
MTH 320: Midterm exam 1

Fall 2015

Problem 1:

For any n ∈ N, let un =
(−1)n

2n+ 3(−1)n
and vn =

(−1)n

2n

1) Show that the serie
∑
n∈N

vn converges conditionally but not absolutely.

We have |vn| =
1

2n
, and we know that the harmonic serie

∑ 1

n
diverges. Thus this

serie does converge absolutely. However,
1

2n
is a positive decreasing sequence that con-

verges to 0, so by the alternating serie theorem,
∑
n∈N

vn converges.

2) Explain why it is not possible to use the alternating series theorem to prove that
∑
n∈N

un

is convergent.

The sequence bn =
1

2n+ 3(−1)n
is not decreasing as b2n+1 =

1

4n− 1
>

1

4n+ 3
= b2n.

Thus we can not apply the alternating serie theorem.

3) Prove that |un − vn| ≤
1

2n2
for any n ≥ 3.

We have |un − vn| =
|(−1)n|

2n|2n+ 3(−1)n
| ≤ 1

2n(2n− 3)
≤ 1

2n2
if n ≥ 3, as then we have

2n− 3 ≥ n.

4) Conclude that the serie
∑

un is also convergent.

From the inequality above, we deduce that
∑
n∈N

un − vn converges absolutely by the com-

parison theorem. Thus, as un = vn + un− vn is the sum of two sequences with convergent

series, we can conclude that
∑
n∈N

un is a convergent serie.

Problem 2:

Let an and bn be de�ned by a1 = a and b1 = b, where 0 < a < b and for any n ∈ N

an+1 =
√
anbn and bn+1 =

an + bn
2

1) Show by recursion that for any n, we have

an < an+1 < bn+1 < bn



For n = 1, we have that 0 < a < b. Thus, 0 <
√
a <

√
b so that a = 2 =

√
ab > b.

Moreover b2 =
a+ b

2
< b.

Finally, b2 − a2 =
a+ b− 2

√
ab

2
=

(
√
b−

√
a)2

2
> 0.

Now, if we assume

an < an+1 < bn+1 < bn

then an+2 =
√
bn+1an+1 > an+1 and bn+2 =

an+1 + bn+1

2
< bn+1. And again we have

bn+2 − an+2 =
an+1 + bn+1 − 2

√
an+1bn+1

2
=

(
√
bn+1 −

√
an+1)2

2
> 0

Thus the inequality is true for any n ∈ N.

2) Show that an and bn are convergent and that they have the same limit.

an is increasing and bounded above by b, and bn is decreasing and bounded below by

a, so by the monotone convergence theorem, there exists l and l′ ∈ R such that an → l

and bn → l′. From the equality bn+1 =
an + bn

2
we get as n→ +∞ that l′ =

l + l′

2
.

Thus l = l′.

Problem 3:

Let (un)n∈N be a bounded sequence of real numbers. We introduce the sets

An = {uk, k > n}

and call K the set

K = { lim
n→+∞

uϕ(n)/ uϕ(n) convergent subsequence of un}

1) What is K if un = (−1)n?

If uϕ(n) is a subsequence converging to L, then |uϕ(n)| = 1 → |L| as n tends to +∞.

So |L| = 1, that is L is either 1 or −1. The subsequence u2n is constant equal to 1 and

the subsequence u2n+1 is constant equal to −1, so we get that K = {−1, 1}.

2) Show that K = ∩
n∈N

An. Deduce that K is a non-empty compact subset of R.

For any convergent subsequence uϕ(n), we have that uϕ(n) ∈ Ak as long as n ≥ k. As

Ak is closed, the limit is also in Ak, and thus K ⊂ ∩
n∈N

An.

2



Let x ∈ ∩
n∈N

An. As x ∈ A1 we know there is uϕ(1) such that |uϕ(1) − x| < 1

21
.

As x ∈ Aϕ(1) we know there is ϕ(2) > ϕ(1) such that |uϕ(1) − x| < 1

22
.

We can recursively de�ne an increasing sequence ϕ(n) such that |uϕ(n)−x| < 1

2n
, and thus

uϕ(n) converges to x and x ∈ K.

K is the intersection of closed sets An so it is closed. Furthermore there exists a bound B
such that |un ≤ B for any n. For any convergent subsequence uϕ(n), the limit L veri�es

also |L| ≤ B by the order limit theorem. Thus K is bounded. K is a closed bounded

subset of R, that is K is compact.

3) We now assume that |un − un+1| −→
n→+∞

0. Show that K is connected.

As K is a subset of R, we have to show that for any a < c < b with a and b in K, c
is also in K.

Let ε be a positive number, smaller than |b− c|. Let N ∈ N such that |un − un+1| < ε as

long as n ≥ N .

For any n > N , a ∈ An so there is some k > n such that |a− uk| < ε
Moreover b ∈ Ak so there is some l > k such that |b− ul| < ε
Let m = min{k ≤ n ≤ l / un > c}. The minimum as exists as this is a non-empty set of

integers as ul > b− ε > c. Then
um−1 ≤ c ≤ um

and |um−1 − um| < ε. So |um − c| < ε. We have found elements of the sequence with

arbitrary large rank which are ε-close to c, thus c ∈ K.
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