MTH 320: Correction midterm exam 2

Fall 2015

Problem 1:

1)We have that $f_{n}^{\prime}(x)=(-2 n x+2) e^{-n x^{2}+2 x-\frac{n^{2}+1}{n}}$ for any $x \in[0,1]$.
$f_{n}^{\prime}(x)>0 \Longleftrightarrow-2 n x+2>0 \Longleftrightarrow x<\frac{1}{n}$.
Therefore, f_{n} is increasing over $\left[0, \frac{1}{n}\right]$ and decreasing over $\left[\frac{1}{n}, 1\right]$.
2) From the variation of f_{n} we get that $\sup _{n}=f_{n}\left(\frac{1}{n}\right)=e^{-n \cdot \frac{1}{n^{2}}+\frac{2}{n}-\frac{n^{2}+1}{n}}=e^{-n}$.
3) f_{n} is a positive function, so from 2) we get that $\underset{[0,1]}{\sup }\left|f_{n}\right|=e^{-n} \underset{n \rightarrow \infty}{\longrightarrow} 0$. Thus f_{n} converges uniformly to 0 on $[0,1]$ /

Problem 2:

1)For fixed $x \in[0,1]$, the sequence $\frac{1}{n+x}$ is positive, decreasing and tends to 0 . Thus $\sum_{n \in \mathbb{N}} \frac{(-1)^{n}}{n+x}$ converges by the alternating serie theorem.
2) We have that $\left|f_{n}(0)\right|=\frac{1}{n}$ and for any $x \in[0,1],\left|f_{n}(x)\right|=\frac{1}{n+x} \leq \frac{1}{n}$. Thus $\sup _{[0,1]} f_{n}=\frac{1}{n}$. As the serie of general term $\frac{1}{n}$ does not converge, we cannot apply Weierstrass M-test to show uniform convergence.
3)
$f_{2 n}(x)+f_{2 n+1(x)}=\frac{(-1)^{2 n}}{2 n+x}+\frac{(-1)^{2 n+1}}{2 n+1+x}=\frac{1}{2 n+x}-\frac{1}{2 n+1+x}=\frac{1}{(2 n+x)(2 n+1+x)}$
Therefore, for any $x \in[0,1]$,

$$
\left|f_{2 n}(x)+f_{2 n+1}(x)\right| \leq \frac{1}{4 n^{2}}
$$

4) $F_{n}=\sum_{k=0}^{2 n+1} f_{k}=\sum_{k=0}^{n} f_{2 k}+f_{2 k+1}$ converges uniformly on $[0,1]$ by question 2$)$ and the Weierstrass M-test. This is a subsequence of the sequence of partial sums of $\sum_{n \in \mathbb{N}} \frac{(-1)^{n}}{n+x}$, thus it converges to f. The function f is continuous on $(0,1]$ as the uniform limit of the sequence of continuous functions F_{n}.

Problem 3:

1) We use the ratio test: for any $n \in \mathbb{N}$,

$$
\frac{a_{n}}{a_{n+1}}=\frac{(n+1)^{n+1}}{n^{n}} \geq(n+1) \cdot \frac{n^{n}}{n^{n}} \underset{n \rightarrow \infty}{\longrightarrow} \infty
$$

Thus the radius of convergence is $R=\infty$.
2) As the radius of convergence is ∞, the serie of functions $g(x)=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n^{n}}$ is uniformly convergent on $[0,1]$.
Thus g is integrable and $\int_{0}^{1} g=\sum_{n \in \mathbb{N}} \int_{0}^{1} \frac{x^{n}}{n^{n}}=\sum_{n \in \mathbb{N}} \frac{1}{(n+1) n^{n}}$

Problem 4:

1)

$$
\int_{0}^{1} f_{n}=\int_{0}^{\frac{1}{n}} n x+\int_{\frac{1}{n}}^{\frac{2}{n}} 2-n x+\int_{\frac{2}{n}}^{1} 0=\left[\frac{n x^{2}}{2}\right]_{0}^{\frac{1}{n}}+\left[2 x-\frac{n x^{2}}{2}\right]_{\frac{1}{n}}^{\frac{2}{n}}=\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}
$$

2) First $f_{n}(0)=0$ for any n, thus $f_{n}(0) \rightarrow 0$.

If $x>0$, if $\frac{1}{N} \leq x$ then for any $n \geq N$ we have $f_{n}(x)=0$. Thus $f_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} 0$.
If $\alpha>0$, and $\frac{1}{N}<\alpha$ then for any $n \geq N, \sup _{[\alpha, 1]}\left|f_{n}\right|=0$ as f_{n} is identically 0 on $[\alpha, 1]$. Thus f_{n} converges uniformly to 0 on $[\alpha, 1]$.
3) Let $\alpha>0$. We have that

$$
\left|\int_{0}^{1} g_{n}\right| \leq \int_{0}^{\alpha}\left|g_{n}\right|+\int_{\alpha}^{1}\left|g_{n}\right| \leq M \alpha+\sup _{[\alpha, 1]}\left|g_{n}\right|
$$

This last quantity will be less than $(M+1) \alpha$ if n is big enough, as g_{n} converges uniformly to 0 on $[\alpha, 1]$. Thus $\int_{0}^{1} g_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$.

