MTH 320: Midterm exam 2 Fall 2015

Duration: 50 min

The problems are independent.

Problem 1:

1) Let f_n be a sequence of continuous functions on [0,1] converging uniformly to a function f. Let $x_n \in [0,1]$ be a sequence converging to $x \in [0,1]$. Show that

$$f_n(x_n) \to f(x)$$

2) Let

$$g_n(x) = \frac{nx}{1 + nx}$$

Show that $g_n(x) \to g(x)$, where g is the function on [0, 1] such that g(x) = 1 if x > 0 and g(0) = 0

3) What is $\lim_{n\to\infty} g_n(\frac{1}{n})$?

Problem 2:

Let $f:[0,1] \to [0,1]$ be a continuous function.

1) Applying the intermediate value theorem to the function g(x) = f(x) - x, show that $\exists c \in [0,1]$ such that f(c) = c.

A point $x \in [0,1]$ such that f(x) = x is called a fixed point of f.

2) We now assume that f is differentiable on [0,1] and $f'(x) \neq 1$ for any $x \in [0,1]$. Deduce from the mean value theorem that f has only one fixed point in [0,1].

Problem 3:

1)Let $f_n:[0,\infty)\to\mathbb{R}$ be the function defined by

$$f_n(x) = \frac{e^{-n^2x}}{n^2}$$

Show that

$$F = \sum_{k=1}^{\infty} f_k$$

is a continuous function on $[0,\infty)$ and is differentiable on $[a,\infty)$ for any a>0.

2) Show that F' is increasing over $(0, \infty)$ and that $F'(\frac{1}{n^2}) \leq -ne^{-1}$ for any $n \in \mathbb{N}$. Conclude that F'(x) tends to $-\infty$ as $x \to 0$.