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The purpose of this note is to find an example that distinguishes between certain two
weakened notions of étaleness of algebras (in the context of, typically, non-Noetherian rings),
defined below.

Before recalling definitions of the two notions of étaleness, recall that an ideal I ⊆ A in a
commutative ring is called locally nilpotent if every element of I is nilpotent (but the nilpotency
index can be, in general, unbounded).

Definition 0.1. Let ϕ : R→ S be a homomorphism of commutative rings.

(1) ϕ is called weakly étale if both ϕ : R→ S and µ : S ⊗R S → S are flat.

(2) ϕ is called ln-formally étale if it has the unique left lifting property with respect to all
quotient maps A → A/I, where I is locally nilpotent. That is, every commutative square
of the form

R A

S A/I

f

mod I

g

∃!h

(with I locally nilpotent) admits the indicated factorization h, making both the resulting
triangles commutative, and this factorization is unique.

If ϕ : R → S is weakly étale, by [1, Theorem 1.3 (3)], there is a faithfully flat extension
S → T such that the composition R → T is a filtered colimit of étale R-algebras, hence
ln-formally étale. By flat descent, one concludes that R→ S is itself ln-formally étale.

The question on the converse statement was raised by Nikolaus.

Question 0.2. Is every ln-formally étale morphism weakly étale?

To answer the question in the negative, we produce an example of a ln-formally étale ring
map which is not flat. The example is based on A. Geraschenko’s example of formally smooth
(actually formally étale) ring map which is not flat, [2].

Example 0.3. Let k be an arbitrary field (or any base). Consider the ring

R = k[aXw | a ∈ Z≥1, w ∈ (Z≥0)
<ω

]/Rel,
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(i.e. the variables are indexed by positive integers a on the left and by finite words w in
non-negative integers on the right), where

Rel =
(
a+1Xw

2 − aXw, 1Xw0 · 1Xwa − aXw | a ∈ Z≥1, w ∈ (Z≥0)
<ω)

.

(That is, each variable aXw has a+1Xw as square root, each collection of square roots
(aXw)a≥1 has a ”universal” common divisor 1Xw0, and the respective quotients are given by

1Xwa, a ≥ 1.)
Let J ⊆ R be the ideal of all the variables, and consider the quotient map π : R→ R/J = k.

Proposition 0.4. π is ln-formally étale.

Proof. Consider a ring A with a locally nilpotent ideal I, and a commutative square

R A

k A/I

f

g .

By the commutativity it is clear that f(J) ⊆ I. Obtaining a (necessarily unique) lift h :
k → A amounts to showing that f(J) = 0.

To show that a variable aXw is sent by f to 0, note that since f(1Xw0) is nilpotent, say
f(1Xw0)n = 0, and 1Xw0 divides each a+kXw, we have

f(a+kXw)n = 0 ∀k ≥ 0.

In particular, taking k large enough so that 2k > n, we have

f(aXw) = f((a+kXw)2
k

) = f(a+kXw)2
k

= f(a+kXw)n+(2k−n) = 0.

This holds for every variable, so f(J) = 0, as desired.

Proposition 0.5. π is not flat. In particular, π is not weakly étale.

Proof. Consider the short exact sequence

0 (1X∅) R R/(1X∅) 0
.

(∅ being the empty word). Applying −⊗R k(= −⊗R R/J), we obtain a complex

0 (1X∅)/J(1X∅) k k 0,
.
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so to conclude non-flatness of π, it’s enough to show that J(1X∅) ( (1X∅).
Assume for contradiction that J(1X∅) = (1X∅). so there is a relation of the form

(∗) 1X∅ = 1X∅f(X) + rel(X), f(0) = 0, rel(X) ∈ Rel

that holds in the full polynomial ring k[aXw | a,w]. Since it uses only finitely many variables,
it holds also in the polynomial ring with finitely many variables

k[aXw | 1 ≤ a ≤ N,w ∈ {0, 1, . . . , N}<N ]

for large enough N , and we thus deduce that in the ”truncated version of R”,

R0 = k[aXw | 1 ≤ a ≤ N,w ∈ {0, 1, . . . , N}<N ]/Rel0,

Rel0 =
(
b+1Xw

2 − bXw, 1Xu0 · 1Xua − aXu | 1 ≤ a, b+ 1 ≤ N − 1, w, u0, ua ∈ ({0, 1, . . . , N})<N
)
,

the equality
J0(1X∅) = (1X∅)

also holds, where J0 ⊆ R0 denotes the ideal of variables. To conclude, we derive a contradiction
with the last equality.

To that end, consider the map

ϕ : R0 → k[X2−∞ ]

given by the following two recursive rules:

1. Assign 0X∅ 7→ X.

2. Whenever aXw is assigned, and a < N (so that a+1Xw is still a variable in R0), recursively

it follows that the value is of the form ϕ(aXw) = Xb/2k for some integers b, k > 0. Then

assign a+1Xw 7→ Xb/2k+1

(=
√
ϕ(aXw)).

3. Whenever aXw is assigned for a fixed word w (in letters 1, 2, . . . , N) of length l < N − 1
and all a = 1, 2, . . . , N, from the recursion it follows that NXw was assigned to an element

of the form ϕ(NXw) = Xb/2k for some for some integers b, k > 0. Then assign 1Xw0 7→
Xb/2k+1

(=
√
ϕ(NXw)), and assign 1Xwa, a = 1, 2, . . . , N to the appropriate quotients,

i.e. 1Xwa 7→ X(2N−a+1−1)b/2k+1

(= ϕ(aXw)/ϕ(1Xw0)).

The above procedure assigns values to all variables of R0 in a manner compatible with the
relations Rel0. The result is a ring homomorphism

ϕ : R0 � k[X2−K

]

for some K ∈ Z≥0, taking the ideal J0 to (X2−K

) and 1X∅ to X. From this we see that

ϕ(J0(1X∅)) = (X1+2−K

) ( (X) = ϕ((1X∅)), contradicting the equality J0(1X∅) = (1X∅).
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