MTH 320: Final exam Fall 2015

Duration: 120 min
The problems are independent.

Problem 1:

Let $f_{n}:[0,1] \longrightarrow \mathbb{R}$ be the function defined by

$$
f_{n}(x)=e^{-n x^{2}+2 x-\frac{n^{2}+1}{n}}
$$

1)Compute the derivative of f_{n} and show that f_{n} is increasing on $\left[0, \frac{1}{n}\right]$ and decreasing on $\left[\frac{1}{n}, 1\right]$
2) Deduce from question 1 the value of $\sup f_{n}$.
[0,1]
3)Conclude that $f_{n} \underset{n \rightarrow \infty}{\longrightarrow} 0$ uniformly on $[0,1]$.

Problem 2:

Let $f_{n}:[0,1] \longrightarrow \mathbb{R}$ be the function defined by

$$
f_{n}(x)=\frac{(-1)^{n}}{n+x}
$$

1)Using the Alternating Serie Theorem, show that for any $x \in[0,1], \sum_{n \in \mathbb{N}} f_{n}(x)$ converges. We write $f(x)=\sum_{n \in \mathbb{N}} f_{n}(x)$.
2)Show that $\sup _{[0,1]}\left|f_{n}\right|=\frac{1}{n}$. Can we apply Weierstrass M-test to prove that the sum $\sum_{n \in \mathbb{N}} f_{n}(x)$ is uniformly convergent?
3) Compute $f_{2 n}+f_{2 n+1}$ and show that for any $x \in[0,1],\left|f_{2 n}(x)+f_{2 n+1}(x)\right| \leq \frac{1}{4 n^{2}}$
4) Deduce that the sequence of functions $F_{n}=\sum_{k=0}^{2 n+1} f_{k}$ converges uniformly on $[0,1]$ and that f is continuous on $(0,1]$.

Problem 3:

1) What is the radius of convergence of the serie

$$
g(x)=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n^{n}}
$$

2) Justifying your answer, express $\int_{0}^{1} g$ as a serie of real numbers.

Problem 4:

Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be the function defined by

- $f_{n}(x)=0$ if $x \in\left[\frac{2}{n}, 1\right]$
- $f_{n}(x)=n x$ if $x \in\left[0, \frac{1}{n}\right]$
- $f_{n}(x)=2-n x$ if $x \in\left[\frac{1}{n}, \frac{2}{n}\right]$.

1) Compute $\int_{0}^{1} f_{n}$
2) Show that f_{n} converges to 0 pointwise on $[0,1]$ and that f_{n} converges to 0 uniformly on $[\alpha, 1]$ for any $\alpha>0$.
3) Let $g_{n}:[0,1] \rightarrow \mathbb{R}$ such that
$g_{n} \rightarrow 0$ uniformly on $[\alpha, 1]$ for any $\alpha>0$
and $\exists M$ such that $\left|g_{n}(x)\right| \leq M$ for any $x \in[0,1]$ and any $n \in \mathbb{N}$.
Show that $\int_{0}^{1} g_{n} \rightarrow 0$.
