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The purpose of this note is to supply detailed proofs of existence and basic properties of
“m-typical Witt vectors”, that is, an analogue of p-typical Witt vectors when the prime p is
replaced by a uniformizer 7 of a local number field, as introduced in [I], and further described
in [2].

The basic setup is as follows. Let E/Q, be a finite extension, [E : Q,] = ef the ramification
and inertia indices, let O be the ring of integers, 7 € Op a uniformizer, and kg ~ F,; the
residue field where g = p/.

Denote by

U : Op—Alg — Set the forgetful functor,

U : Og—Alg — Set the functorA — A%,

(Wrn =)wy, : UY = U the natural transformation given by

n

E gnF
Wnp A : AY — A7 (ak)kz() — Zﬂ' aZ
k=0

(and identify w, with the polynomial w,(X) = Y ;_, WkXZnik). The collection of all w/ s
assemble to a natural transformation (w, =)w : U¥ = U%. Denote by Id” : Ogp—Alg —
Op—Alg the functor A — A“ (with the product ring structure on A“).

Proposition 1. There exists a unique functor Wg . = Wg : Og—Alg = Og—Alg fitting into
the commutative diagram

Op—Alg s Set
% %
OE—A|g
such that w : U¥ = U¥ is a natural transformation w : Wg = 1d".
Remark 2. When one takes & = Q, and m = p, Wg recovers the standard p-typical vectors.

Lemma 3. Given a polynomial ®(X,Y) € Og[X,Y], there exist polynomials ®,(X,Y) €
OplXo, X1,... X0, Y0, Y1,...,Y,] such that ¥n > 0, ®(w,(X),w,(Y)) = w,(2(X,Y)), ie.

’ (Z ﬂ’“XE”_kaW‘“qun_k> =Y e X V)"
k=0 k=0 k=0



Proof. The polynomials ¢,(X,Y) € FE[X,Y] do exist and are necessarily unique. Indeed,
clearly ®(X,Y) = ®(X,Y), and ¢,(X,Y) is obtained from ®¢, P;,...,P,_;1 by

n n—1
®,(X,Y) ( (Zwkxq Zwky,g"’“) —Zﬂk¢k(X7Y)q7Lk> )
k=0

k=0

What remains is to show integrality of the coefficients of each ®,,.
We proceed by induction. Suppose that all the polynomials ®¢, ®4,...,P,_1 have integral
coefficients. Let = denote the congruence mod n™. Then

n R n—1 X n—1 R
ne ne -
E ’/Tng = E WkXZ + "X, = E ’/Tng ,
k=0 k=0 k=0

hence

n n n—1 n—1
o (Z XY w’fy,g""“> =a <Z XY w’fy,j""“)
k=0 k=0 k=0 k=0

n—1 n—1 -
. <Z LY ”k(Yé’V”_l_k) =Y e xn v
k=0 k=0 —

Since the polynomials ®; in the last expression are all integral by induction hypothesis, we
have that @5 (X, YY) is congruent to ®(X,Y)? modulo 7, i.e.

QXYY =p(X,Y)! +7mA,, Ape€OplX,Y].

Thus, we obtain

n n n—1
' (Z W’CXZ“ZW’“Y?“) = Y @Xy)ra)
k=0 k=0 k=0
Now by binomial theorem, we have
n 1—k ek
™ (@X,Y) + AT =X )T+ < . )wj+kBk, By € Op[X,Y],
j=1
and
qnflfk
val,, <( ) >> =fn—1-k)—val,(j)>n—-1-k—-(j—1)=n—k—j,

J
hence

qn 1-k )

V&LT(( ) )77”']“)Ze(n—k—j)+j+k2(n—k—j)—i—j—l—k:n.
J
Thus, we have that (@5 (X,Y)? + WAk)q"ilik = P, (X,Y)?, and we conclude that
n n n—1 n—1
? (Z X Zﬂkﬁ?"k) =Y @)’ =Y re )
k=0 k=0 k=0 k=0

as desired. 0O



Lemma 4. Let 2 € Og. Then there are unique elements s,(x) € Og with the property

(wn(s(x) =) Y whsu(@)” " = Vn.
k=0

Moreover, if &, ®,, are as in Lemmal |3, then we have
Va,y € Op Vn > 0: sn(®(z,y)) = Pn(s(x),s(y)) -

Proof. For x € Op, the elements s, (z) € Ox necessarily have to be given recursively as follows:

so(z) =z,
1 s n—k
sn(x) = — (x - Z s ()7 )
k=0

The claim is that these are well-defined elements of O, which again boils down to inductively
verifying the congruence

n—1
T = Z Wksk(x)qnfk (mod 7).
k=0

For n = 1, this is clear since = 2? (mod =) for all z € Op. To check it for a general n, note
that we have

() = Y la) ™ = 3w sy
k=0 k=0

where si(2)? = si(z) (mod =), i.e. sp(2)? = si(x) + 7t, t € O, and after binomial expansion
of (si(z) + )7 " ", the same estimates as in the proof of Lemmashow that

= Wk(sk(x))qnflfk (mod 7).

¥ (sk(x) +7t)T
Thus, we obtain

n—1
(x) = Z wksk(x)qnflfk =2z (mod 7").
k=0

What remains is to verify the last identity, which holds for n = 0 and follows immediately
by induction from the etablished relations:

oo o) = (‘Hw) - Zw’“sk@(x,y))‘l“k) _
k=0

n—1

- = (‘D (Z msu()” Zﬂ’“suy)q”) - wk¢>k<s<x>,s<y>>q"’“> =, (s(2), 5(1)) -
k=0 k=0 k=0

O



Proof of Proposition[l. To describe Wg on an object A € Ogp—Alg is to endow A with an Op-
algebra structure that makes wy : A — A% a map of Og-algebras (where the ring structure
on the codomain is component-wise).

To specify the ring structure, consider ®,(X,Y) obtained from ®(X,Y) = X + Y, and
¥,,(X,Y) obtained from ¥(X,Y) = XY by Lemma|[3] Then in Wg(A), set

(an)n + (bn)n = ((I’n(Qa b))na

(an)n - (bn)n = (Pn(a,b))n.

Finally, set 1 = (1,0,0,0,...) and 0 = (0,0,0,...).

Note that the above ring structure has functoriality in the sense that given an Og-algebra
map f : A — B, the induced map Wg(f) = f* : Wg(A) — Wg(B) (defined by f on each
component) respects the above operations, so it is a morphism of algebraic structures with ring
signatures, and it will be a ring homomorphism once we show that Wg(A), Wg(B) are rings.

It is also clear from Lemma[3] (and the def. of w) that w : Wg(A) — A“ is a homomorphism
of algebraic structures with ring signatures.

If Ais a free Op-algebra, then we have A C B := A[l/7], and it is easy to see that
wp : Wg(B) — BY is an isomorphism, with inverse given as follows:

(w1 (X) = Xo,

) = (Xn - iw’%w—l)k(X)q”’“) .
k=0

Thus, it follows in this case that Wg(B) is a commutative ring. Since Wg(A) C Wg(B) is a
substructure in the ring signature, Wg(A) is a commutative ring as well.

Furthermore, note that checking for an Og-algebra A whether Wg(A) with the operations
defined above is a commutative ring amounts to checking whether certain polynomial identities
(for ®,’s and ¥,,’s) hold on A. But by the arguments above, the very same polynomial identities
hold on all free Og-algebras, so on any Og-algebra A. Thus, we conclude that Wg(A) is a
commutative ring for all Og-algebras A.

Finally, we specify the Opg-algebra structure on Wg(A). For A = Op, we have a map
s: O = Wg(A), which is a ring homomorphism by Lemma (and the fact that s(1) = 1). This
gives an Og-algebra structure to Wg(Og), and Wg(A) of an arbitrary Og-algebra Op - A
receives an Opg-algebra structure by

Op % Wp(0g) "2 Wy (A).

This turns tautologically all maps Wg(f) : Wg(A) - Wg(B) and all ws : Wg(A) — A“ into
Og-algebra homomorphisms. O

Proposition 5. In the above setup,
(1) The functor Wg . is unique.

(2) Given a second uniformizer ©’, there is a natural isomorphism o/ » : Wg » = Wg  that
is also natural in 7, i.e. there is a functor from the groupoid (setoid) of uniformizers of E
to Fun(Og—Alg, Og—Alg), sending m to Wg  and u =7'/m : m — 7 to qn .



Lemma 6. Let m,n’ be two uniformizers of E. There is a unique family of polynomials
an(X) = ap rn(X) € Og[Xo,...,Xn], n >0, such that for all n,

N (@ ran(X) " =Y Aty
k=0 k=0

Additionally, the polynomials « satisfy
O“n’,ﬂ',n(i) = Xo an

aﬂ"”,‘ﬂ”,n(aﬂ',,ﬂ‘(l)) = aw”,ﬂ,n(&) vn.

Moreover, if @, ,(X,Y), &5 »(X,Y) are polynomials as in Lemma@ and for x € O, 8z ()
and s ,(x) are elements as in Lemma 4, then we have

P n(a(X), a(Y)) = an (22 (X, Y))
and
o (82(2)) = Sp/n(2).

Proof. As in Lemmas 3| and |4} we necessarily have ao(Xo) = X and

n n—1
Otn(&) = % Zﬂ_ngﬂfk . Z(ﬂ_/)kak(i)qn—k ,
(@) \ =,

k=0

so we again only need to check

n n—1
S =3 @ X (mod (x)")
k=0 k=0
by induction on n. We have
n—1 e n—1 s n—1 ik
D@ k) =3 (@) X)) =Y (@) (X + ')t € O,
k=0 k=0 k=0

and again the binomial expansion of (ag(X?) + W’tk)q%kk and the usual estimates thus show
that

n—1 n—1 n—1
S ran(X) T = 3 (@) (X)) =Y (@) (X)) (mod (x)") .
k=0 k=0 k=0

By the induction hypothesis, the right-hand side equals

n—1 n—1 n
STt =Y A x) =Y w (X (mod (7)),
k=0 k=0 k=0

so we are done.



The identity ay rn(X) = X, follows from the uniqueness of ay r,(X) since a,(X) =
X,, obviously works. Similarly, the identity ay: rn(r (X)) = arrzn(X) follows from
uniqueness since

Wrrr (Ot (&(i)))) = Wr'\n (M(l))) = W, (X).

The additional identities follows from uniqueness of @,/ ,, (a(X), a(Y)), sz (x) with respect
to their defining properties together with the identities

Wrr (P (X, Y))) =wr n(2x(X,Y)) = ®(wrn(X)), wrn(Y))
=0 (@(X)), 0 n(@(V))) (= wer (@ (a(X), a(Y)))

and
Tr = wﬂ,n(sl(x)) - wﬂ'/ﬂl(g(sl(x)))'

O

Proof of Proposition[5 Since w4  is injective for all subalgebras of algebras of the form Og[{X;};][1/7],
the algebra structure Wg(A) is uniquely determined on these algebras, in particular on free
Opg-algebras. Given a general Og-algebra A, let f : B — A be a sujective Og-algebra homomor-
phism. Then the functor U* determines that Wg - (f) is necessarily f¥ : Wg »(B) = Wg (A4),
and this is obviously surjective. Thus, to make this a ring homomorphism there is only one
choice of a ring structure on Wg (A). This proves (1).
To prove (2), set ay Wgr = Wg o to be the map polynomially given by polynomials
from Lemmal6] that is,

Qr/ 7 A - WEJ(A) — WEJ/ (A)
(ar)kz0 — (ax({ar}izk))rz0 -

Then the relations with ®,,’s and s,,’s from Lemma@immediately translate to the fact that each
0 . A is an Og-algebra homomorphism. Furthermore, Lemma@ implies that om0 pr x =
O, Proving the claimed functoriality as well as the fact that o, , is invertible with the
inverse given by aur /. O
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