MTH 411: Correction exam 2
 Fall 2015

Problem 1:

1) We have that $\mid G]=105=3 \times 5 \times 7$. By the third Sylow theorem, the number of Sylow 5 subgroups is congruent to 1 modulo 5 and divides 21 . The only possiblities are 1 and 21 . Also, the number of Sylow 3 is congruent to 1 modulo 3 and divides 35 , so it is either 1 or 7.

The number of Sylow 7 is congruent to 1 modulo 7 and divides 15 , so it is either 1 or 15 .
2) If S and S^{\prime} are two distinct Sylow 5 subgroups of G, then they are both of cardinal 5 , and $S \cap S^{\prime}$ is a strict subgroup of S. So its cardinal is strictly less than 5 and divides 5 by Lagrange's theorem. Thus $S \cap S^{\prime}=\{e\}$. The same reasoning applies for Sylow 7 subgroups of G, as their cardinals are 7 , a prime number.
3) If G is simple then there is 21 Sylow 5 subgroups and 15 Sylow 7 subgroups. All Sylow subgroups consist of the identity element and 4 elements of order 5. As they have always trivial intersection, there must be at least $21 \times 4=84$ elements of order 5 . By the same argument there is at least $15 \times 6=90$ elements of order 7 . As $90+84>105$ we get a contradiction, so G is not simple.

Problem 2:

1) Write $x=a+b \sqrt{-13}$. Either $|b| \geq 1$, then $N(a+b \sqrt{-13})=a^{2}+13 b^{2} \geq 13$.

Or $b=0$ and $N(x)=a^{2}$. So the only norms less than 13 we can get are $0,1,4$ or 9 .
2) We have $N(2)=4, N(11)=121, N(3+\sqrt{-13}=22$ and $N(3-\sqrt{-13})=22$. As $N(3+\sqrt{-13})=22 \neq \pm N(2)$ and $\neq N(11), 3+\sqrt{-13}$ is not an associate of 2 or 11 . If 2 was not irreducible, any irreducible factor p of 2 should have norm $N(p)$ be a strict non-unit divisor of $N(2)=4$, so we should have $N(p)=2$. This is a contradiction as no element in R has norm 2. So 2 is irreducible. As no element has norm 11, we conclude also that $11,3+\sqrt{-13}$ and $3-\sqrt{-13}$ are irreducibles.
3) We have found two decompositions of $22=2 \times 11=(3+\sqrt{-13})(3-\sqrt{-13})$ into non-associate irreducible, so R is not a unique factorization domain.

Problem 3:

1) We show that I is an ideal. We have that $0 \in I$ as $0 \in I_{n}$ for any n. If i and j are two elements of I, then $i+j \in I_{n}$ for any n as I_{n} is an ideal. So $i+j \in I$. Also, if $\lambda \in R$, then $\lambda i \in I_{n}$ for any n as I_{n} is an ideal, so $\lambda i \in I$. As R is a principal ideal domain, there
exists $x \in R$ such that $I=(x)$.
As $(x) \subset I_{n}=\left(x_{n}\right)$, we have that $x=0$ or x_{n} divides x.
2) If $I_{n} \nsupseteq I_{n+1}$ then x_{n} is a strict divisor of x_{n+1}. So x_{n+1} must have at least one more irreducible factor than x_{n}, and x has an infinite number of irreducible factors, thus $x=0$.
