MTH 320: Midterm exam 1 Fall 2015

Problem 1: For any $n \in \mathbb{N}$, let $u_n = \frac{(-1)^n}{2n+3(-1)^n}$ and $v_n = \frac{(-1)^n}{2n}$ 1) Show that the serie $\sum_{n} v_n$ converges conditionally but not absolutely. We have $|v_n| = \frac{1}{2n}$, and we know that the harmonic serie $\sum \frac{1}{n}$ diverges. Thus this serie does converge absolutely. However, $\frac{1}{2n}$ is a positive decreasing sequence that converges to 0, so by the alternating serie theorem, $\sum_{n \in \mathbb{N}} v_n$ converges.

2) Explain why it is not possible to use the alternating series theorem to prove that $\sum_{n \in \mathbb{N}} u_n$ is convergent.

The sequence $b_n = \frac{1}{2n+3(-1)^n}$ is not decreasing as $b_{2n+1} = \frac{1}{4n-1} > \frac{1}{4n+3} = b_{2n}$. Thus we can not apply the alternating serie theorem.

- 3) Prove that $|u_n v_n| \leq \frac{1}{2n^2}$ for any $n \geq 3$. We have $|u_n - v_n| = \frac{|(-1)^n|}{2n|2n+3(-1)^n|} \le \frac{1}{2n(2n-3)} \le \frac{1}{2n^2}$ if $n \ge 3$, as then we have $2n-3 \ge n$.
- 4) Conclude that the serie $\sum u_n$ is also convergent.

From the inequality above, we deduce that $\sum u_n - v_n$ converges absolutely by the comparison theorem. Thus, as $u_n = v_n + u_n - v_n$ is the sum of two sequences with convergent series, we can conclude that $\sum_{n \in \mathbb{N}} u_n$ is a convergent serie.

Problem 2:

Let a_n and b_n be defined by $a_1 = a$ and $b_1 = b$, where 0 < a < b and for any $n \in \mathbb{N}$

$$a_{n+1} = \sqrt{a_n b_n}$$
 and $b_{n+1} = \frac{a_n + b_n}{2}$

1) Show by recursion that for any n, we have

$$a_n < a_{n+1} < b_{n+1} < b_n$$

For n = 1, we have that 0 < a < b. Thus, $0 < \sqrt{a} < \sqrt{b}$ so that $a = 2 = \sqrt{ab} > b$. Moreover $b_2 = \frac{a+b}{2} < b$. Finally, $b_2 - a_2 = \frac{a+b-2\sqrt{ab}}{2} = \frac{(\sqrt{b}-\sqrt{a})^2}{2} > 0$. Now, if we assume

$$a_n < a_{n+1} < b_{n+1} < b_n$$

then $a_{n+2} = \sqrt{b_{n+1}a_{n+1}} > a_{n+1}$ and $b_{n+2} = \frac{a_{n+1} + b_{n+1}}{2} < b_{n+1}$. And again we have

$$b_{n+2} - a_{n+2} = \frac{a_{n+1} + b_{n+1} - 2\sqrt{a_{n+1}b_{n+1}}}{2} = \frac{(\sqrt{b_{n+1}} - \sqrt{a_{n+1}})^2}{2} > 0$$

Thus the inequality is true for any $n \in \mathbb{N}$.

2) Show that a_n and b_n are convergent and that they have the same limit.

 a_n is increasing and bounded above by b, and b_n is decreasing and bounded below by a, so by the monotone convergence theorem, there exists l and $l' \in \mathbb{R}$ such that $a_n \to l$ and $b_n \to l'$. From the equality $b_{n+1} = \frac{a_n + b_n}{2}$ we get as $n \to +\infty$ that $l' = \frac{l+l'}{2}$. Thus l = l'.

Problem 3:

Let $(u_n)_{n \in \mathbb{N}}$ be a bounded sequence of real numbers. We introduce the sets

$$A_n = \{u_k, k > n\}$$

and call K the set

$$K = \{ \lim_{n \to +\infty} u_{\varphi(n)} / u_{\varphi(n)} \text{ convergent subsequence of } u_n \}$$

1) What is K if $u_n = (-1)^n$?

If $u_{\varphi(n)}$ is a subsequence converging to L, then $|u_{\varphi(n)}| = 1 \rightarrow |L|$ as n tends to $+\infty$. So |L| = 1, that is L is either 1 or -1. The subsequence u_{2n} is constant equal to 1 and the subsequence u_{2n+1} is constant equal to -1, so we get that $K = \{-1, 1\}$.

2) Show that $K = \bigcap_{n \in \mathbb{N}} \overline{A_n}$. Deduce that K is a non-empty compact subset of \mathbb{R} .

For any convergent subsequence $u_{\varphi(n)}$, we have that $u_{\varphi(n)} \in \overline{A_k}$ as long as $n \ge k$. As $\overline{A_k}$ is closed, the limit is also in $\overline{A_k}$, and thus $K \subset \bigcap_{n \in \mathbb{N}} \overline{A_n}$.

Let $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$. As $x \in \overline{A_1}$ we know there is $u_{\varphi(1)}$ such that $|u_{\varphi(1)} - x| < \frac{1}{2^1}$. As $x \in \overline{A_{\varphi(1)}}$ we know there is $\varphi(2) > \varphi(1)$ such that $|u_{\varphi(1)} - x| < \frac{1}{2^2}$. We can recursively define an increasing sequence $\varphi(n)$ such that $|u_{\varphi(n)} - x| < \frac{1}{2^n}$, and thus $u_{\varphi(n)}$ converges to x and $x \in K$.

K is the intersection of closed sets $\overline{A_n}$ so it is closed. Furthermore there exists a bound B such that $|u_n \leq B$ for any n. For any convergent subsequence $u_{\varphi(n)}$, the limit L verifies also $|L| \leq B$ by the order limit theorem. Thus K is bounded. K is a closed bounded subset of \mathbb{R} , that is K is compact.

3) We now assume that $|u_n - u_{n+1}| \xrightarrow[n \to +\infty]{} 0$. Show that K is connected.

As K is a subset of \mathbb{R} , we have to show that for any a < c < b with a and b in K, c is also in K.

Let ε be a positive number, smaller than |b - c|. Let $N \in \mathbb{N}$ such that $|u_n - u_{n+1}| < \varepsilon$ as long as $n \ge N$.

For any n > N, $a \in \overline{A_n}$ so there is some k > n such that $|a - u_k| < \varepsilon$

Moreover $b \in \overline{A_k}$ so there is some l > k such that $|b - u_l| < \varepsilon$

Let $m = \min\{k \le n \le l \mid u_n > c\}$. The minimum as exists as this is a non-empty set of integers as $u_l > b - \varepsilon > c$. Then

$$u_{m-1} \le c \le u_m$$

and $|u_{m-1} - u_m| < \varepsilon$. So $|u_m - c| < \varepsilon$. We have found elements of the sequence with arbitrary large rank which are ε -close to c, thus $c \in K$.