MTH 320: Correction midterm exam 2
Fall 2015

Problem 1:

77/2
1)We have that f),(x) = (—2nz + 2)6_”x2+2$_% for any x € [0, 1].
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Therefore, f, is increasing over [0, —| and decreasing over [—, 1].
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.. 1 Cpe iz P4 _
2) From the variation of f,, we get that supf, = fo(=) =€ "227n" 7 =e "
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3) fn is a positive function, so from 2) we get that sup|f,| =e " — 0. Thus f, converges
n oo

[0,1]
uniformly to 0 on [0, 1]/

Problem 2:
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1)For fixed = € [0, 1], the sequence is positive, decreasing and tends to 0. Thus
n

_1)n
g (7) converges by the alternating serie theorem.
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neN
1 1 1 1
2)We have that |f,(0)] = — and for any = € [0,1], | fn(z)| = < —. Thus supf, = —.
n n+x n [0,1] n
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As the serie of general term — does not converge, we cannot apply Weierstrass M-test to
n

show uniform convergence.

3)

(_1)2n (_1)2n+1 1 1 1

Jon(@) + fonta@) = n+z 2m+ltz 2tz 2m+ltax 2n+2z)(2n+1+x)

Therefore, for any x € [0,1],

fon(@) + fania(z)] < #
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4) F, = ka = Zf% + for+1 converges uniformly on [0,1] by question 2) and the
k=0 k=0
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Weierstrass M-test. This is a subsequence of the sequence of partial sums of g ( +) ,
n+x
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thus it converges to f. The function f is continuous on (0, 1] as the uniform limit of the
sequence of continuous functions F,.

Problem 3:



1)We use the ratio test: for any n € N,
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Thus the radius of convergence is R = co.
n
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2)As the radius of convergence is oo, the serie of functions g(z) = Z—n is uniformly

neNn
convergent on [0, 1].
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Problem 4:
1)
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2) First f,(0) = 0 for any n, thus f,(0) — 0.
If x > 0, if — <z then for any n > N we have f,(x) =0. Thus f,(x) — o0 0.
N ) n—00
If >0, and N <@ then for any n > N, sup|f,| = 0 as f, is identically 0 on [« 1]. Thus

[a,1]
fn converges uniformly to 0 on [«, 1].

3) Let a > 0. We have that
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I/ n| S/ Ign!+/ |gn| < Mo+ sup)|gy|
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This last quantity will be less than (M + 1)« if n is big enough, as g, converges uniformly
1
to 0 on [o, 1]. Thus/ gn — 0.
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