MTH 411: Midterm exam 2
 Fall 2015

Duration: 50 min
The 3 problems are independent

Problem 1:

Let G be a group such that $|G|=105$

1) Using the third Sylow theorem, show that there is either 1 or 21 Sylow 5 subgroups. Compute the possible numbers of Sylow 3, and Sylow 7 subgroups.
2) Show that the intersection of two distinct Sylow 5 subgroup of G is $\{e\}$. Does that apply to Sylow 7 subgroup?
3) We assume by contradiction that G is simple. Show that there must be at least 84 elements of order 5 and 90 elements of order 7 in G. Conclude that G is not simple.

Problem 2:

Let R be the integral domain $\mathbb{Z}[\sqrt{-13}]$. We recall that norm on R is the function $N: R \rightarrow \mathbb{Z}$ such that $N(a+b \sqrt{-13})=a^{2}+13 b^{2}$

1) Let $x \in R$. Show that either $N(x) \geq 13$ or $N(x)=0,1,4$ or 9 .
2) Show that $2,11,3+\sqrt{-13}$ and $3-\sqrt{-13}$ are irreducibles and that $3+\sqrt{-13}$ is not an associate of 2 or 11 .
3) Using the identity $22=(3+\sqrt{-13})(3-\sqrt{-13})$, conclude that R is not a unique factorization domain.

Problem 3:

Let R be a principal ideal domain and $I_{1} \supseteq I_{2} \supseteq \ldots \supseteq I_{n} \supseteq \ldots$ be a decreasing sequence of nonzero ideals.
We write $I_{j}=\left(x_{j}\right)$ with $x_{j} \neq 0$.
Let $I=\bigcap_{j \in \mathbb{N}} I_{j}$

1) Show that $\exists x \in R$ such that $I=(x)$ and that either $x=0$ or for all $j \in \mathbb{N}, x_{j}$ divides x.
2) We now assume that the sequence of ideals is strictly decreasing:

$$
I_{1} \nsupseteq I_{2} \nsupseteq \ldots \nsupseteq I_{n} \nsupseteq \ldots
$$

Show that $x=0$.
(Hint: Compare the number of irreducible factors of x_{i} and x_{i+1}.)

