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The purpose of this note is to supply detailed proofs of existence and basic properties of
“π-typical Witt vectors”, that is, an analogue of p-typical Witt vectors when the prime p is
replaced by a uniformizer π of a local number field, as introduced in [1], and further described
in [2].

The basic setup is as follows. Let E/Qp be a finite extension, [E : Qp] = ef the ramification
and inertia indices, let OE be the ring of integers, π ∈ OE a uniformizer, and κE ' Fq the
residue field where q = pf .

Denote by
U : OE−Alg −→ Set the forgetful functor,

Uω : OE−Alg −→ Set the functorA 7→ Aω,

(wπ,n =)wn : Uω =⇒ U the natural transformation given by

wn,A : Aω → A, (ak)k≥0 7→
n∑
k=0

πkaq
n−k

k

(and identify wn with the polynomial wn(X) =
∑n
k=0 π

kXqn−k

k ). The collection of all w′ns
assemble to a natural transformation (wπ =)w : Uω =⇒ Uω. Denote by Idω : OE−Alg −→
OE−Alg the functor A 7→ Aω (with the product ring structure on Aω).

Proposition 1. There exists a unique functor WE,π = WE : OE−Alg→ OE−Alg fitting into
the commutative diagram

OE−Alg Set

OE−Alg

Uω

WE U

such that w : Uω =⇒ Uω is a natural transformation w : WE =⇒ Idω.

Remark 2. When one takes E = Qp and π = p, WE recovers the standard p-typical vectors.

Lemma 3. Given a polynomial Φ(X,Y ) ∈ OE [X,Y ], there exist polynomials Φn(X,Y ) ∈
OE [X0, X1, . . . Xn, Y0, Y1, . . . , Yn] such that ∀n ≥ 0, Φ(wn(X), wn(Y )) = wn(Φ(X,Y )), i.e.

Φ

(
n∑
k=0

πkXqn−k

k ,

n∑
k=0

πkY q
n−k

k

)
=

n∑
k=0

πkΦk(X,Y )q
n−k

.
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Proof. The polynomials φn(X,Y ) ∈ E[X,Y ] do exist and are necessarily unique. Indeed,
clearly Φ0(X,Y ) = Φ(X,Y ), and Φn(X,Y ) is obtained from Φ0,Φ1, . . . ,Φn−1 by

Φn(X,Y ) =
1

πn

(
Φ

(
n∑
k=0

πkXqn−k

k ,

n∑
k=0

πkY q
n−k

k

)
−
n−1∑
k=0

πkΦk(X,Y )q
n−k

)
.

What remains is to show integrality of the coefficients of each Φn.
We proceed by induction. Suppose that all the polynomials Φ0,Φ1, . . . ,Φn−1 have integral

coefficients. Let ≡ denote the congruence mod πn. Then

n∑
k=0

πkXqn−k

k =

n−1∑
k=0

πkXqn−k

k + πnXn ≡
n−1∑
k=0

πkXqn−k

k ,

hence

Φ

(
n∑
k=0

πkXqn−k

k ,

n∑
k=0

πkY q
n−k

k

)
≡ Φ

(
n−1∑
k=0

πkXqn−k

k ,

n−1∑
k=0

πkY q
n−k

k

)

= Φ

(
n−1∑
k=0

πk(Xq
k)q

n−1−k

,

n−1∑
k=0

πk(Y qk )q
n−1−k

)
=

n−1∑
k=0

πkΦk(Xq, Y q)q
n−1−k

.

Since the polynomials Φk in the last expression are all integral by induction hypothesis, we
have that Φk(Xq, Y q) is congruent to Φk(X,Y )q modulo π, i.e.

Φk(Xq, Y q) = Φk(X,Y )q + πAk, Ak ∈ OE [X,Y ] .

Thus, we obtain

Φ

(
n∑
k=0

πkXqn−k

k ,

n∑
k=0

πkY q
n−k

k

)
≡
n−1∑
k=0

πk (Φk(X,Y )q + πAk)
qn−1−k

.

Now by binomial theorem, we have

πk (Φk(X,Y )q + πAk)
qn−1−k

= πkΦk(X,Y )q
n−k

+

qn−1−k∑
j=1

(
qn−1−k

j

)
πj+kBk, Bk ∈ OE [X,Y ],

and

valp

((
qn−1−k

j

))
= f(n− 1− k)− valp(j) ≥ n− 1− k − (j − 1) = n− k − j,

hence

valπ

((
qn−1−k

j

)
πj+k

)
≥ e(n− k − j) + j + k ≥ (n− k − j) + j + k = n.

Thus, we have that (Φk(X,Y )q + πAk)
qn−1−k

≡ Φk(X,Y )q, and we conclude that

Φ

(
n∑
k=0

πkXqn−k

k ,

n∑
k=0

πkY q
n−k

k

)
≡
n−1∑
k=0

πk (Φk(X,Y )q)
qn−1−k

=

n−1∑
k=0

πkΦk(X,Y )q
n−k

,

as desired.
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Lemma 4. Let x ∈ OE . Then there are unique elements sn(x) ∈ OE with the property

(wn(s(x)) =)

n∑
k=0

πksk(x)q
n−k

= x ∀n.

Moreover, if Φ,Φn are as in Lemma 3, then we have

∀x, y ∈ OE ∀n ≥ 0 : sn(Φ(x, y)) = Φn(s(x), s(y)) .

Proof. For x ∈ OE , the elements sn(x) ∈ OX necessarily have to be given recursively as follows:

s0(x) = x,

sn(x) =
1

πn

(
x−

n−1∑
k=0

πksk(x)q
n−k

)
.

The claim is that these are well-defined elements of OE , which again boils down to inductively
verifying the congruence

x ≡
n−1∑
k=0

πksk(x)q
n−k

(mod πn).

For n = 1, this is clear since x ≡ xq (mod π) for all x ∈ OE . To check it for a general n, note
that we have

(∗) :=

n−1∑
k=0

πksk(x)q
n−k

=

n−1∑
k=0

πk(sk(x)q)q
n−1−k

,

where sk(x)q ≡ sk(x) (mod π), i.e. sk(x)q = sk(x) + πt, t ∈ OE , and after binomial expansion

of (sk(x) + πt)q
n−1−k

, the same estimates as in the proof of Lemma 3 show that

πk(sk(x) + πt)q
n−1−k

≡ πk(sk(x))q
n−1−k

(mod πn) .

Thus, we obtain

(∗) ≡
n−1∑
k=0

πksk(x)q
n−1−k

= x (mod πn) .

What remains is to verify the last identity, which holds for n = 0 and follows immediately
by induction from the etablished relations:

sn(Φ(x, y)) =
1

πn

(
Φ(x, y)−

n−1∑
k=0

πksk(Φ(x, y))q
n−k

)
=

=
1

πn

(
Φ

(
n∑
k=0

πksk(x)q
n−k

,

n∑
k=0

πksk(y)q
n−k

)
−
n−1∑
k=0

πkΦk(s(x), s(y))q
n−k

)
= Φn(s(x), s(y)) .
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Proof of Proposition 1. To describe WE on an object A ∈ OE−Alg is to endow Aω with an OE-
algebra structure that makes wA : Aω → Aω a map of OE-algebras (where the ring structure
on the codomain is component-wise).

To specify the ring structure, consider Φn(X,Y ) obtained from Φ(X,Y ) = X + Y , and
Ψn(X,Y ) obtained from Ψ(X,Y ) = XY by Lemma 3. Then in WE(A), set

(an)n + (bn)n := (Φn(a, b))n,

(an)n · (bn)n := (Ψn(a, b))n.

Finally, set 1 = (1, 0, 0, 0, . . . ) and 0 = (0, 0, 0, . . . ).
Note that the above ring structure has functoriality in the sense that given an OE-algebra

map f : A → B, the induced map WE(f) = fω : WE(A) → WE(B) (defined by f on each
component) respects the above operations, so it is a morphism of algebraic structures with ring
signatures, and it will be a ring homomorphism once we show that WE(A),WE(B) are rings.

It is also clear from Lemma 3 (and the def. of w) that w : WE(A)→ Aω is a homomorphism
of algebraic structures with ring signatures.

If A is a free OE-algebra, then we have A ⊆ B := A[1/π], and it is easy to see that
wB : WE(B)→ Bω is an isomorphism, with inverse given as follows:

(w−1)0(X) := X0,

(w−1)n(X) :=
1

πn

(
Xn −

n−1∑
k=0

πk(w−1)k(X)q
n−k

)
.

Thus, it follows in this case that WE(B) is a commutative ring. Since WE(A) ⊆ WE(B) is a
substructure in the ring signature, WE(A) is a commutative ring as well.

Furthermore, note that checking for an OE-algebra A whether WE(A) with the operations
defined above is a commutative ring amounts to checking whether certain polynomial identities
(for Φn’s and Ψn’s) hold on A. But by the arguments above, the very same polynomial identities
hold on all free OE-algebras, so on any OE-algebra A. Thus, we conclude that WE(A) is a
commutative ring for all OE-algebras A.

Finally, we specify the OE-algebra structure on WE(A). For A = OE , we have a map
s : OE →WE(A), which is a ring homomorphism by Lemma 4 (and the fact that s(1) = 1). This

gives an OE-algebra structure to WE(OE), and WE(A) of an arbitrary OE-algebra OE
ϕ→ A

receives an OE-algebra structure by

OE
s−→WE(OE)

WE(ϕ)−→ WE(A).

This turns tautologically all maps WE(f) : WE(A) → WE(B) and all wA : WE(A) → Aω into
OE-algebra homomorphisms.

Proposition 5. In the above setup,

(1) The functor WE,π is unique.

(2) Given a second uniformizer π′, there is a natural isomorphism απ′,π : WE,π =⇒WE,π that
is also natural in π, i.e. there is a functor from the groupoid (setoid) of uniformizers of E
to Fun(OE−Alg,OE−Alg), sending π to WE,π and u = π′/π : π → π′ to απ′,π.
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Lemma 6. Let π, π′ be two uniformizers of E. There is a unique family of polynomials
αn(X) = απ′,π,n(X) ∈ OE [X0, . . . , Xn], n ≥ 0, such that for all n,

n∑
k=0

(π′)kαk(X)q
n−k

=

n∑
k=0

πkXqn−k

k .

Additionally, the polynomials α satisfy

απ,π,n(X) = X0 ∀n,

απ′′,π′,n(απ′,π(X)) = απ′′,π,n(X) ∀n.

Moreover, if Φπ,n(X,Y ), Φπ′,n(X,Y ) are polynomials as in Lemma 3 and for x ∈ OE , sπ,n(x)
and sπ′,n(x) are elements as in Lemma 4, then we have

Φπ′,n(α(X), α(Y )) = αn(Φπ(X,Y ))

and
αn(sπ(x)) = sπ′,n(x).

Proof. As in Lemmas 3 and 4, we necessarily have α0(X0) = X0 and

αn(X) =
1

(π′)n

(
n∑
k=0

πkXqn−k

k −
n−1∑
k=0

(π′)kαk(X)q
n−k

)
,

so we again only need to check

n∑
k=0

πkXqn−k

k ≡
n−1∑
k=0

(π′)kαk(X)q
n−k

(mod (π′)n)

by induction on n. We have

n−1∑
k=0

(π′)kαk(X)q
n−k

=

n−1∑
k=0

(π′)k(αk(X)q)q
n−1−k

=

n−1∑
k=0

(π′)k(αk(Xq) + π′tk)q
n−1−k

, tk ∈ OE ,

and again the binomial expansion of (αk(Xq) + π′tk)q
n−1−k

and the usual estimates thus show
that

n−1∑
k=0

(π′)kαk(X)q
n−k

≡
n−1∑
k=0

(π′)k(αk(Xq)+π′tk)q
n−1−k

≡
n−1∑
k=0

(π′)k(αk(Xq))q
n−1−k

(mod (π′)n) .

By the induction hypothesis, the right-hand side equals

n−1∑
k=0

πk(Xq
k)q

n−1−k

=

n−1∑
k=0

πk(Xk)q
n−k

≡
n∑
k=0

πk(Xk)q
n−k

(mod (π′)n),

so we are done.
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The identity απ,π,n(X) = Xn follows from the uniqueness of απ,π,n(X) since αn(X) =
Xn obviously works. Similarly, the identity απ′′,π′,n(απ′,π(X)) = απ′′,π,n(X) follows from
uniqueness since

wπ′′,n(απ′′,π′(απ′,π(X)))) = wπ′,n(απ′,π(X))) = wπ,n(X).

The additional identities follows from uniqueness of Φπ′,n(α(X), α(Y )), sπ′,n(x) with respect
to their defining properties together with the identities

wπ′,n(α(Φπ(X,Y ))) =wπ,n(Φπ(X,Y )) = Φ(wπ,n(X)), wπ,n(Y ))

=Φ(wπ′,n(α(X)), wπ′,n(α(Y )))
(

= wπ′,n(Φπ′(α(X), α(Y )))
)

and
x = wπ,n(sπ(x)) = wπ′,n(α(sπ(x))).

Proof of Proposition 5. Since wA,π is injective for all subalgebras of algebras of the formOE [{Xi}i][1/π],
the algebra structure WE(A) is uniquely determined on these algebras, in particular on free
OE-algebras. Given a general OE-algebra A, let f : B → A be a sujective OE-algebra homomor-
phism. Then the functor Uω determines that WE,π(f) is necessarily fω : WE,π(B)→WE,π(A),
and this is obviously surjective. Thus, to make this a ring homomorphism there is only one
choice of a ring structure on WE,π(A). This proves (1).

To prove (2), set απ′,πWE,π ⇒ WE,π′ to be the map polynomially given by polynomials
from Lemma 6, that is,

απ′,π,A : WE,π(A) −→WE,π′(A)

(ak)k≥0 7−→ (αk({al}l≥k))k≥0 .

Then the relations with Φn’s and sn’s from Lemma 6 immediately translate to the fact that each
απ′,π,A is an OE-algebra homomorphism. Furthermore, Lemma 6 implies that απ′′,π′ ◦ απ′,π =
απ′′,π, proving the claimed functoriality as well as the fact that απ′,π is invertible with the
inverse given by απ,π′ .
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