longrightarrow \mathbb{Q}(\omega_n)$ is an isomorphism of fields then $\varphi(\omega_n)$ is a generator of \mathbb{U}_n

5) Deduce from 4) that the degree $[\mathbb{Q}(\omega_n) : \mathbb{Q}]$ is at most $\varphi(n)$ the number of generators of \mathbb{U}_n .

(Hint: Show that the roots of the minimal polynomial of ω_n are all generators of \mathbb{U}_n .)

Problem 2:

 Let

$$A = \{a^2 + b^2, \ a, b \in \mathbb{Z}\} = \{N(z), \ z \in \mathbb{Z}[i]\}\$$

where $N: \mathbb{Z}[i] \to \mathbb{Z}$ is the norm function $N(a+bi) = a^2 + b^2$.

1) Let $p \in \mathbb{Z}$ be prime.

Compute N(p) and show that p is irreducible in $\mathbb{Z}[i]$ if and only if $p \notin A$

From now on we assume that p is prime and that p = 1 + 4k with $k \in \mathbb{Z}$. 2) Why is (\mathbb{Z}_p^*, \times) a cyclic group? What is its order?

Let y be a generator of (\mathbb{Z}_p^*, \times) . 3) Show that y^k is a solution of the equation $z^2 + 1 = 0 \pmod{p}$. 4) Let m such that $m^2 + 1 = 0 \pmod{p}$.

We denote by (p) the ideal in $\mathbb{Z}[i]$ generated by p.

Using that $(m+i)(m-i) \in (p)$, show that (p) is not a prime ideal 5) Conclude that $p \in A$.