π -typical Witt vectors

Pavel Coupek

28. 4. 2019

The purpose of this note is to supply detailed proofs of existence and basic properties of " π -typical Witt vectors", that is, an analogue of *p*-typical Witt vectors when the prime *p* is replaced by a uniformizer π of a local number field, as introduced in [1], and further described in [2].

The basic setup is as follows. Let E/\mathbb{Q}_p be a finite extension, $[E:\mathbb{Q}_p] = ef$ the ramification and inertia indices, let \mathcal{O}_E be the ring of integers, $\pi \in \mathcal{O}_E$ a uniformizer, and $\kappa_E \simeq \mathbb{F}_q$ the residue field where $q = p^f$.

Denote by

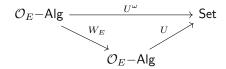
$$U: \mathcal{O}_E - \mathsf{Alg} \longrightarrow \mathsf{Set} \text{ the forgetful functor}, U^{\omega}: \mathcal{O}_E - \mathsf{Alg} \longrightarrow \mathsf{Set} \text{ the functor} A \mapsto A^{\omega},$$

 $(w_{\pi,n} =) w_n : U^{\omega} \Longrightarrow U$ the natural transformation given by

$$w_{n,A}: A^{\omega} \to A, (a_k)_{k\geq 0} \mapsto \sum_{k=0}^n \pi^k a_k^{q^{n-k}}$$

(and identify w_n with the polynomial $w_n(\underline{X}) = \sum_{k=0}^n \pi^k X_k^{q^{n-k}}$). The collection of all $w'_n s$ assemble to a natural transformation $(w_\pi =)w : U^\omega \Longrightarrow U^\omega$. Denote by $\mathrm{Id}^\omega : \mathcal{O}_E - \mathrm{Alg} \longrightarrow \mathcal{O}_E - \mathrm{Alg}$ the functor $A \mapsto A^\omega$ (with the product ring structure on A^ω).

Proposition 1. There exists a unique functor $W_{E,\pi} = W_E : \mathcal{O}_E - \mathsf{Alg} \to \mathcal{O}_E - \mathsf{Alg}$ fitting into the commutative diagram



such that $w: U^{\omega} \Longrightarrow U^{\omega}$ is a natural transformation $w: W_E \Longrightarrow \mathrm{Id}^{\omega}$.

Remark 2. When one takes $E = \mathbb{Q}_p$ and $\pi = p$, W_E recovers the standard *p*-typical vectors.

Lemma 3. Given a polynomial $\Phi(X, Y) \in \mathcal{O}_E[X, Y]$, there exist polynomials $\Phi_n(\underline{X}, \underline{Y}) \in \mathcal{O}_E[X_0, X_1, \dots, X_n, Y_0, Y_1, \dots, Y_n]$ such that $\forall n \ge 0$, $\Phi(w_n(\underline{X}), w_n(\underline{Y})) = w_n(\underline{\Phi}(\underline{X}, \underline{Y}))$, i.e.

$$\Phi\left(\sum_{k=0}^{n} \pi^{k} X_{k}^{q^{n-k}}, \sum_{k=0}^{n} \pi^{k} Y_{k}^{q^{n-k}}\right) = \sum_{k=0}^{n} \pi^{k} \Phi_{k}(\underline{X}, \underline{Y})^{q^{n-k}}$$

Proof. The polynomials $\phi_n(\underline{X}, \underline{Y}) \in E[\underline{X}, \underline{Y}]$ do exist and are necessarily unique. Indeed, clearly $\Phi_0(X, Y) = \Phi(X, Y)$, and $\Phi_n(\underline{X}, \underline{Y})$ is obtained from $\Phi_0, \Phi_1, \ldots, \Phi_{n-1}$ by

$$\Phi_n(\underline{X},\underline{Y}) = \frac{1}{\pi^n} \left(\Phi\left(\sum_{k=0}^n \pi^k X_k^{q^{n-k}}, \sum_{k=0}^n \pi^k Y_k^{q^{n-k}}\right) - \sum_{k=0}^{n-1} \pi^k \Phi_k(\underline{X},\underline{Y})^{q^{n-k}} \right) \,.$$

What remains is to show integrality of the coefficients of each Φ_n .

We proceed by induction. Suppose that all the polynomials $\Phi_0, \Phi_1, \ldots, \Phi_{n-1}$ have integral coefficients. Let \equiv denote the congruence mod π^n . Then

$$\sum_{k=0}^{n} \pi^{k} X_{k}^{q^{n-k}} = \sum_{k=0}^{n-1} \pi^{k} X_{k}^{q^{n-k}} + \pi^{n} X_{n} \equiv \sum_{k=0}^{n-1} \pi^{k} X_{k}^{q^{n-k}},$$

hence

$$\Phi\left(\sum_{k=0}^{n} \pi^{k} X_{k}^{q^{n-k}}, \sum_{k=0}^{n} \pi^{k} Y_{k}^{q^{n-k}}\right) \equiv \Phi\left(\sum_{k=0}^{n-1} \pi^{k} X_{k}^{q^{n-k}}, \sum_{k=0}^{n-1} \pi^{k} Y_{k}^{q^{n-k}}\right)$$
$$= \Phi\left(\sum_{k=0}^{n-1} \pi^{k} (X_{k}^{q})^{q^{n-1-k}}, \sum_{k=0}^{n-1} \pi^{k} (Y_{k}^{q})^{q^{n-1-k}}\right) = \sum_{k=0}^{n-1} \pi^{k} \Phi_{k} (\underline{X}^{q}, \underline{Y}^{q})^{q^{n-1-k}}.$$

Since the polynomials Φ_k in the last expression are all integral by induction hypothesis, we have that $\Phi_k(\underline{X}^q, \underline{Y}^q)$ is congruent to $\Phi_k(\underline{X}, \underline{Y})^q$ modulo π , i.e.

$$\Phi_k(\underline{X}^q, \underline{Y}^q) = \Phi_k(\underline{X}, \underline{Y})^q + \pi A_k, \ A_k \in \mathcal{O}_E[\underline{X}, \underline{Y}] .$$

Thus, we obtain

$$\Phi\left(\sum_{k=0}^{n} \pi^{k} X_{k}^{q^{n-k}}, \sum_{k=0}^{n} \pi^{k} Y_{k}^{q^{n-k}}\right) \equiv \sum_{k=0}^{n-1} \pi^{k} \left(\Phi_{k}(\underline{X}, \underline{Y})^{q} + \pi A_{k}\right)^{q^{n-1-k}}$$

Now by binomial theorem, we have

$$\pi^k \left(\Phi_k(\underline{X},\underline{Y})^q + \pi A_k\right)^{q^{n-1-k}} = \pi^k \Phi_k(\underline{X},\underline{Y})^{q^{n-k}} + \sum_{j=1}^{q^{n-1-k}} \binom{q^{n-1-k}}{j} \pi^{j+k} B_k, \ B_k \in \mathcal{O}_E[\underline{X},\underline{Y}],$$

and

$$\operatorname{val}_p\left(\binom{q^{n-1-k}}{j}\right) = f(n-1-k) - \operatorname{val}_p(j) \ge n-1-k - (j-1) = n-k-j,$$

hence

$$\operatorname{val}_{\pi}\left(\binom{q^{n-1-k}}{j}\pi^{j+k}\right) \ge e(n-k-j) + j + k \ge (n-k-j) + j + k = n.$$

Thus, we have that $(\Phi_k(\underline{X},\underline{Y})^q + \pi A_k)^{q^{n-1-k}} \equiv \Phi_k(\underline{X},\underline{Y})^q$, and we conclude that

$$\Phi\left(\sum_{k=0}^{n} \pi^{k} X_{k}^{q^{n-k}}, \sum_{k=0}^{n} \pi^{k} Y_{k}^{q^{n-k}}\right) \equiv \sum_{k=0}^{n-1} \pi^{k} \left(\Phi_{k}(\underline{X}, \underline{Y})^{q}\right)^{q^{n-1-k}} = \sum_{k=0}^{n-1} \pi^{k} \Phi_{k}(\underline{X}, \underline{Y})^{q^{n-k}},$$
sired

as desired.

Lemma 4. Let $x \in \mathcal{O}_E$. Then there are unique elements $s_n(x) \in \mathcal{O}_E$ with the property

$$(w_n(\underline{s}(x))) =) \sum_{k=0}^n \pi^k s_k(x)^{q^{n-k}} = x \quad \forall n.$$

Moreover, if Φ, Φ_n are as in Lemma 3, then we have

$$\forall x, y \in \mathcal{O}_E \ \forall n \ge 0: \ s_n(\Phi(x, y)) = \Phi_n(\underline{s}(x), \underline{s}(y))$$

Proof. For $x \in \mathcal{O}_E$, the elements $s_n(x) \in \mathcal{O}_X$ necessarily have to be given recursively as follows:

$$s_0(x) = x,$$

$$s_n(x) = \frac{1}{\pi^n} \left(x - \sum_{k=0}^{n-1} \pi^k s_k(x)^{q^{n-k}} \right) \,.$$

The claim is that these are well-defined elements of \mathcal{O}_E , which again boils down to inductively verifying the congruence

$$x \equiv \sum_{k=0}^{n-1} \pi^k s_k(x)^{q^{n-k}} \pmod{\pi^n}.$$

For n = 1, this is clear since $x \equiv x^q \pmod{\pi}$ for all $x \in \mathcal{O}_E$. To check it for a general n, note that we have

$$(*) := \sum_{k=0}^{n-1} \pi^k s_k(x)^{q^{n-k}} = \sum_{k=0}^{n-1} \pi^k (s_k(x)^q)^{q^{n-1-k}},$$

where $s_k(x)^q \equiv s_k(x) \pmod{\pi}$, i.e. $s_k(x)^q = s_k(x) + \pi t$, $t \in \mathcal{O}_E$, and after binomial expansion of $(s_k(x) + \pi t)^{q^{n-1-k}}$, the same estimates as in the proof of Lemma 3 show that

$$\pi^k (s_k(x) + \pi t)^{q^{n-1-k}} \equiv \pi^k (s_k(x))^{q^{n-1-k}} \pmod{\pi^n} .$$

Thus, we obtain

$$(*) \equiv \sum_{k=0}^{n-1} \pi^k s_k(x)^{q^{n-1-k}} = x \pmod{\pi^n} \,.$$

What remains is to verify the last identity, which holds for n = 0 and follows immediately by induction from the etablished relations:

$$s_n(\Phi(x,y)) = \frac{1}{\pi^n} \left(\Phi(x,y) - \sum_{k=0}^{n-1} \pi^k s_k (\Phi(x,y))^{q^{n-k}} \right) = \frac{1}{\pi^n} \left(\Phi\left(\sum_{k=0}^n \pi^k s_k(x)^{q^{n-k}}, \sum_{k=0}^n \pi^k s_k(y)^{q^{n-k}} \right) - \sum_{k=0}^{n-1} \pi^k \Phi_k(\underline{s}(x), \underline{s}(y))^{q^{n-k}} \right) = \Phi_n(\underline{s}(x), \underline{s}(y)) .$$

Proof of Proposition 1. To describe W_E on an object $A \in \mathcal{O}_E$ -Alg is to endow A^{ω} with an \mathcal{O}_E -algebra structure that makes $w_A : A^{\omega} \to A^{\omega}$ a map of \mathcal{O}_E -algebras (where the ring structure on the codomain is component-wise).

To specify the ring structure, consider $\Phi_n(\underline{X}, \underline{Y})$ obtained from $\Phi(X, Y) = X + Y$, and $\Psi_n(\underline{X}, \underline{Y})$ obtained from $\Psi(X, Y) = XY$ by Lemma 3. Then in $W_E(A)$, set

$$(a_n)_n + (b_n)_n := (\Phi_n(\underline{a}, \underline{b}))_n,$$
$$(a_n)_n \cdot (b_n)_n := (\Psi_n(\underline{a}, \underline{b}))_n.$$

Finally, set $\underline{1} = (1, 0, 0, 0, ...)$ and $\underline{0} = (0, 0, 0, ...)$.

Note that the above ring structure has functoriality in the sense that given an \mathcal{O}_E -algebra map $f : A \to B$, the induced map $W_E(f) = f^{\omega} : W_E(A) \to W_E(B)$ (defined by f on each component) respects the above operations, so it is a morphism of algebraic structures with ring signatures, and it will be a ring homomorphism once we show that $W_E(A), W_E(B)$ are rings.

It is also clear from Lemma 3 (and the def. of w) that $w: W_E(A) \to A^{\omega}$ is a homomorphism of algebraic structures with ring signatures.

If A is a free \mathcal{O}_E -algebra, then we have $A \subseteq B := A[1/\pi]$, and it is easy to see that $w_B: W_E(B) \to B^{\omega}$ is an isomorphism, with inverse given as follows:

$$(w^{-1})_0(\underline{X}) := X_0,$$
$$(w^{-1})_n(\underline{X}) := \frac{1}{\pi^n} \left(X_n - \sum_{k=0}^{n-1} \pi^k (w^{-1})_k (\underline{X})^{q^{n-k}} \right) .$$

Thus, it follows in this case that $W_E(B)$ is a commutative ring. Since $W_E(A) \subseteq W_E(B)$ is a substructure in the ring signature, $W_E(A)$ is a commutative ring as well.

Furthermore, note that checking for an \mathcal{O}_E -algebra A whether $W_E(A)$ with the operations defined above is a commutative ring amounts to checking whether certain polynomial identities (for Φ_n 's and Ψ_n 's) hold on A. But by the arguments above, the very same polynomial identities hold on all free \mathcal{O}_E -algebras, so on any \mathcal{O}_E -algebra A. Thus, we conclude that $W_E(A)$ is a commutative ring for all \mathcal{O}_E -algebras A.

Finally, we specify the \mathcal{O}_E -algebra structure on $W_E(A)$. For $A = \mathcal{O}_E$, we have a map $\underline{s}: \mathcal{O}_E \to W_E(A)$, which is a ring homomorphism by Lemma 4 (and the fact that $\underline{s}(1) = \underline{1}$). This gives an \mathcal{O}_E -algebra structure to $W_E(\mathcal{O}_E)$, and $W_E(A)$ of an arbitrary \mathcal{O}_E -algebra $\mathcal{O}_E \xrightarrow{\varphi} A$ receives an \mathcal{O}_E -algebra structure by

$$\mathcal{O}_E \xrightarrow{\underline{s}} W_E(\mathcal{O}_E) \xrightarrow{W_E(\varphi)} W_E(A).$$

This turns tautologically all maps $W_E(f) : W_E(A) \to W_E(B)$ and all $w_A : W_E(A) \to A^{\omega}$ into \mathcal{O}_E -algebra homomorphisms.

Proposition 5. In the above setup,

- (1) The functor $W_{E,\pi}$ is unique.
- (2) Given a second uniformizer π' , there is a natural isomorphism $\alpha_{\pi',\pi} : W_{E,\pi} \Longrightarrow W_{E,\pi}$ that is also natural in π , i.e. there is a functor from the groupoid (setoid) of uniformizers of Eto $\operatorname{Fun}(\mathcal{O}_E - \operatorname{Alg}, \mathcal{O}_E - \operatorname{Alg})$, sending π to $W_{E,\pi}$ and $u = \pi'/\pi : \pi \to \pi'$ to $\alpha_{\pi',\pi}$.

Lemma 6. Let π, π' be two uniformizers of E. There is a unique family of polynomials $\alpha_n(\underline{X}) = \alpha_{\pi',\pi,n}(\underline{X}) \in \mathcal{O}_E[X_0,\ldots,X_n], n \ge 0$, such that for all n,

$$\sum_{k=0}^{n} (\pi')^k \alpha_k (\underline{X})^{q^{n-k}} = \sum_{k=0}^{n} \pi^k X_k^{q^{n-k}}.$$

Additionally, the polynomials α satisfy

$$\begin{split} \alpha_{\pi,\pi,n}(\underline{X}) &= X_0 \ \forall n, \\ \alpha_{\pi^{\prime\prime},\pi^\prime,n}(\alpha_{\pi^\prime,\pi}(\underline{X})) &= \alpha_{\pi^{\prime\prime},\pi,n}(\underline{X}) \ \forall n. \end{split}$$

Moreover, if $\Phi_{\pi,n}(\underline{X},\underline{Y})$, $\Phi_{\pi',n}(\underline{X},\underline{Y})$ are polynomials as in Lemma 3 and for $x \in \mathcal{O}_E$, $s_{\pi,n}(x)$ and $s_{\pi',n}(x)$ are elements as in Lemma 4, then we have

$$\Phi_{\pi',n}(\underline{\alpha}(\underline{X}),\underline{\alpha}(\underline{Y})) = \alpha_n(\Phi_{\pi}(\underline{X},\underline{Y}))$$

and

$$\alpha_n(\underline{s_\pi}(x)) = s_{\pi',n}(x)$$

Proof. As in Lemmas 3 and 4, we necessarily have $\alpha_0(X_0) = X_0$ and

$$\alpha_n(\underline{X}) = \frac{1}{(\pi')^n} \left(\sum_{k=0}^n \pi^k X_k^{q^{n-k}} - \sum_{k=0}^{n-1} (\pi')^k \alpha_k(\underline{X})^{q^{n-k}} \right),$$

so we again only need to check

$$\sum_{k=0}^{n} \pi^{k} X_{k}^{q^{n-k}} \equiv \sum_{k=0}^{n-1} (\pi')^{k} \alpha_{k} (\underline{X})^{q^{n-k}} \pmod{(\pi')^{n}}$$

by induction on n. We have

$$\sum_{k=0}^{n-1} (\pi')^k \alpha_k(\underline{X})^{q^{n-k}} = \sum_{k=0}^{n-1} (\pi')^k (\alpha_k(\underline{X})^q)^{q^{n-1-k}} = \sum_{k=0}^{n-1} (\pi')^k (\alpha_k(\underline{X}^q) + \pi' t_k)^{q^{n-1-k}}, t_k \in \mathcal{O}_E,$$

and again the binomial expansion of $(\alpha_k(\underline{X}^q) + \pi' t_k)^{q^{n-1-k}}$ and the usual estimates thus show that

$$\sum_{k=0}^{n-1} (\pi')^k \alpha_k(\underline{X})^{q^{n-k}} \equiv \sum_{k=0}^{n-1} (\pi')^k (\alpha_k(\underline{X}^q) + \pi' t_k)^{q^{n-1-k}} \equiv \sum_{k=0}^{n-1} (\pi')^k (\alpha_k(\underline{X}^q))^{q^{n-1-k}} \pmod{(\pi')^n}.$$

By the induction hypothesis, the right-hand side equals

$$\sum_{k=0}^{n-1} \pi^k (X_k^q)^{q^{n-1-k}} = \sum_{k=0}^{n-1} \pi^k (X_k)^{q^{n-k}} \equiv \sum_{k=0}^n \pi^k (X_k)^{q^{n-k}} \pmod{(\pi')^n},$$

so we are done.

The identity $\alpha_{\pi,\pi,n}(\underline{X}) = X_n$ follows from the uniqueness of $\alpha_{\pi,\pi,n}(\underline{X})$ since $\alpha_n(\underline{X}) = X_n$ obviously works. Similarly, the identity $\alpha_{\pi'',\pi',n}(\underline{\alpha_{\pi',\pi}}(\underline{X})) = \alpha_{\pi'',\pi,n}(\underline{X})$ follows from uniqueness since

$$w_{\pi'',n}(\underline{\alpha_{\pi'',\pi'}}(\underline{\alpha_{\pi',\pi}}(\underline{X})))) = w_{\pi',n}(\underline{\alpha_{\pi',\pi}}(\underline{X}))) = w_{\pi,n}(\underline{X}).$$

The additional identities follows from uniqueness of $\Phi_{\pi',n}(\underline{\alpha}(\underline{X}),\underline{\alpha}(\underline{Y}))$, $s_{\pi',n}(x)$ with respect to their defining properties together with the identities

$$w_{\pi',n}(\underline{\alpha}(\underline{\Phi_{\pi}}(\underline{X},\underline{Y}))) = w_{\pi,n}(\underline{\Phi_{\pi}}(\underline{X},\underline{Y})) = \Phi(w_{\pi,n}(\underline{X})), w_{\pi,n}(\underline{Y}))$$
$$= \Phi(w_{\pi',n}(\underline{\alpha}(\underline{X})), w_{\pi',n}(\underline{\alpha}(\underline{Y}))) \quad \left(=w_{\pi',n}(\underline{\Phi_{\pi'}}(\underline{\alpha}(\underline{X}),\underline{\alpha}(\underline{Y})))\right)$$
$$x = w_{\pi,n}(\underline{s_{\pi}}(x)) = w_{\pi',n}(\underline{\alpha}(\underline{s_{\pi}}(x))).$$

Proof of Proposition 5. Since $w_{A,\pi}$ is injective for all subalgebras of algebras of the form $\mathcal{O}_E[\{X_i\}_i][1/\pi]$, the algebra structure $W_E(A)$ is uniquely determined on these algebras, in particular on free \mathcal{O}_E -algebras. Given a general \mathcal{O}_E -algebra A, let $f: B \to A$ be a sujective \mathcal{O}_E -algebra homomorphism. Then the functor U^{ω} determines that $W_{E,\pi}(f)$ is necessarily $f^{\omega}: W_{E,\pi}(B) \to W_{E,\pi}(A)$, and this is obviously surjective. Thus, to make this a ring homomorphism there is only one choice of a ring structure on $W_{E,\pi}(A)$. This proves (1).

To prove (2), set $\alpha_{\pi',\pi}W_{E,\pi} \Rightarrow W_{E,\pi'}$ to be the map polynomially given by polynomials from Lemma 6, that is,

$$\alpha_{\pi',\pi,A} : W_{E,\pi}(A) \longrightarrow W_{E,\pi'}(A)$$
$$(a_k)_{k \ge 0} \longmapsto (\alpha_k(\{a_l\}_{l \ge k}))_{k \ge 0}$$

Then the relations with Φ_n 's and s_n 's from Lemma 6 immediately translate to the fact that each $\alpha_{\pi',\pi,A}$ is an \mathcal{O}_E -algebra homomorphism. Furthermore, Lemma 6 implies that $\alpha_{\pi'',\pi'} \circ \alpha_{\pi',\pi} = \alpha_{\pi'',\pi}$, proving the claimed functoriality as well as the fact that $\alpha_{\pi',\pi}$ is invertible with the inverse given by $\alpha_{\pi,\pi'}$.

References

and

- V. G. Drinfel'd, Coverings of p-adic symmetric domains, Functional Analysis and its Applications 10 (1976), no. 2, p. 29–40.
- [2] L. Fargues and J.-M. Fontaine, *Courbes et fibrés vectoriels en théorie de Hodge p-adique*. https://webusers.imj-prg.fr/~laurent.fargues/Courbe_fichier_principal.pdf