MTH 320: Correction midterm exam 2 Fall 2015

Problem 1:

1) We have that $f'_n(x) = (-2nx+2)e^{-nx^2+2x-\frac{n^2+1}{n}}$ for any $x \in [0,1]$. $f'_n(x) > 0 \iff -2nx+2 > 0 \iff x < \frac{1}{n}$. Therefore, f_n is increasing over $[0,\frac{1}{n}]$ and decreasing over $[\frac{1}{n},1]$.

2) From the variation of f_n we get that $supf_n = f_n(\frac{1}{n}) = e^{-n \cdot \frac{1}{n^2} + \frac{2}{n} - \frac{n^2 + 1}{n}} = e^{-n}$. 3) f_n is a positive function, so from 2) we get that $\sup_{[0,1]} |f_n| = e^{-n} \xrightarrow[n \to \infty]{} 0$. Thus f_n converges uniformly to 0 on [0,1]/

Problem 2:

1)For fixed $x \in [0,1]$, the sequence $\frac{1}{n+x}$ is positive, decreasing and tends to 0. Thus $\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n+x}$ converges by the alternating serie theorem. 2)We have that $|f_n(0)| = \frac{1}{n}$ and for any $x \in [0,1]$, $|f_n(x)| = \frac{1}{n+x} \leq \frac{1}{n}$. Thus $\sup_{[0,1]} f_n = \frac{1}{n}$. As the serie of general term $\frac{1}{n}$ does not converge, we cannot apply Weierstrass M-test to show uniform convergence.

3)

$$f_{2n}(x) + f_{2n+1(x)} = \frac{(-1)^{2n}}{2n+x} + \frac{(-1)^{2n+1}}{2n+1+x} = \frac{1}{2n+x} - \frac{1}{2n+1+x} = \frac{1}{(2n+x)(2n+1+x)}$$

Therefore, for any $x \in [0, 1]$,

$$|f_{2n}(x) + f_{2n+1}(x)| \le \frac{1}{4n^2}$$

4) $F_n = \sum_{k=0}^{2n+1} f_k = \sum_{k=0}^n f_{2k} + f_{2k+1}$ converges uniformly on [0,1] by question 2) and the

Weierstrass M-test. This is a subsequence of the sequence of partial sums of $\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n+x}$, thus it converges to f. The function f is continuous on (0, 1] as the uniform limit of the sequence of continuous functions F_n .

Problem 3:

1)We use the ratio test: for any $n \in \mathbb{N}$,

$$\frac{a_n}{a_{n+1}} = \frac{(n+1)^{n+1}}{n^n} \ge (n+1) \cdot \frac{n^n}{n^n} \underset{n \to \infty}{\longrightarrow} \infty$$

Thus the radius of convergence is $R = \infty$.

2) As the radius of convergence is ∞ , the serie of functions $g(x) = \sum_{n \in \mathbb{N}} \frac{x^n}{n^n}$ is uniformly convergent on [0, 1].

Thus g is integrable and $\int_0^1 g = \sum_{n \in \mathbb{N}} \int_0^1 \frac{x^n}{n^n} = \sum_{n \in \mathbb{N}} \frac{1}{(n+1)n^n}$

Problem 4:

1)

$$\int_0^1 f_n = \int_0^{\frac{1}{n}} nx + \int_{\frac{1}{n}}^{\frac{2}{n}} 2 - nx + \int_{\frac{2}{n}}^1 0 = \left[\frac{nx^2}{2}\right]_0^{\frac{1}{n}} + \left[2x - \frac{nx^2}{2}\right]_{\frac{1}{n}}^{\frac{2}{n}} = \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n}$$

2) First $f_n(0) = 0$ for any n, thus $f_n(0) \to 0$. If x > 0, if $\frac{1}{N} \le x$ then for any $n \ge N$ we have $f_n(x) = 0$. Thus $f_n(x) \xrightarrow[n \to \infty]{} 0$. If $\alpha > 0$, and $\frac{1}{N} < \alpha$ then for any $n \ge N$, $\sup_{[\alpha,1]} |f_n| = 0$ as f_n is identically 0 on $[\alpha, 1]$. Thus f_n converges uniformly to 0 on $[\alpha, 1]$.

3) Let $\alpha > 0$. We have that

$$|\int_0^1 g_n| \le \int_0^\alpha |g_n| + \int_\alpha^1 |g_n| \le M\alpha + \sup_{[\alpha,1]} |g_n|$$

This last quantity will be less than $(M+1)\alpha$ if n is big enough, as g_n converges uniformly to 0 on $[\alpha, 1]$. Thus $\int_0^1 g_n \xrightarrow[n \to \infty]{} 0$.