MTH 411: Final exam, correction Fall 2015

Exercise 1:

 $\mathbb{Q}(^3\sqrt{2}, {}^5\sqrt{3})$ contains the simple extensions $\mathbb{Q}(^3\sqrt{2})$ and $\mathbb{Q}(^5\sqrt{3})$. These extensions have degree 3 and 5 as the minimal polynomials of $^3\sqrt{2}$ and $^5\sqrt{3}$ are X^3-2 and X^5-3 respectively. These polynomials are indeed irreducible by Eisenstein criterion for p=2 and p=3 respectively.

Thus the degree $[\mathbb{Q}(^3\sqrt{2}, {}^5\sqrt{3}) : \mathbb{Q}]$ must be divisible by 3 and 5, thus by 15. Now $X^3 - 2$ is a polynomial in $\mathbb{Q}(^5\sqrt{3})$ with $^3\sqrt{2}$ as a root, thus $[\mathbb{Q}(^3\sqrt{2}, {}^5\sqrt{3}) : \mathbb{Q}(^5\sqrt{3})] \le 5$. Thus $[\mathbb{Q}(^3\sqrt{2}, {}^5\sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(^3\sqrt{2}, {}^5\sqrt{3}) : \mathbb{Q}(^5\sqrt{3})][\mathbb{Q}(^5\sqrt{3}) : \mathbb{Q}] \le 15$.

The degree of the extension is 15.

Exercise 2:

The order of S_p is $p! = p \cdot (p-1) \cdot (p-2) \dots 1$. Thus the highest power of p which divides S_p is p and any subgroup of order p of S_p is a Sylow-p subgroup.

The cyclic group generated by (123...p) has order the order of (123...p) which is p. Thus it is a Sylow-p subgroup.

Exercise 3:

The roots of the polynomial X^5-2 are the complex numbers $\sqrt[5]{2}e^{\frac{2ik\pi}{5}}$ with k=0,1,2,3 or 4. We can see that $\mathbb{Q}(\sqrt[5]{2},e^{\frac{2i\pi}{5}})$ contains all these roots, thus X^5-2 splits over $\mathbb{Q}(\sqrt[5]{2},e^{\frac{2i\pi}{5}})$.

Furthermore $\mathbb{Q}({}^{5}\sqrt{2}, {}^{5}\sqrt{2}e^{\frac{2i\pi}{5}})$ contains $e^{\frac{2i\pi}{5}}$ as $e^{\frac{2i\pi}{5}} = {}^{5}\sqrt{2}e^{\frac{2i\pi}{5}}/{}^{5}\sqrt{2}$.

So $\mathbb{Q}(\sqrt[5]{2}, e^{\frac{2i\pi}{5}})$ is generated by the roots of $X^5 - 2$ and thus is the splitting field of $X^5 - 2$.

Problem 1:

- 1) $P_n(X) = 0 \iff X^n = 1 \iff X = e^{\frac{2ik\pi}{n}}$ for some $k \in \{0, 1, \dots, n-1\}$.
- 2) $\mathbb{Q}(\omega_n)$ contains all roots of P_n , as $\omega_n^k \in \mathbb{Q}(\omega_n)$. Moreover it is generated over \mathbb{Q} by the roots of P_n , as ω_n already generates $\mathbb{Q}(\omega_n)$. Thus it is the splitting field of $X^n 1$.
- 3)Let $\phi: \mathbb{Z}_n \to \mathbb{U}_n$ such that $\phi(k) = \omega_n^k$. ϕ is well defined as $\omega_n^n = 1$. It is obviously surjective, thus bijective as the two group have the same order.

Now ω_n is a generator of \mathbb{U}_n thus ω_n^k is a generator of \mathbb{U}_n if and only if $\exists l$ such that $\omega_n^{kl} = \omega_n \iff kl = 1 \pmod{n}$.

Then $\exists u, l \in \mathbb{Z}$ such that kl + un = 1 which means that gcd(k, n) = 1.

4) If $x \in \mathbb{Q}(\omega_n)$ satisfies $x^n - 1 = 0$ then $\varphi(x^n - 1) = \varphi(x)^n - 1 = \varphi(0) = 0$. Thus φ stabilizes the set \mathbb{U}_n of roots of $X^n - 1$.

Furthermore, the restriction of φ to \mathbb{U}_n is a automorphism of the group \mathbb{U}_n , thus sends the generator ω_n to some other generator.

5) Let p(x) be the minimal polynomial of ω_n . For any root y of p we know there is an isomorphism of $\mathbb{Q}(\omega_n)$ which sends ω_n to y. Thus y must be a generator of \mathbb{U}_n . Furthermore p is separable as the characteristic of \mathbb{Q} is 0. Thus the degree of p is at most $\varphi(n)$.

Problem 2:

1) $N(p) = p^2 + 0^2 = p^2$. Assume that p is not irreducible. For any decomposition p = ab into a product of non-units, we must have that $N(a)N(b) = p^2$ and $N(a) \neq 1$ or p^2 . Thus N(a) = p and $p \in A$.

On the other hand, if N(c+di) = p, then $(c+di)(c-di) = c^2 + d^2 = p$ is a decomposition of p into non-units.

- 2) We know that the group of units F^* of a finite field F is always cyclic, thus (\mathbb{Z}_p^*, x) is cyclic. Its order is p-1=4k.
- 3) We have that $y^{4k} = 1$ and $y^{2k} \neq 1$ as the order of y is 4k. Thus y^{2k} is a solution of $x^2 1 = 0$ in \mathbb{Z}_1 which is not 1, thus $y^{2k} = -1$. Thus we have $\left(y^k\right)^2 + 1 = 0 \pmod{p}$.
- 4) We have that $(m+i)(m-i)=m^2+1\in(p)$. But $m\pm i\notin(p)$ as their imaginary part is not divisible by p. Thus the ideal (p) is not prime.
- 5) $\mathbb{Z}[i]$ is a unique factorization domain. Thus if (p) is not prime then p is not irreducible. Thus $p \in A$ by question 1).