MTH 320: Midterm exam 1 Fall 2015

Problem 1:
For any $n \in \mathbb{N}$, let $u_{n}=\frac{(-1)^{n}}{2 n+3(-1)^{n}}$ and $v_{n}=\frac{(-1)^{n}}{2 n}$

1) Show that the serie $\sum_{n \in \mathbb{N}} v_{n}$ converges conditionally but not absolutely.

We have $\left|v_{n}\right|=\frac{1}{2 n}$, and we know that the harmonic serie $\sum \frac{1}{n}$ diverges. Thus this serie does converge absolutely. However, $\frac{1}{2 n}$ is a positive decreasing sequence that converges to 0 , so by the alternating serie theorem, $\sum_{n \in \mathbb{N}} v_{n}$ converges.
2) Explain why it is not possible to use the alternating series theorem to prove that $\sum_{n \in \mathbb{N}} u_{n}$ is convergent.

The sequence $b_{n}=\frac{1}{2 n+3(-1)^{n}}$ is not decreasing as $b_{2 n+1}=\frac{1}{4 n-1}>\frac{1}{4 n+3}=b_{2 n}$. Thus we can not apply the alternating serie theorem.
3) Prove that $\left|u_{n}-v_{n}\right| \leq \frac{1}{2 n^{2}}$ for any $n \geq 3$.

We have $\left.\left|u_{n}-v_{n}\right|=\frac{\left|(-1)^{n}\right|}{2 n \mid 2 n+3(-1)^{n}} \right\rvert\, \leq \frac{1}{2 n(2 n-3)} \leq \frac{1}{2 n^{2}}$ if $n \geq 3$, as then we have $2 n-3 \geq n$.
4) Conclude that the serie $\sum u_{n}$ is also convergent.

From the inequality above, we deduce that $\sum_{n \in \mathbb{N}} u_{n}-v_{n}$ converges absolutely by the comparison theorem. Thus, as $u_{n}=v_{n}+u_{n}-v_{n}$ is the sum of two sequences with convergent series, we can conclude that $\sum_{n \in \mathbb{N}} u_{n}$ is a convergent serie.

Problem 2:

Let a_{n} and b_{n} be defined by $a_{1}=a$ and $b_{1}=b$, where $0<a<b$ and for any $n \in \mathbb{N}$

$$
a_{n+1}=\sqrt{a_{n} b_{n}} \text { and } b_{n+1}=\frac{a_{n}+b_{n}}{2}
$$

1) Show by recursion that for any n, we have

$$
a_{n}<a_{n+1}<b_{n+1}<b_{n}
$$

For $n=1$, we have that $0<a<b$. Thus, $0<\sqrt{a}<\sqrt{b}$ so that $a=2=\sqrt{a b}>b$. Moreover $b_{2}=\frac{a+b}{2}<b$.
Finally, $b_{2}-a_{2}=\frac{a+b-2 \sqrt{a b}}{2}=\frac{\left(\sqrt{b}-\sqrt{a)^{2}}\right.}{2}>0$.
Now, if we assume

$$
a_{n}<a_{n+1}<b_{n+1}<b_{n}
$$

then $a_{n+2}=\sqrt{b_{n+1} a_{n+1}}>a_{n+1}$ and $b_{n+2}=\frac{a_{n+1}+b_{n+1}}{2}<b_{n+1}$. And again we have

$$
b_{n+2}-a_{n+2}=\frac{a_{n+1}+b_{n+1}-2 \sqrt{a_{n+1} b_{n+1}}}{2}=\frac{\left(\sqrt{b_{n+1}}-\sqrt{\left.a_{n+1}\right)^{2}}\right.}{2}>0
$$

Thus the inequality is true for any $n \in \mathbb{N}$.
2) Show that a_{n} and b_{n} are convergent and that they have the same limit.
a_{n} is increasing and bounded above by b, and b_{n} is decreasing and bounded below by a, so by the monotone convergence theorem, there exists l and $l^{\prime} \in \mathbb{R}$ such that $a_{n} \rightarrow l$ and $b_{n} \rightarrow l^{\prime}$. From the equality $b_{n+1}=\frac{a_{n}+b_{n}}{2}$ we get as $n \rightarrow+\infty$ that $l^{\prime}=\frac{l+l^{\prime}}{2}$. Thus $l=l^{\prime}$.

Problem 3:

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. We introduce the sets

$$
A_{n}=\left\{u_{k}, k>n\right\}
$$

and call K the set

$$
K=\left\{\lim _{n \rightarrow+\infty} u_{\varphi(n)} / u_{\varphi(n)} \text { convergent subsequence of } u_{n}\right\}
$$

1) What is K if $u_{n}=(-1)^{n}$?

If $u_{\varphi(n)}$ is a subsequence converging to L, then $\left|u_{\varphi(n)}\right|=1 \rightarrow|L|$ as n tends to $+\infty$. So $|L|=1$, that is L is either 1 or -1 . The subsequence $u_{2 n}$ is constant equal to 1 and the subsequence $u_{2 n+1}$ is constant equal to -1 , so we get that $K=\{-1,1\}$.
2) Show that $K=\bigcap_{n \in \mathbb{N}} \overline{A_{n}}$. Deduce that K is a non-empty compact subset of \mathbb{R}.

For any convergent subsequence $u_{\varphi(n)}$, we have that $u_{\varphi(n)} \in \overline{A_{k}}$ as long as $n \geq k$. As $\overline{A_{k}}$ is closed, the limit is also in $\overline{A_{k}}$, and thus $K \subset \bigcap_{n \in \mathbb{N}} \overline{A_{n}}$.

Let $x \in \cap_{n \in \mathbb{N}} \overline{A_{n}}$. As $x \in \overline{A_{1}}$ we know there is $u_{\varphi(1)}$ such that $\left|u_{\varphi(1)}-x\right|<\frac{1}{2^{1}}$.
As $x \in \overline{A_{\varphi(1)}}$ we know there is $\varphi(2)>\varphi(1)$ such that $\left|u_{\varphi(1)}-x\right|<\frac{1}{2^{2}}$.
We can recursively define an increasing sequence $\varphi(n)$ such that $\left|u_{\varphi(n)}-x\right|<\frac{1}{2^{n}}$, and thus $u_{\varphi(n)}$ converges to x and $x \in K$.
K is the intersection of closed sets $\overline{A_{n}}$ so it is closed. Furthermore there exists a bound B such that $\mid u_{n} \leq B$ for any n. For any convergent subsequence $u_{\varphi(n)}$, the limit L verifies also $|L| \leq B$ by the order limit theorem. Thus K is bounded. K is a closed bounded subset of \mathbb{R}, that is K is compact.
3) We now assume that $\left|u_{n}-u_{n+1}\right| \underset{n \rightarrow+\infty}{\longrightarrow} 0$. Show that K is connected.

As K is a subset of \mathbb{R}, we have to show that for any $a<c<b$ with a and b in K, c is also in K.
Let ε be a positive number, smaller than $|b-c|$. Let $N \in \mathbb{N}$ such that $\left|u_{n}-u_{n+1}\right|<\varepsilon$ as long as $n \geq N$.
For any $n>N, a \in \overline{A_{n}}$ so there is some $k>n$ such that $\left|a-u_{k}\right|<\varepsilon$ Moreover $b \in \overline{A_{k}}$ so there is some $l>k$ such that $\left|b-u_{l}\right|<\varepsilon$
Let $m=\min \left\{k \leq n \leq l / u_{n}>c\right\}$. The minimum as exists as this is a non-empty set of integers as $u_{l}>b-\varepsilon>c$. Then

$$
u_{m-1} \leq c \leq u_{m}
$$

and $\left|u_{m-1}-u_{m}\right|<\varepsilon$. So $\left|u_{m}-c\right|<\varepsilon$. We have found elements of the sequence with arbitrary large rank which are ε-close to c, thus $c \in K$.

