## MTH 320: Midterm exam 2

Fall 2015
Duration: 50 min
The problems are independent.

## Problem 1:

1) Let $f_{n}$ be a sequence of continuous fonctions on $[0,1]$ converging uniformly to a function $f$. Let $x_{n} \in[0,1]$ be a sequence converging to $x \in[0,1]$.
Show that

$$
f_{n}\left(x_{n}\right) \rightarrow f(x)
$$

2) Let

$$
g_{n}(x)=\frac{n x}{1+n x}
$$

Show that $g_{n}(x) \rightarrow g(x)$, where $g$ is the function on $[0,1]$ such that $g(x)=1$ if $x>0$ and $g(0)=0$
3) What is $\lim _{n \rightarrow \infty} g_{n}\left(\frac{1}{n}\right)$ ?

## Problem 2:

Let $f:[0,1] \rightarrow[0,1]$ be a continuous function.

1) Applying the intermediate value theorem to the function $g(x)=f(x)-x$, show that $\exists c \in[0,1]$ such that $f(c)=c$.
A point $x \in[0,1]$ such that $f(x)=x$ is called a fixed point of $f$.
2) We now assume that $f$ is differentiable on $[0,1]$ and $f^{\prime}(x) \neq 1$ for any $x \in[0,1]$. Deduce from the mean value theorem that $f$ has only one fixed point in $[0,1]$.

## Problem 3:

1)Let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be the function defined by

$$
f_{n}(x)=\frac{e^{-n^{2} x}}{n^{2}}
$$

Show that

$$
F=\sum_{k=1}^{\infty} f_{k}
$$

is a continuous function on $[0, \infty)$ and is differentiable on $[a, \infty)$ for any $a>0$.
2) Show that $F^{\prime}$ is increasing over $(0, \infty)$ and that $F^{\prime}\left(\frac{1}{n^{2}}\right) \leq-n e^{-1}$ for any $n \in \mathbb{N}$. Conclude that $F^{\prime}(x)$ tends to $-\infty$ as $x \rightarrow 0$.

