MTH 320: Correction midterm exam 2 Fall 2015

Problem 1:

1) By the triangle inequality, we have that

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| \le \sup_A |f_n - f| + |f(x_n) - f(x)|$$

The first term tends to zero as the convergence is uniform, the second tends to zero as fis continuous at x, as a uniform limit of continuous functions.

2) We have that $g_n(0) = \frac{n \times 0}{1 + n \times 0} = 0$ which tends to 0 as $n \to \infty$ and if x > 0then

$$g_n(x) = \frac{nx}{1+nx} = \frac{1}{1+\frac{1}{nx}} \underset{n \to \infty}{\longrightarrow} 1$$

3)
$$g_n(\frac{1}{n}) = \frac{n \times \frac{1}{n}}{1 + n \times \frac{1}{n}} = \frac{1}{2} \underset{n \to \infty}{\to} \frac{1}{2}$$

Problem 2:

1) The function g is continuous on [0, 1] and $g(0) = f(0) \ge 0$ and $g(1) = f(1) - 1 \le 0$ as f takes its values in [0,1].

By the Intermediate Value Theorem, there exists a point c in [0,1] such that g(c)=0, that is f(c) = c.

2) Suppose f(c) = c and f(d) = d where c < d. Then as f is continuous and differentiable on [c,d], by the Mean Value Theorem, $\exists x \in (c,d)$ such that

$$f'(x) = \frac{f(c) - f(d)}{c - d} = \frac{c - d}{c - d} = 1$$

Problem 3:

1) We have that $|f_n(x)| \leq \frac{1}{n^2}$ for any $x \in [0, \infty)$, so by the Weierstrass M-test, the serie converges uniformly on $[0,\infty)$ and the sum is a continuous function as the f_n are continuous on $[0,\infty)$.

For any n, the function f_n is differentiable on $[0,\infty)$ and $f'_n(x) = -e^{-n^2x}$. If a > 0 then $|f_n(x)| \le e^{-n^2a} \le e^{-na}$ and $\sum_{x \in \mathbb{N}} e^{-na}$ is convergent, so by the Weierstrass

M-test, the serie of f'_n is uniformly convergent on $[a, \infty)$ thus differentiable on $[a, \infty)$.

2) If
$$0 < x < y$$
 then $f'_n(x) = -e^{-n^2x} < -e^{-n^2y} = f'_n(y)$. Thus $F'(x) = \int_{n \in \mathbb{N}_n} f'_n(x) < \sum_{n \in \mathbb{N}} f'_n(y) = F'(y)$.

Finally, $F'(\frac{1}{n^2}) = \sum_{k \in \mathbb{N}} -e^{-\frac{k^2}{n^2}} \ge \sum_{k=1}^n -e^{-\frac{k^2}{n^2}} \le \sum_{k=1}^n -e^{-\frac{n^2}{n^2}} = -ne^{-1}$.

So if $x < \frac{1}{n}$ then $F'(x) < -ne^{-1}$ as F' increasing, thus F' tends to $-\infty$ when $x \to 0$.