RAMIFICATION BOUNDS VIA WACH MODULES AND *q***–CRYSTALLINE COHOMOLOGY**

PAVEL ČOUPEK

Abstract. Let *K* be an absolutely unramified *p*–adic field. We establish a ramification bound, depending only on the given prime *p* and an integer *i*, for mod *p* Galois representations associated with Wach modules of height at most *i*. Using an instance of *q*–crystalline cohomology (in its prismatic form), we thus obtain improved bounds on the ramification of $H^i_{\acute{e}t}(\mathfrak{X}_{\overline{\eta}}, \mathbb{Z}/p\mathbb{Z})$ for a smooth proper *p*–adic formal scheme X over \mathcal{O}_K , for arbitrarily large degree *i*.

CONTENTS

1. INTRODUCTION

Let $p > 0$ be a prime and let K be a p –adic field. The aim of this note is to study properties of mod $p G_K$ –representations T that are crystalline in a suitable sense. While the optimal definiton of "crystalline" in this context is open to some discussion (see e.g [\[BS23,](#page-12-1) p. 509]), the intended meaning for our purposes is one of the following two variants (relative to a fixed choice of an integer $i \geq 0$):

- (a) (abstract) *T* is a *p*–torsion subquotient of a G_K –stable lattice in a crystalline \mathbb{Q}_p –representation whose Hodge–Tate weights are contained in the interval $[-i, 0]$ ^{[1](#page-0-1)}.
- (b) (geometric) *T* is the *i*–th étale cohomology group with $\mathbb{Z}/p\mathbb{Z}$ –coefficients of a proper smooth *p*–adic formal scheme over \mathcal{O}_K (or a subquotient thereof).

More concretely, we are interested in ramification of such representations. Let G_K^v denote the upper–index higher ramification subgroups of $G_K = \text{Gal}(\overline{K}/K)$. Our main result is the following:

Theorem 1.1. Assume that *K* is absolutely unramified. Let *T* be a mod *p* crystalline representation in the sense of [\(a\)](#page-0-2) or [\(b\)](#page-0-3) above, relative to the integer *i*. Then G_K^v acts trivially on T when

$$
v > \alpha + \max\left\{0, \frac{ip}{p^{\alpha}(p-1)} - \frac{1}{p-1}\right\},\,
$$

where α is the least integer satisfying $p^{\alpha} > ip/(p-1)$.

Results of this type have a long history, going back to Fontaine's paper [\[Fon85\]](#page-13-0) on the non–existence of Abelian varietes over Q with good reduction everywhere. To a large extent, Fontaine's proof is based on a similar type of ramification bound for finite flat group schemes of order p^n (over \mathcal{O}_K for general *K*). Subsequently, Fontaine [\[Fon93\]](#page-13-1) and Abrashkin [\[Abr90\]](#page-12-2) provided another version of ramification bounds for crystalline mod $p \pmod{p^n}$ in $[Abr90]$ representations in the sense of [\(a\)](#page-0-2) above, but only

¹By the results of [\[EG23\]](#page-12-3), *every* mod p representation of G_K admits a crystalline lift; so without extra restrictions, such as the range of Hodge–Tate weights, the notion of "crystalline" would be meaningless.

when *K* is absolutely unramified and the bounding integer *i* satisfies $i < p - 1$. The reason for these restrictions is the use of Fontaine–Laffaille theory [\[FL82\]](#page-13-2), which works well only in this setting.

Of the further developments [\[BM02,](#page-12-4)[Hat09,](#page-13-3)[Abr15,](#page-12-5)[CL11,](#page-12-6)[Car13\]](#page-12-7), let us explicitly list the extensions to the "abstract semistable" case, that is, the analogue of [\(a\)](#page-0-2) for semistable representations. Breuil [\[Bre98\]](#page-12-8) (see also [\[BM02\]](#page-12-4)) proved such bounds assuming *ie < p* − 1 where *e* is the ramification index of K/\mathbb{Q}_p , and under additional assumptions (Griffiths transversality). Hattori's work [\[Hat09\]](#page-13-3) then removed these extra assumptions and improved the applicable range to $i < p - 1$ (with *e* arbitrary, also in mod p^n version). Finally, Caruso and Liu $\left[CL11\right]$ obtained a bound for abstract p^n -torsion semistable representations with *e* and *i* arbitrary, using the theory of (φ, G) –modules [\[Liu10\]](#page-13-4), an enhancement of Breuil–Kisin modules [\[Kis06\]](#page-13-5) attached to lattices in semistable representations.

It is worth noting that the above results also apply to the geometric setting [\(b\)](#page-0-3), resp. its semistable analogue, using various comparison theorems [\[FM87,](#page-13-6)[Car08,](#page-12-9)[LL20\]](#page-13-7); however, these typically apply only when *ie* < *p*−1. This was the motivation for the author's previous work $\left[\text{Cou21}\right]$, where a ramification bound was established for mod *p* geometric crystalline representations with *e* and *i* arbitrary.

While this has been achieved, the obtained result is not optimal: namely, in the setting $ie < p - 1$ where the bounds of $[\text{Hat}09, \text{CL}11]$ apply to étale cohomology of varieties with semistable reduction, the bound of [\[Čou21\]](#page-12-10) essentially agrees with these semistable bounds. A related question is raised in [\[CL11\]](#page-12-6) where the authors wonder whether there exists a general ramification bound for subquotients of a crystalline representation. They point out that they do not know any such genuinely crystalline bound beyond the results [\[Fon93,](#page-13-1)[Abr90\]](#page-12-2) in the Fontaine–Laffaille case.

It is precisely these questions that motivate the present work: while we restrict to the absolutely unramified case $(e = 1)$, Theorem [1.1](#page-0-4) applies for arbitrarily large *i*, in both the abstract and the geometric setting, hence goes beyond the scope of Fontaine–Laffaille theory. Moreover, specializing the results of $[\text{Hat}09, \text{CL}11, \text{C}0u21]$ to $e = 1$, the present bound is in fact stronger (see Remark [4.13\)](#page-12-11).

Just like in [\[Čou21\]](#page-12-10), the key input for the (geometric part of) the proof comes from prismatic cohomology [\[BMS18,](#page-12-12)[BMS19,](#page-12-13)[BS22\]](#page-12-14). Let us contrast the two approaches. In [\[Čou21\]](#page-12-10), to the geometric mod *p* crystalline representation a pair (M_{BK}, M_{inf}) was attached, consisting of the mod *p* versions of Breuil–Kisin and A_{inf} –cohomology (the latter carrying Galois action). The key step in implementing a variant of the strategy [\[CL11\]](#page-12-6) was then to prove a series of conditions (Cr_s), $s \geq 0$, reflecting the crystalline origin of these modules. These conditions are of the form " $(g-1)M_{\text{BK}} \subseteq I_sM_{\text{inf}}$ " for *g* coming from Galois groups of members of the Kummer tower $\{K(\pi^{1/p^s})\}_s$ associated with the Breuil–Kisin prism \mathfrak{S} and its embedding to the Fontaine prism A_{inf} .

In contrast, the present paper uses the theory of Wach modules [\[Wac96,](#page-13-8)[Wac97,](#page-13-9)[Col99,](#page-12-15)[Ber04\]](#page-12-16) rather than Breuil–Kisin modules. On the cohomological side, Breuil–Kisin cohomology is replaced by an instance of *q*–crystalline cohomology [\[BS22,](#page-12-14) §16], which we call *Wach cohomology*. Such a replacement is natural: unlike Breul–Kisin modules, Wach modules relate only to crystalline representations.

Roughly speaking, the shift from Breuil–Kisin to Wach modules amounts to replacing the prism $\mathfrak S$ by the Wach prism $\mathbb{A} \subseteq A_{\text{inf}}$, which has many consequences. Firstly, the Kummer tower $\{K(\pi^{1/p^s})\}_s$ is replaced by the better–behaved cyclotomic tower ${K(\mu_{p^s})}_s$ in our argument. This is what in the end allows us to obtain a stronger ramification bound. Secondly, unlike \mathfrak{S} , the subring \mathbb{A} of A_{inf} is stable under Galois action, and ultimately, so are Wach modules. This allows us to replace the use of conditions (Cr_s) by the single condition analogous to $(Cr₀)$, which is in fact part of the definition of a Wach module. On the other hand, the theory of Wach modules works well only for *K* absolutely unramified, which is why we consider only this case.

The outline of the paper is as follows. In Section [2](#page-2-0) we introduce the most relevant background and notation on prisms that we use, as well as notation connected with ramification groups and ramification bounds. The notion of Wach modules, or rather a version of it suited for our purposes, is recalled in Section [3.](#page-3-0) Here we also define (mod *p*) Wach cohomology groups and relate them to étale cohomology. Finally, in Section [4,](#page-6-0) we carry out the proof of Theorem [1.1.](#page-0-4) We end the paper by an example showing that our bound in general *does not* apply to semistable representations.

Acknowledgement. As will become apparent, the present note is greatly inspired by the work [\[CL11\]](#page-12-6) of Xavier Caruso and Tong Liu. I am in particular very grateful to Tong Liu for his input through various discussions on this topic, and overall for his encouragement in carrying out this work.

2. Preliminaries

2.1. **Prisms** A and A_{inf} . We fix a prime p throughout. Let k be a perfect field of characteristic p, and let $K = W(k)[1/p]$ be the associated absolutely unramified *p*–adic field. Let us denote by \mathbb{C}_K the completed algebraic closure of K, and by $\mathcal{O}_{\mathbb{C}_K}$ its ring of integers. We let G_K denote the absolute Galois goup of *K*.

For a general discussion of prisms and prismatic cohomology, we refer the reader to [\[BS22\]](#page-12-14). Here we only recall that a prism (A, I) is given by a ring *A*, an invertible ideal $I \subseteq A$ and, assuming *A* is *p*–torsion free, a choice of a Frobenius lift φ : $A \to A$, subject to certain compatibilities, such as *A* being (possibly derived) (*p, I*)–complete.

(1) The central prism of interest is the prism (A, I) where $A = W(k)[q - 1]$ (with q a formal variable, unit in A), and I is the principal ideal generated by

$$
F(q) := [p]_q = \frac{q^p - 1}{q - 1} = 1 + q + q^2 + \dots + q^{p-1}.
$$

The Frobenius lift φ on A is given by the Witt vector Frobenius on $W(k)$ and by $\varphi(q) = q^p$. When $W(k) = \mathbb{Z}_p$, this is the *q*–crystalline prism from [\[BS22,](#page-12-14) Example 1.3 (4)]. To stress the connection with the theory of Wach modules, and to avoid the conflation with the case over \mathbb{Z}_p , we refer to (A, I) as the *Wach prism associated with* $W(k)$.

(2) Another key prism is the Fontaine prism $(A_{\text{inf}}, \text{Ker } \theta)$ (an instance of a perfect prism [\[BS22,](#page-12-14) Example 1.3 (2)]). Here $A_{\text{inf}} = W(\mathcal{O}_{\mathbb{C}_K^{\flat}})$ where $\mathcal{O}_{\mathbb{C}_K^{\flat}}$ is the inverse limit perfection of $\mathcal{O}_{\mathbb{C}_K}/p$. The map $\theta: A_{\text{inf}} \to \mathcal{O}_{\mathbb{C}_K}$ is the Fontaine's map, determined by sending the Teichmüller lift [*x*] of any element $x = (x_0 \mod p, x_0^{1/p} \mod p, \dots) \in \mathcal{O}_{\mathbb{C}_K^{\flat}}$ to x_0 .

Let us fix a compatible system $(\zeta_{p^s})_s$ of primitive p^s –th roots of unity, which determines the element

$$
\varepsilon=(1,\zeta_p,\zeta_{p^2},\dots)\in\mathcal{O}_{\mathbb{C}_K}^{\flat}.
$$

There is a map $A \rightarrow A_{\text{inf}}$ given by sending $q-1$ to $[\varepsilon^{1/p}] - 1$, and it can be shown that Ker θ is generated by the image ξ of $[p]_q$ under this map. We thus obtain a map of prisms $A \to A_{\text{inf}}$; modulo *I*, this map becomes the inclusion

$$
W(k)[[q-1]]/(F(q)) \simeq W(k)[\zeta_p] \to \mathcal{O}_{\mathbb{C}_K}.
$$

Lemma 2.1. The map $A \rightarrow A_{\text{inf}}$ is faithfully flat.

Proof. Both A and A_{inf} are *p*–adically complete with A Noetherian. Thus, to prove flatness, by [\[Sta22,](#page-13-10) Lemma 0912] it is enough to show that $\mathbb{A}/p^n \to A_{\text{inf}}/p^n$ is flat for every *n*. This latter statement is a special case of [\[EG23,](#page-12-3) Proposition 2.2.12]. For faithful flatness, it is enough to observe that the (unique) maximal ideal of A_{inf} lies above the unique maximal ideal $\mathfrak{m}_{\mathbb{A}} = (p, q - 1)$. □

For an integer *s*, denote $K_{p^s} = K(\mu_{p^s})$, and set $K_{p^\infty} = K(\mu_{p^\infty}) = \bigcup_s K_{p^s}$. Denote by Γ the topological group $Gal(K_{p^{\infty}}/K)$. Then the cyclotomic character $\chi : \Gamma \to \mathbb{Z}_p^{\times}$ is an isomorphism, and takes the closed subgroups $\Gamma_s = \text{Gal}(K_{p^\infty}/K_{p^s}) \subseteq \Gamma$ onto $1 + p^s \mathbb{Z}_p$. Γ has natural action on A via

$$
g(q) = q^{\chi(g)}, \ \ g \in \Gamma,
$$

making the map $A \rightarrow A_{\text{inf}} G_K$ –equivariant when treating the Γ–action as a G_K –action via the map $G_K \twoheadrightarrow G_K/G_{K_{p^{\infty}}} \simeq \Gamma$ (the G_K -action on A_{inf} is induced by the one on $\mathcal{O}_{\mathbb{C}_K}$ by functoriality). We fix an element $\widetilde{\gamma} \in \Gamma$ such that

- (1) For every finite *s*, $\tilde{\gamma}|_{K_{p^s}}$ generates $Gal(K_{p^s}/K) \ (\simeq (\mathbb{Z}/p^s\mathbb{Z})^{\times}).$
(2) $\zeta_n \to \tilde{\zeta}_n^{p-1}$ tenglarically generates $Gal(K_{p^s}/K)$ (ζ_n 1) $(\simeq 1+\mathbb{Z})$.
- (2) $\gamma = \tilde{\gamma}^{p-1}$ topologically generates Gal($K_p \sim / K_p$) ($\simeq 1 + p\mathbb{Z}_p$)).

We may even make sure that γ corresponds to $1 + p$ via the cyclotomic character, so that we have

 $\gamma(q) = q^{p+1}$.

For later use, let us also fix the notation G_s to mean the ablosute Galois group of K_{p^s} . Thus, Γ naturally identifies with the quotient G_K/G_∞ , and similarly Γ_s corresponds to G_s/G_∞ .

2.2. **Ramification groups and Fontaine's property** (P_m) . For an algebraic extension F/K , denote by v_F the additive valuation on *F* normalized by $v_F(F^{\times}) = \mathbb{Z}$. Given finite extensions $F/E/K$ with F/E Galois, the lower–index numbering on ramification groups of $G = \text{Gal}(E/F)$ we consider is

$$
G_{(\lambda)} = \{ g \in G \mid v_F(g(x) - x) \ge \lambda \}, \ \lambda \in \mathbb{R}_{\ge 0}.
$$

Note that $G_{(\lambda)} = G_{\lambda-1}$, where G_{λ} are the usual lower–index ramification groups as in [\[Ser13,](#page-13-11) §IV]. For $t \geq 0$, we define the Herbrand function $\varphi_{F/E}(t)$ by

$$
\phi_{F/E}(t) = \int_0^t \frac{\mathrm{d}s}{[G_{(1)} : G_{(s)}]}
$$

(which makes sense since $G_{(s)} \subseteq G_{(1)}$ for all $s > 0$). This is an increasing, concave, piecewise linear function, and we define $\psi_{F/E}$ to be the inverse function of $\phi_{F/E}$. Then the upper–index ramification subgroups of *G* are given by

,

$$
G^{(u)} = G_{(\psi_{F/E}(u))}, \ \ u \in \mathbb{R}_{\geq 0}.
$$

Once again, this numbering is related to the numbering G^u given in [\[Ser13,](#page-13-11) § IV] by $G^{(u)} = G^{u-1}$. In particular, the numbering $G^{(u)}$ is compatible with passing to quotients. Given a possibly infinite Galois extension N/E , we may therefore set

$$
Gal(N/E)^{(u)} = \varprojlim_{M} Gal(M/E)^{(u)},
$$

where *M* ranges over finite Galois extensions *M/E* contained in *F*.

Given an algebraic extension M/K and a real number $m > 0$, we denote by $\mathfrak{a}_{M}^{>m}$ ($\mathfrak{a}_{M}^{\geq m}$, resp.) the ideal of all elements $x \in \mathcal{O}_M$ with $v_K(x) > m$ ($v_K(x) \ge m$, resp.). We consider the following condition formulated by Fontaine [\[Fon85\]](#page-13-0):

$$
(P_m^{F/E})
$$
: For any algebraic extension M/E , if there exists an \mathcal{O}_E -algebra map $\mathcal{O}_F \to \mathcal{O}_M/\mathfrak{a}_M^{>m}$, then there exists an E -algebra map $F \hookrightarrow M$.

Let us now assume that F/E is finite. We let $\mu_{F/E}$ denote the infimum of all *u* such that $Gal(F/E)^{(u)} = \{id\}$, if any such *u* exists (typically when F/E is finite). We measure the ramification of F/E in terms of the invariant $\mu_{F/E}$, which is closely connected with the property (P_m) :

Proposition 2.2 ([\[Fon85,](#page-13-0) [Yos10,](#page-13-12) [CL11\]](#page-12-6)). Denote by $e_{F/E}$ the ramification index of F/E , and let $m > 0$ be a real number. If $(P_m^{F/E})$ holds then $\mu_{F/E} \le e_{F/E} m$. Moreover, the validity of $(P_m^{F/E})$ and the value of $\mu_{F/E}$ remain unchanged if *E* is replaced by any subfield *E'* of *F* unramified over *E*.

Finally, let us record a lemma on the behavior of μ in towers that will be useful later on.

Lemma 2.3 ([CL11, Lemma 4.3.1]). Let
$$
L/F/E
$$
 be a tower of finite Galois extensions. Then

$$
\mu_{L/E} = \max \{ \mu_{F/E}, \phi_{F/E}(\mu_{L/F}) \}.
$$

3. Wach cohomology and Wach modules

Recall that given a (bounded) prism (A, I) , to a smooth *p*–adic formal scheme X over A/I one can associate the prismatic cohomology RΓ $_{\Delta}(\mathcal{X}/A)$. Its cohomology groups H_{$_{\Delta}(\mathcal{X}/A)$ are *A*–modules} equipped with, among other structures, a φ _{*A*}–semilinear operator φ . When X is proper, RΓ_△(X/*A*) is represented by a perfect complex (see [\[BS22,](#page-12-14) Theorem 1.8]).

In our setting, the relevant variants of prismatic cohomology are the following.

Definition 3.1. Consider a smooth proper *p*–adic formal scheme X over $W(k)$, and denote by \mathcal{X}_p the base change of $\mathfrak X$ to $W(k)[\zeta_p]$. By *Wach cohomology* of $\mathfrak X$, we mean the prismatic cohmology $RT_{\mathbb{A}}(\mathcal{X}_p/\mathbb{A})$. The individual Wach cohomology groups are denoted by $H^i_{\mathbb{A}}(\mathcal{X}_p/\mathbb{A})$.

The *mod* p *Wach cohomology of* $\mathfrak X$ is given by

$$
\overline{\mathrm{R}\Gamma_\mathbb{A}(\mathfrak{X}_p/\mathbb{A})} = \mathrm{R}\Gamma_\mathbb{A}, (\mathfrak{X}_p/\mathbb{A}) \overset{\mathsf{L}}{\otimes}_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}.
$$

We denote by $\overline{H^i_{\mathbb{A}}(\mathcal{X}_p/\mathbb{A})}$ the individual cohomology groups of the mod p Wach cohomology of X.

Let us also recall a version of Wach modules suitable for our purposes. From the standard definitions [\[Wac96,](#page-13-8)[Col99,](#page-12-15)[Ber04\]](#page-12-16), it deviates in that we allow Wach modules that are not necessarily free.

Definition 3.2. A *Wach module of height* $\leq i$ is a finitely generated A–module M endowed with a *φ*_A–semilinear map *φ* : $M \to M$ and a continuous, A–semilinear action of Γ compatible with *φ* and satisfying the following:

- (1) The linearization $\varphi_{lin} = 1 \otimes \varphi : \varphi_A^* M \to M$ of φ admits a map $\psi : M \to \varphi_A^* M$ such that both φ _{lin} $\circ \psi$ and $\psi \circ \varphi$ _{lin} are given by multiplication by $([q]_p)^i$.
- (2) The induced Γ -action on $M/(q-1)M$ is trivial. Equivalently, for every $g \in \Gamma$ we have

$$
(g-1)M \subseteq (q-1)M.
$$

We are in particular interested in the case when *M* is annihilated by *p*, i.e. when *M* is a module over $\mathbb{A}/p \simeq k[[q-1]]$. We refer to *M* as *p–torsion Wach module* in this case.

Wach cohomology groups naturally give rise to Wach modules. As stated earlier, φ comes directly from its description as prismatic cohomology. Let us now discuss the Γ–action portion of the data.

Lemma 3.3. The ideal $I = ([p]_q) \subseteq A$ is stable under the G_K -action.

Proof. The map $A \to A/I \simeq W(k)[\zeta_p]$ sends q to ζ_p ; it is then easy to see that this map is G_K equivariant. Therefore, the kernel I is necessarily G_K -stable.

For a smooth proper *p*–adic formal scheme $\mathfrak X$ over $W(k)$, there is a natural G_K –action on R $\Gamma_{\mathbb A}(\mathfrak X_p/\mathbb A)$ given as follows. For $g \in G_K$, acting by g gives a map of prisms $g : (\mathbb{A}, [p]_q) \to (\mathbb{A}, [p]_q)$. By base change of prismatic cohomology $[BS22, Thm 1.8 (5)]$ $[BS22, Thm 1.8 (5)]$, we obtain an A–linear isomorphism

(3.1)
$$
g^* R \Gamma_{\underline{\Lambda}}(\mathcal{X}_p/\mathbb{A}) \to R \Gamma_{\underline{\Lambda}}(g^* \mathcal{X}_p/\mathbb{A}) = R \Gamma_{\underline{\Lambda}}(\mathcal{X}_p/\mathbb{A})
$$

where the last identity comes from identifying $g^*\mathfrak{X}_p$ with \mathfrak{X}_p via the canonical isomorphism $g^*\mathfrak{X}_p \to \mathfrak{X}_p$. The above map can then be identified with an A–*g*–semilinear map

$$
g: \mathrm{R}\Gamma_\mathbb{A}(\mathfrak{X}_p/\mathbb{A}) \to \mathrm{R}\Gamma_\mathbb{A}(g^*\mathfrak{X}_p/\mathbb{A}),
$$

which is the action of *g* on $R\Gamma_{\mathbb{A}}(\mathfrak{X}_p/\mathbb{A})$. When *g* is from $G_{K_p\infty}$, it acts trivially on both \mathfrak{X}_p and A; thus, the above action becomes an action of $G_K/G_{K_p\infty}$, i.e., action of Γ .

The G_K -action on $R\Gamma_{\Delta}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}/A_{\text{inf}})$ can be described similarly; consequently, it is easy to see that the base-change map

$$
\mathrm {R} \Gamma_{\underline {\mathbb A}}({\mathfrak X}_p/{\mathbb A}) \overset{{\mathbb L}}{\hat{\otimes}}_{\mathbb A} A_{\operatorname{inf}} \to \mathrm {R} \Gamma_{\underline {\mathbb A}}({\mathfrak X}_{{\mathcal O}_{{\mathbb C}_K}}/A_{\operatorname{inf}})
$$

of [\[BS22,](#page-12-14) Theorem 1.8 (5)] is *GK*–equivariant (of course, this action no longer factors through Γ).

There is a complex $C^{\bullet}(\mathfrak{X}_p)$ ($C^{\bullet}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}})$, resp.) modelling R $\Gamma_{\mathbb{\Delta}}(\mathfrak{X}_p/\mathbb{A})$ (R $\Gamma_{\mathbb{\Delta}}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}/A_{\text{inf}})$, resp.) with the following properties:

- (1) $(C^{\bullet}(\mathfrak{X}_p)$ $(C^{\bullet}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}})$, resp.) is a perfect complex and consists termwise of flat A-modules $((p, \xi)$ completely flat *A*inf–modules, resp.),
- (2) The G_K -action on $R\Gamma_{\mathbb{A}}(\mathfrak{X}_p/\mathbb{A})$ ($R\Gamma_{\mathbb{A}}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}/A_{\text{inf}})$, resp.) comes from a ("strict") G_K -action on $C^{\bullet}(\mathfrak{X}_p)$ ($C^{\bullet}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}})$, resp.). In more detail, for every $g \in G_K$ there is an isomorphism $g^*C^{\bullet}(\mathfrak{X}_p) \stackrel{\sim}{\to}$ $C^{\bullet}(g^*\mathfrak{X}_p) = C^{\bullet}(\mathfrak{X}_p)$ that represents the map (3.1) , and which defines a semilinear action of G_K

on $C^{\bullet}(\mathfrak{X}_p)$ (similarly for $R\Gamma_{\Delta}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}/A_{\text{inf}})$). Moreover, $G_{K_p\infty}$ acts trivially on $C^{\bullet}(\mathfrak{X}_p)$, hence we get a Γ -action on $C^{\bullet}(\mathfrak{X}_p)$.

(3) We have $C^{\bullet}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}) \simeq C^{\bullet}(\mathfrak{X}_p) \widehat{\otimes}_A A_{\text{inf}}$, compatibly with the G_K -action. Here the completed tensor product is computed term–by–term.

The existence of such complexes was established in $\lbrack \text{Cou21}, \S 2.2 \rbrack$ by extending a Čech–Alexander construction of [\[BS22\]](#page-12-14) from affine case to the case of a general separated formal scheme.

The following proposition is the analogue of the condition (Cr_0) from $[\text{Cou21}]$ in our present context.

Proposition 3.4. For all *i* and all $g \in \Gamma$, we have

$$
(g-1)C^{i}(\mathfrak{X}_{p}) \subseteq (q-1)C^{i}(\mathfrak{X}_{p}).
$$

Proof. Consider the complex $C^{\bullet}(\mathfrak{X}_p)/(q-1)C^{\bullet}(\mathfrak{X}_p)$, where the quotient is computed term-by-term. This is the Čech–Alexander complex computing $R\Gamma_{\mathbb{A}}(\mathfrak{X}_k/W(k))$, that is, up to $\varphi_{W(k)}$ –twist, the crystalline cohomology of the special fiber. The Γ–action on this complex, defined as in [\(2\)](#page-4-1), on one hand comes from $C^{\bullet}(\mathfrak{X}_p)$, and on the other is trivial as G_K acts trivially on both $W(k)$ and \mathfrak{X}_k . This proves the claim. \Box

As a consequence of [\(1\)](#page-4-2) above, $\overline{\text{RT}_{\mathbb{A},}}(\mathcal{X}_p/\mathbb{A})$ is modelled by the complex $C^{\bullet}(\mathcal{X})/pC^{\bullet}(\mathcal{X})$ (computed term–by–term). Then we have

Corollary 3.5. If *M* is either $H^i_{\mathbb{A}}(\mathcal{X}_p/\mathbb{A})$ or $\overline{H^i_{\mathbb{A}}(\mathcal{X}_p/\mathbb{A})}$, we have for all $g \in \Gamma$ $(g − 1)M ⊆ (q − 1)M$.

Consequently, *M* is a Wach module of height $\leq i$.

Proof. Let C^{\bullet} be either the complex $C^{\bullet}(\mathfrak{X})$ or $C^{\bullet}(\mathfrak{X})/pC^{\bullet}(\mathfrak{X})$. It suffices to prove the condition $(g-1)Z^i \subseteq (q-1)Z^i$ where Z^i denotes the degree *i* cocycles in C^{\bullet} . In both cases, $q-1$ is a non–zero divisor on C^j for every *j*, since $C^j(\mathfrak{X})$ is A–flat and $p, q-1$ is a regular sequence on A.

Given $c \in \mathbb{Z}^i$, by Proposition [3.4](#page-5-0) we have $(g-1)c = (g-1)c'$ for some $c' \in \mathbb{C}^i$, and it is enough to observe that $c' \in Z^i$. This is indeed the case: If ∂ denotes the differential $C^i \to C^{i+1}$, we have

$$
(q-1)\partial(c') = \partial((q-1)c') = \partial((g-1)c) = (g-1)\partial(c) = 0,
$$

and we may conclude that $\partial(c') = 0$ since $q - 1$ is a non–zero divisor on C^{i+1} .

This verifies condition (2) of Definition [3.2,](#page-4-4) while condition (1) is a general fact about prismatic cohomology [\[BS22,](#page-12-14) Theorem 1.8 (6)]. It follows that *M* is a Wach module of height $\leq i$.

We also need some better control on the action when acting by elements of the subgroup $\Gamma_s \subseteq \Gamma$. In [\[Čou21\]](#page-12-10), this was done using certain somewhat independent conditions (Cr*s*). In the context of Wach modules, we can obtain the control as a consequence of the property (2) of Definition [3.2.](#page-4-4)

Lemma 3.6. If *M* is an A–module with a semilinear Γ –action satisfying $(\gamma - 1)M \subseteq (q - 1)M$, then the same is true of the module $M' = (q-1)M$.

Proof. For a given $m \in M$, note that

$$
(\gamma - 1)((q - 1)m) = (\gamma(q) - 1)\gamma(m) - (q - 1)m
$$

= (\gamma(q) - 1)\gamma(m) - (q - 1)\gamma(m) + (q - 1)\gamma(m) - (q - 1)m
= (\gamma(q) - q))\gamma(m) + (q - 1)(\gamma(m) - m)
= q(q - 1)^p\gamma(m) + (q - 1)²m'

for some $m' \in M$. Thus, we have $(\gamma - 1)((q - 1)M) \subseteq (q - 1)^2M$, as desired.

Proposition 3.7. For a *p*–torsion Wach module *M*, we have

$$
\forall g \in \Gamma_s : (g-1)M \subseteq (q-1)^{p^s}M.
$$

Proof. When $s = 0$, this is part [\(2\)](#page-4-3) of Definitian [3.2,](#page-4-4) so we may assume $s \ge 1$. Since Γ_s is topologically generated by γ^{p^s} , it is enough to show the assertion for γ^{p^s} . Observe that $\gamma^{p^s}-1=(\gamma-1)^{p^s}$ as endomorphisms of *M* since $pM = 0$. Thus, we need to verify

$$
(\gamma - 1)^{p^s} M \subseteq (q - 1)^{p^s} M.
$$

But this follows by repeated use of Lemma [3.6.](#page-5-1) \Box

Finally, let us discuss Galois representations attached to Wach modules in the sense of Definition [3.2.](#page-4-4)

Definition 3.8. The G_K –module associated with a *p*–torsion Wach module *M* is given by

$$
T(M)=(M\otimes_{\mathbb{A}}\mathbb{C}_k^{\flat})^{\varphi=1},
$$

where the map $\mathbb{A} \to \mathcal{O}_{\mathbb{C}_K^{\flat}} \to \mathbb{C}_K^{\flat}$ is given by sending q to $\varepsilon^{1/p}$.

In the geometric setting, the representation obtained this way is the appropriate étale cohomology.

- **Proposition 3.9.** (1) Let T be a $\mathbb{Z}/p\mathbb{Z}[G_K]$ -module of the form L/pL for a G_K -stable lattice L in a crystalline representation whose Hodge–Tate weights are in the range [−*i,* 0]. Then *T* = *T*(*M*) for a *p*–torsion Wach module *M*.
- (2) For a proper smooth *p*–adic formal scheme $\mathfrak X$ over $W(k)$, we have the following: $T(\overline{H_{\mathbb{A}}^{i}(\mathcal{X}_{p}/\mathbb{A})}) = H_{\acute{e}t}^{i}(X_{\mathbb{C}_{K}}, \mathbb{Z}/p\mathbb{Z}),$ $T(H_{\mathbb{A}}^{\overline{i}}(\mathcal{X}_p/\mathbb{A})/pH_{\mathbb{A}}^i(\mathcal{X}_p/\mathbb{A})) = H_{\acute{e}t}^i(X_{\mathbb{C}_K}, \mathbb{Z}_p)/pH_{\acute{e}t}^i(X_{\mathbb{C}_K}, \mathbb{Z}_p).$

Proof. Let us start with [\(2\)](#page-6-1). The claim [\(2a\)](#page-6-2) is proved the same way as [\[FKW21,](#page-12-17) Lemma 2.1.6] in the setting of Breuil–Kisin cohomology. First, note that $M \mapsto T(M)$ factors as the base chage $M \to M \otimes_A A_{\text{inf}}$ to A_{inf} -cohomology followed by the analogous functor $M_{\text{inf}} \mapsto (M_{\text{inf}} \otimes_{A_{\text{inf}}} \mathbb{C}_K^{\flat})^{\varphi=1}$ of mod *p* Breuil–Kisin–Fargues modules. Using [\[BS22,](#page-12-14) Theorem 1.8], we obtain a long exact sequence

$$
\cdots \mathrm{H}^i_{\mathrm{\acute{e}t}}(X_{\mathbb{C}_K},\mathbb{Z}/p\mathbb{Z}) \longrightarrow \overline{\mathrm{H}^i_{\underline{\mathbb{A}}}(\mathfrak{X}_p/\mathbb{A})} \otimes_{\mathbb{A}} \mathbb{C}_K^{\flat} \xrightarrow{1-\varphi} \overline{\mathrm{H}^i_{\underline{\mathbb{A}}}(\mathfrak{X}_p/\mathbb{A})} \otimes_{\mathbb{A}} \mathbb{C}_K^{\flat} \longrightarrow \mathrm{H}^{i+1}_{\mathrm{\acute{e}t}}(X_{\mathbb{C}_K},\mathbb{Z}/p\mathbb{Z}) \cdots,
$$

so it is enough to observe that the map $1 - \varphi$ is surjective (for every *i*). Since $[p]_q$ becomes invertible $\int_{K}^{b} \overline{H_{\mathbb{A}}^{i}(\mathcal{X}_{p}/\mathbb{A})} \otimes_{\mathbb{A}} \mathbb{C}_{K}^{b}$ is in fact an étale *φ*–module, hence of the form $T \otimes \mathbb{C}_{K}^{b}$ for some finite $\mathbb{Z}/p\mathbb{Z}$ –module *T*, with φ given by the Frobenius on \mathbb{C}_K^{\flat} . It follows that $1-\varphi$ is surjective.

Repeating a dévisage version of the argument (or simply invoking [\[Mor16,](#page-13-13) Theorem 1.1 (vii)] and $(BS22, \, \text{\$17}$)) shows that $T(H^i_{\Delta}(\mathcal{X}_p/\mathbb{A})) = H^i_{\text{\'et}}(X_{\mathbb{C}_K}, \mathbb{Z}_p)$, where we extend the definition of *T* to all Wach modules by the formula $T(M) = (M \otimes_A W(\mathbb{C}_K^{\flat}))^{\varphi=1}$. The second claim now follows from the fact that *T* takes the right–exact sequence of Wach modules

$$
\mathrm{H}^i_{\underline{\Lambda}}(\mathfrak{X}_p/\mathbb{A}) \xrightarrow{\ p \ } \mathrm{H}^i_{\underline{\Lambda}}(\mathfrak{X}_p/\mathbb{A}) \xrightarrow{\qquad \ } \mathrm{H}^i_{\underline{\Lambda}}(\mathfrak{X}_p/\mathbb{A})/p\mathrm{H}^i_{\underline{\Lambda}}(\mathfrak{X}_p/\mathbb{A}) \xrightarrow{\qquad \ \ } 0
$$

to a right–exact sequence again. This proves [\(2b\)](#page-6-1).

To prove [\(1\)](#page-6-3), one uses the result of Berger [\[Ber04\]](#page-12-16) that the crystalline lattice *L* is of the form $T(M_0)$ for a Wach module M_0 of height $\leq i$, finite free as an A–module. Proceeding the same way as in the proof of [\(1\)](#page-6-3), it follows that $T = T(M)$ for the mod *p* Wach module $M = M_0/pM_0$.

4. Ramification bound

We now proceed with the proof of the ramification bound. We follow the strategy used in $[\text{Cou21}]$ and thus, ultimately the strategy of [\[CL11\]](#page-12-6), only adapting its use to the case of Wach modules and the tower of extensions ${K(\mu_{p^s})}_s$ rather than ${K(\pi^{1/p^s})}_s$. Let us fix a *p*–torsion Wach module of height $\leq i$, denoted by *M*. In the geometric situation of Section [3,](#page-3-0) we may take *M* as $\overline{H^i_{\mathbb{A}}(\mathcal{X}_p/\mathbb{A})}$ or as $H^i_{\Delta}(\mathcal{X}_p/\mathbb{A})/pH^i_{\Delta}(\mathcal{X}_p/\mathbb{A}).$

Our aim is to provide a bound on $\mu_{L/K}$ where *L* is the splitting field of $T(M)$, that is, $L - \overline{K}^{\ker \rho}$ where $\rho: G_K \to \text{Aut}(T(M))$ is the Galois representation. Noting that this *L* does not change, we may replace $T(M)$ by its dual, which is related to M by

$$
T(M)^{\vee}=T^*(M):=\mathrm{Hom}_{\mathbb{A},\varphi}(M,\mathcal{O}_{\mathbb{C}_K^{\flat}}).
$$

Moreover, the functor $M \mapsto T^*(M)$ clearly depends on M only up to $(q-1)$ –power–torsion; thus, replacing *M* by its quotient modulo $(q - 1)$ –power–torsion, we may assume that *M* is free as a $k[[q-1]]$ –module. From now on, let us denote $T^*(M)$ by *T* for short.

Let us denote by v^{\flat} the tilt of the additive valuation v_K on $\mathcal{O}_{\mathbb{C}_K}$, i.e. $v^{\flat}(x) = v_K(x^{\sharp})$ where v_K is the valuation on $\mathcal{O}_{\mathbb{C}_K}$ determined by $v_K(p) = 1$ and where $(-)^{\sharp}: \mathcal{O}_{\mathbb{C}_K}^{\flat} \to \mathcal{O}_{\mathbb{C}_K}$ is the multiplicative map $\text{pr}_0: \mathcal{O}_{\mathbb{C}_K}^{\flat} = \varprojlim_{x \to x^p} \mathcal{O}_{\mathbb{C}_K} \to \mathcal{O}_{\mathbb{C}_K}$. For a real number $c > 0$, we denote by $\mathfrak{a}^{>c}$ $(\mathfrak{a}^{\geq c}, \text{resp.})$ the ideal of all elements $x \in \mathcal{O}_{\mathbb{C}_K}^{\flat}$ with $v^{\flat}(x) > c$ ($v^{\flat}(x) \geq c$, resp.). Clearly every such ideal is stable under the Frobenius map and under the G_K -action.

Definition 4.1. For a real number $c > 0$, let J_c denote the G_K -module

$$
J_c = \mathrm{Hom}_{\mathbb{A},\varphi}(M,\mathcal{O}_{\mathbb{C}_K^{\flat}}/\mathfrak{a}^{>c}).
$$

The Galois action on *J^s* is given by the usual formula

$$
g(f)(x) = g(f(g^{-1}x)), \ g \in G_K, \ f \in J_c, \ x \in M.
$$

We further set $\rho_c: T \to J_c$ to be the G_K -equivariant map induced by the projection $\mathcal{O}_{\mathbb{C}_K^{\flat}} \to \mathcal{O}_{\mathbb{C}_K^{\flat}}/\mathfrak{a}^{>c}$. Similarly, when $c \geq d > 0$, we denote the natural G_K –equivariant map $J_c \to J_d$ by $\rho_{c,d}^{\wedge}$, and denote the image of this map by $I_{c,d}$.

From now on, let us fix the numbers

$$
b = \frac{i}{p-1}, \ \ a = \frac{pi}{p-1} = pb.
$$

The next proposition states that J_a , J_b recover T as a G_K -representation completely. It is an analogue of [\[CL11,](#page-12-6) Proposition 2.3.3] in our context.

Proposition 4.2. The map $\rho_b: T \to J_b$ is injective, and the image agrees with $I_{a,b}$.

Before proceeding to the proof, let us fix auxiliary data for *M* and notation that will be useful.

Notation 4.3. Let us fix a free basis $e_1, e_2, \ldots e_d$ of M. Let $F \in Mat_{d \times d}(\mathbb{A}/p)$ be the matrix satisfying

$$
(\varphi(e_1), \varphi(e_2), \ldots, \varphi(e_d)) = (e_1, e_2, \ldots, e_d)F.
$$

Since *M* is of height $\leq i$, the submodule of *M* generated by $\varphi(M)$ contains $([p]_q)^i M = (q-1)^{(p-1)i} M$. Thus, there is a matrix $V \in Mat_{d \times d}(\mathbb{A}/p)$ such that $FV = (q-1)^{(p-1)i} \text{Id}$.

To simplify formulas, we use underlined notation, e.g. x , to refer to a length d vector (x_1, x_2, \ldots, x_d) . Thus, for example, *e* refers to the ordered basis (e_1, e_2, \ldots, e_d) of *M*. If an operation *f* makes sense for members of an ordered tuple \underline{x} , we use $f(\underline{x})$ to refer to the vecor where f is applied term–by–term. Exception to this rule is when $f = v$ is a valuation, in which case $v(x)$ is a shorthand for min_i $v(x_i)$.

Proof of Proposition [4.2.](#page-7-0) Clearly $I_{a,b}$ contains Im ρ_b , so the second part of the claim amounts to the converse inclusion. Fix $f: M \to \mathcal{O}_{\mathbb{C}_K^{\flat}}/\mathfrak{a}^{>a}$ in J_a . We claim that there exists a *unique* $g: M \to \mathcal{O}_{\mathbb{C}_K^{\flat}}$ in *T* such that $f \equiv g \pmod{\mathfrak{a}^{>b}}$. This shows both that ρ_b is injective and that its image is $I_{a,b}$.

First, consider an arbitrary lift $\underline{x} \in (\mathcal{O}_{\mathbb{C}}^{\flat})^{\oplus d}$ of the vector $f(\underline{e})$. By compatibility of f with φ , we have

$$
\underline{x}F \equiv \varphi(\underline{x}) \pmod{\mathfrak{a}^{>a}}
$$

and, in fact, the congruence holds modulo $a^{\geq c}$ for some $c > a$ (that may be chosen arbitrarily close to *a*). We may therefore write $\varphi(\underline{x}) - \underline{x}F = Q$ for some matrix *Q* with coefficients in $\mathfrak{a}^{\geq c}$. If there is a unique vector $y \in (\mathfrak{a}^{>b})^{\oplus d}$ such that $\underline{x}' = \underline{x} + y$ satisfies $\underline{x}'F = \varphi(\underline{x}')$, we are done. From the equation

$$
\underline{x}F+\underline{y}F=\underline{x'}F=\varphi(\underline{x'})=\varphi(\underline{x})+\varphi(\underline{y})
$$

we obtain

$$
\underline{y}F = \varphi(\underline{x}) - \underline{x}F + \varphi(\underline{y}) = Q + \varphi(\underline{y}),
$$

and applying *V* on the left, we arrive at

(4.2)
$$
(\varepsilon - 1)^{\frac{(p-1)t}{p}} \underline{y} = QV + \varphi(\underline{y})V
$$

$$
\underline{y} = (\varepsilon - 1)^{-\frac{(p-1)i}{p}} QV + (\varepsilon - 1)^{-\frac{(p-1)i}{p}} \varphi(\underline{y})V.
$$

(*p*−1)*i*

Using the fact that *Q* has coefficients in $\mathfrak{a}^{\geq c}$ with $c > a$ (and, thus, $c/p > b$), it is easy to check that the $\text{map } C: y \mapsto (\varepsilon - 1)^{-\frac{(p-1)i}{p}} QV + (\varepsilon - 1)^{-\frac{(p-1)i}{p}} \varphi(y)V \text{ takes } (\mathfrak{a}^{\geq (c/p)})^{\oplus d} \text{ to } (\mathfrak{a}^{\geq (c/p)})^{\oplus d}.$ Moreover, C is a contraction in the sense that if $v^{\flat}(\underline{y}_1 - \underline{y}_2) \ge t \ge c/p$, then $v^{\flat}(C(\underline{y}_1) - C(\underline{y}_2)) \ge pt - i \ge t + h(p-1)$ for $h > 0$ such that $c/p \ge i/(p-1) + \hat{h}$. By Banach contraction principle, there is a unique fixed point $y \in \mathfrak{a}^{\geq c/p}$, hence a unique solution to [\(4.2\)](#page-8-0), and we are done.

For $c > 0$ and an integer $s \geq 0$, we say that the action on J_c is G_s *–formal* if for all $g \in G_s$, $f \in J_c$ and all $x \in M$, we have $g(f)(x) = g(f(x))$. Equivalently, $f: M \to \mathcal{O}_{\mathbb{C}_K^{\flat}}/\mathfrak{a}^{>c}$ is invariant for the action of G_s on the source ("formal" here refers to the fact that one may disregard the action of G_s on *M* and still get the correct action on *Jc*). The following result is crucial for establishing the bounds.

Proposition 4.4. The action on J_c is G_s -formal when $p^s > c(p-1)$. In particular, the action on J_b is G_s -formal when $p^s > i$.

Proof. Let $f \in J_c$ be arbitrary. For every $x \in M$ and $g \in G_s$, we have $g(x) - x = (q - 1)^{p^s} y$ for some y. Applying f, we obtain $f(g(x)) - f(x) = (\varepsilon^{1/p} - 1)^{p^s} f(y)$. Since $v^{\flat}(\varepsilon^{1/p} - 1) = 1/(p-1)$, we infer that $(\varepsilon^{1/p} - 1)^{p^s} f(y) = 0$ in $\mathcal{O}_{\mathbb{C}_K^{\flat}}/\mathfrak{a}^{>c}$ when $p^s/(p-1) > c$. That is, under the assumption $p^s > c(p-1)$, every $f \in J_c$ is G_s -invariant, as desired. □

We further need a version of Definition [4.1](#page-7-1) with restricted coefficients.

Definition 4.5. Fix an integer $s \geq 0$ and a real number *c* satisfying $p^s > c > 0$. For an algebraic extension $E/K_{p^{s+1}}$, define

$$
J_c^{(s)}(E) = \mathrm{Hom}_{\varphi,\mathbb{A}}(M, (\varphi_k^s))^* \mathcal{O}_E / \mathfrak{a}_E^{>c/p^s}).
$$

Here φ_k^s denotes the *s*-th power of the Frobenius of *k*. Since $1 > c/p^s$, $p = 0$ in $\mathcal{O}_E/\mathfrak{a}_E^{>c/p^s}$ *E* and it is therefore naturally a *k*-algebra, so the indicated pullback makes sence. We further view $(\varphi_k^s))^* \mathcal{O}_E / \mathfrak{a}_E^{>c/p^s}$ \sum_{E}^{c/p^s} as an A*/p*–module via $q-1 \mapsto \zeta_{p^{s+1}}-1$. When the extension $E/K_{p^{s+1}}$ is Galois, we endow $J_c^{(s),E}$ with the action of G_{s+1} , given by

$$
g(f)(x) = g(f(g^{-1}x)), \ \ g \in G_{s+1}, \ f \in J_c^{(s),E}, \ x \in M.
$$

Remark 4.6. When $E = \overline{K}$, there is a G_{s+1} -equivariant isomorphism $\mathcal{O}_{\mathbb{C}_{K}^{b}}/\mathfrak{a}^{>c} \simeq (\varphi_{k}^{s})^{*}\mathcal{O}_{\overline{K}}/\mathfrak{a}_{\overline{K}}^{>c/p^{s}}$ consequently, there is an induced isomorphism $J_c \simeq J_c^{(s)}(\overline{K})$ of G_{s+1} –modules. Similarly, when $\frac{C}{K}$; $F/E/K_{p^{s+1}}$ is a tower of algebraic extensions, the map $\mathcal{O}_E/\mathfrak{a}_E^{>c/p^s} \to \mathcal{O}_F/\mathfrak{a}_F^{>c/p^s}$ $\frac{e^{z}}{F}$ is injective (note that $\mathfrak{a}_F^{>c/p^s} \cap \mathcal{O}_E = \mathfrak{a}_E^{>c/p^s}$ $E^{C/P}$) and it is G_{s+1} -equivariant when both *F* and *E* are Galois over $K_{p^{s+1}}$. Thus, we obtain an injection $J_c^{(s)}(E) \to J_c^{(s)}(F)$, which is G_{s+1} -equivariant in the Galois case.

Fixing *E* and *s*, for $0 < d \leq c < p^s$ we have the evident map $J_c^{(s)}(E) \to J_d^{(s)}$ $d_d^{(s)}(E)$ induced by the quotient map $\mathcal{O}_{\overline{K}}/\mathfrak{a}_{\overline{K}}^{>c/p^s} \to \mathcal{O}_{\overline{K}}/\mathfrak{a}_{\overline{K}}^{>d/p^s}$ $\frac{c^{d}}{K}$. Denote this map by $\rho_{c,d}^{(s)}(E)$, and its image by $I_{c,d}^{(s)}(E)$.

Finally, we introduce a variant where we lift the coefficients to \mathcal{O}_E from $\mathcal{O}_E/\mathfrak{a}_E^{>p^s}$ $E^{\geq c/p}$. For that purpose, we fix some further notation first.

Notation 4.7. For an integer *s* with $p^s > i$, let $F_{(s)}, V_{(s)}$ be the images of the matrices *F* and *V*, resp., under the map $k[[q-1]] \to (\varphi_k^s)^* \mathcal{O}_{K_{p^{s+1}}}/p$. We then identify $(\varphi_k^s)^* \mathcal{O}_{K_{p^{s+1}}}/p$ with $\mathcal{O}_{K_{p^{s+1}}}/p$ and consider some lifts $\tilde{F}_{(s)}, \tilde{V}'_{(s)}$ of $F_{(s)}$ and $V_{(s)}$, resp., to $\mathcal{O}_{K_{p^{s+1}}}$. Then we have

 $\widetilde{F}_{(s)}\widetilde{V}'_{(s)} \equiv (\zeta_{p^{s+1}} - 1)^{(p-1)i}\text{Id} \pmod{p}.$

It follows that $\widetilde{F}_{(s)}\widetilde{V}'_{(s)} = (\zeta_{p^{s+1}} - 1)^{(p-1)i}(\text{Id} + C)$ for a matrix *C* with entries in $\mathfrak{a}_{K_{p^{s+1}}}^{>0}$ (here we use that $i/p^s < 1 = v_K(p)$). The matrix Id + *C* has an inverse of the form Id + *D* where *D* again has entries in $\mathfrak{a}_{K_{p^{s+1}}}^{>0}$ (it is given by $\sum_{n=1}^{\infty}(-C)^n$). Set $\widetilde{V}_{(s)} = \widetilde{V}'_{(s)}(\text{Id} + D)$. The resulting matrices then satisfy the identity (of matrices over $K_{p^{s+1}}$)

$$
\widetilde{F}_{(s)}\widetilde{V}_{(s)} = (\zeta_{p^{s+1}} - 1)^{(p-1)i} \mathrm{Id}.
$$

Definition 4.8. Given an integer *s* with $p^s > i$ and an algebraic extension $E/K_{p^{s+1}}$, the set $\widetilde{J}^{(s)}(E)$ is defined as

$$
\widetilde{J}^{(s)}(E) = \{ \widetilde{\underline{x}} = (\widetilde{x}_1, \widetilde{x}_2, \dots, \widetilde{x}_d) \in \mathcal{O}_E^{\oplus d} \mid \widetilde{\underline{x}}^p = \widetilde{\underline{x}} \widetilde{F}_{(s)} \},
$$

where $\tilde{\underline{x}}^p$ denotes the vector $(\tilde{x}_1^p, \tilde{x}_2^p, \ldots, \tilde{x}_d^p)$. When $E/K_{p^{s+1}}$ is Galois, we endow $\widetilde{J}^{(s)}(E)$ with action on entries of $\widetilde{\underline{x}}$.

Given *c* with $0 < c < p^s$, there is an evident map $\tilde{\rho}_c^{(s)}(E) : \tilde{J}^{(s)}(E) \to J_c^{(s)}(E)$. When $E = \overline{K}$, continuously as long as *L* is *C*, continuously by Proposition 4.4, this is indeed the this map is G_{s+1} –equivariant as long as J_c is G_{s+1} –formal. By Proposition [4.4,](#page-8-1) this is indeed the case under our running assumption $p^s > i$. We need the following enhancement of Proposition [4.2,](#page-7-0) analogous to [\[CL11,](#page-12-6) Lemma 4.1.4].

Proposition 4.9. Assume $p^s > a$, that is, $(p-1)p^{s-1} > i$. Then for every algebraic extension $E/K_{p^{s+1}},$ the map $\widetilde{\rho}_b^{(s)}$ $J_b^{(s)}(E) : \tilde{J}^{(s)}(E) \to J_b^{(s)}$ $b^{(s)}(E)$ is injective and its image is $I_{a,b}^{(s)}(E)$.

Proof. We proceed as in the proof of Proposition [4.2.](#page-7-0) Let us identify all the rings of the form $(\varphi_k^s)^*(\mathcal{O}_E/\mathfrak{a}^{>t})$ appearing in the proof with $\mathcal{O}_E/\mathfrak{a}^{>t}$. Fix $f \in J_b^{(s)}$ *b*^{*b*}</sup>(*E*) and let $\underline{f}(\underline{e}) \in (\mathcal{O}_E/\mathfrak{a}^{>a/p^s})^{\oplus d}$ be the vector of images of the fixed basis ϵ from Notation [4.3.](#page-7-2) Choosing any lift \underline{x} of $\underline{f}(\underline{e})$ to $\mathcal{O}_E^{\oplus d}$, the aim is to show that there is a unique $y \in (\mathfrak{a}^{>b/p^s})^{\oplus d}$ such that $x + y \in \widetilde{J}^{(s)}(E)$.

The required equation then takes the form

$$
(\underline{x} + \underline{y})^p = (\underline{x} + \underline{y})\widetilde{F}_{(s)}
$$

which, after applying $V_{(s)}$ on the right and simplifying, becomes

$$
\underline{y} = (\zeta_{p^{s+1}} - 1)^{-i(p-1)}(\underline{x} + \underline{y})^p \widetilde{V}_{(s)} - \underline{x}
$$

(recall that we use the notation for *p*–th power of vectors component–by–component). Just like in the proof of Proposition [4.2,](#page-7-0) the goal is to show that the map *C* given by

$$
C(\underline{y}) = (\zeta_{p^{s+1}} - 1)^{-i(p-1)}(\underline{x} + \underline{y})^p \widetilde{V}_{(s)} - \underline{x}
$$

takes $(\mathfrak{a}_{E}^{\geq c})^{\oplus d}$ to $(\mathfrak{a}_{E}^{\geq c})^{\oplus d}$ for *c* with $c > b$ (and arbitrarily close to *b*), and that *C* is a contraction on this space. To choose such *c*, note that we have $\underline{x}^p \equiv \underline{x} \widetilde{F}_{(s)}$, (mod $\mathfrak{a}_E^{>a/p^s}$ \sum_{E} ^{2*a*}/*P*^{\cdot}), and after applying *V*_(*s*) on the right, it follows that $(\zeta_{p^{s+1}}-1)^{-i(p-1)}\underline{x}^p\widetilde{V}_{(s)} \equiv \underline{x} \pmod{\mathfrak{a}_{\geq k}^{>t}}$ for $t = a/p^s - i/p^s = b/p^s$. Then we may choose *c* so that this congruence still holds modulo $\mathfrak{a}_E^{\geq c/p^s}$ $\frac{\geq c/p}{E}$.

The fact that *C* takes $(\mathfrak{a}_{E}^{\geq c})^{\oplus d}$ to $(\mathfrak{a}_{E}^{\geq c})^{\oplus d}$ is then easily seen as follows. Write

$$
C(\underline{y}) = \underbrace{(\zeta_{p^{s+1}} - 1)^{-i(p-1)} \underline{x}^p \widetilde{V}_{(s)} - \underline{x}}_{\alpha} + \underbrace{(\zeta_{p^{s+1}} - 1)^{-i(p-1)} p \underline{y} R \widetilde{V}_{(s)}}_{\beta} + \underbrace{(\zeta_{p^{s+1}} - 1)^{-i(p-1)} \underline{y}^p \widetilde{V}_{(s)}}_{\gamma},
$$

where $p\underline{y}R$ consists of the mixed terms from the binomial expansion of $(\underline{x} + \underline{y})^p$. Then $\alpha \in (\mathfrak{a}_E^{\geq c})^{\oplus d}$ by the choice of *c*, and we further have $\beta \in (\mathfrak{a}_{\overline{E}}^{\geq t})^{\oplus d}$ for $t \geq 1 + c/p^s - i/p^s$ and $\gamma \in (\mathfrak{a}_{\overline{E}}^{\geq u})^{\oplus d}$ for $u \geq cp/p^s - i/p^s$, both of which are bigger than c/p^s .

To show that *C* is a contraction, let $h_0 = \min\{1, (p-1)c/p^s\}$ and $h = h_0 - i/p^s$ (then $h > 0$). For $y_1, y_2 \in \mathfrak{a}_E^{\geq c/p^s}$ with $v_K(\underline{y}_1 - \underline{y}_2) = t$, we have

$$
\begin{aligned} C(\underline{y}_1)-C(\underline{y}_2)&=(\zeta_{p^{s+1}}-1)^{-i(p-1)}((\underline{x}+\underline{y}_1)^p-(\underline{x}+\underline{y}_2)^p)\widetilde{V}_{(s)}\\&=(\zeta_{p^{s+1}}-1)^{-i(p-1)}(\underbrace{p(\underline{y}_1-\underline{y}_2)S}_{\delta}+\underbrace{(\underline{y}_1^p-\underline{y}_2^p)}_{\epsilon})\widetilde{V}_{(s)} \end{aligned}
$$

The term δ consists of all the mixed terms in binomial expansions of $(\underline{x} + \underline{y}_1)^p$ and $(\underline{x} + \underline{y}_2)^p$ (and it is easy to see that it has the indicated form, with *S* an integral matrix). The valuation of δ is therefore at least $1 + t$, hence $1 + t - i/p^s \ge t + h$ after multiplying by $(\zeta_{p^{s+1}} - 1)^{-i(p-1)}$. Regarding ϵ , we have

$$
\underline{y}_1^p - \underline{y}_2^p = (\underline{y}_1 - \underline{y}_2)(\underline{y}_1^{p-1} + \underline{y}_1^{p-2}\underline{y}_2 + \dots + \underline{y}_1 \underline{y}_2^{p-2} + \underline{y}_2^{p-1})
$$

(where operations on vectors are performed component-by-component), and therefore ϵ is of valuation at least $t+(p-1)c/p^s$. After accounting for $(\zeta_{p^{s+1}}-1)^{-i(p-1)}$, this becomes $t+(p-1)c/p^s-i/p^s \geq t+h$. Thus, the valuation of $C(\underline{y}_1) - C(\underline{y}_2)$ is at least $t + h$, showing that *C* is a contraction on $(\mathfrak{a}_{E}^{\geq c})^{\oplus d}$ and thus, finishing the proof. \Box

Let us denote $L_{s+1} = L K_{p^{s+1}} = L[\zeta_{p^{s+1}}]$. Consider *s* with $p^s > a$, and an algebraic extension $E/K_{p^{s+1}}$. The four canonical maps between $J_a^{(s)}(E)$, $J_b^{(s)}(E)$, J_a and J_b induce the inclusion

$$
\iota_{E,s}: I_{a,b}^{(s)}(E) = \rho_{a,b}^{(s)}(E)(J_a^{(s)}(E)) \hookrightarrow \rho_{a,b}(J_a) = I_{a,b}.
$$

The next proposition regarding $\iota_{E,s}$ is a basis for establishing validity of Fontaine's property (P_m) in our context; it is a direct analogue of $\rm \left[\textrm{Coul}\right]$, Theorem 5.13] and $\rm \left[\textrm{CL11},$ Theorem 4.1.1].

Proposition 4.10. The map $\iota_{E,s}$ is an isomorphism if and only if $L_{s+1} \subseteq E$.

Proof. We have a series of G_{s+1} –equivariant bijections

$$
\widetilde{J}^{(s)}(\overline{K}) \simeq I_{a,b}^{(s)}(\overline{K}) \simeq I_{a,b} \simeq T,
$$

where the indicated isomorphisms use Proposition [4.9,](#page-9-0) Remark [4.6,](#page-8-2) and Proposition [4.2,](#page-7-0) respectively. Similarly, by Proposition [4.9](#page-9-0) we have a G_{s+1} -equivariant isomorphism $\widetilde{J}^{(s)}(E) \simeq I_{a,b}^{(s)}(E)$, and we clearly have $\widetilde{J}^{(s)}(E) = \widetilde{J}^{(s)}(\overline{K})^{G_E}$. Thus, the map $\iota_{E,s}$ may be replaced by the inclusion $T^{G_E} \subseteq T$, for which the statement of the proposition is obviously valid.

Proposition 4.11. Let *s* be an integer such that $p^s > a$, and let $m = a/p^s$. Then Fontaine's property $(P_m^{L_{s+1}/K_{s+1}})$ holds.

Proof. We follow the proof of $[Čou21, Proposition 5.14]$ $[Čou21, Proposition 5.14]$, ultimately based on the arguments of $[Hat09,$ [CL11\]](#page-12-6). By Proposition [2.2,](#page-3-1) we may replace K_{s+1} by the maximal unramified extension K_{s+1}^{un} inside L_{s+1} , and prove $(P_m^{L_{s+1}/K_{s+1}^{\text{un}}})$ instead.

Let E/K_{s+1}^{un} be an algebraic extension and let $f: \mathcal{O}_{L_{s+1}} \to \mathcal{O}_E/\mathfrak{a}_E^{>m}$ be an $\mathcal{O}_{K_{s+1}^{\text{un}}}\text{-algebra map.}$ For $c \in \{a, b\}$, we consider the induced map

$$
f_c: \mathcal{O}_{L_{s+1}}/\mathfrak{a}_{L_{s+1}}^{>c/p^s} \to \mathcal{O}_E/\mathfrak{a}_E^{>c/p^s}.
$$

First, we claim that this map is well–defined an injective. To prove this, consider a uniformizer $\varpi \in L_{s+1}$. The extension $L_{s+1}/K_{s+1}^{\text{un}}$ is totally ramified, so ϖ satisfies an Eisenstein relation of the form (with $e = e(L_{s+1}/K_{s+1}))$

$$
\varpi^e = c_1 \varpi^{e-1} + c_2 \varpi^{e-2} + \dots + c_{e-1} \varpi + c_e,
$$

with $v_K(c_i) \ge 1/(p^s(p-1))$ for all i, and $v_K(c_e) = 1/(p^s(p-1))$. Applying f, the same relation applies to $f = f(\varpi) \in \mathcal{O}_E/\mathfrak{a}_E^{>m}$. Choosing a lift \tilde{t} of t to \mathcal{O}_E , we then obtain the relation

$$
\widetilde{t}^e = c_1 \widetilde{t}^{e-1} + c_2 \widetilde{t}^{e-2} + \dots + c_{e-1} \widetilde{t} + c_e + r,
$$

where $r \in \mathfrak{a}_E^{>m}$. Since $m \geq 1/(p^s(p-1))$, the valuation of the left-hand side is that of c_e , and it follows that $v_K(\tilde{t}) = 1/(ep^s(p-1)) = v_K(\varpi)$. We may therefore conclude that

$$
\forall N: \quad \varpi^N \in \mathfrak{a}_{L_{s+1}}^{>c/p^s} \text{ if and only if } \frac{N}{ep^s(p-1)} > \frac{c}{p^s} \text{ if and only if } \widetilde{t}^N \in \mathfrak{a}_E^{>c/p^s}.
$$

The 'only if' part shows that *f^c* is well–defined, and the 'if' part shows that it is injective.

Applying $(\varphi_k^s)^*(-)$ to f_a and f_b , one obtains a commutative square

$$
\begin{array}{ccc}(\varphi_k^s)^*\mathcal{O}_{L_{s+1}}/\mathfrak{a}_{L_{s+1}}^{>a/p^s}&\xrightarrow{(\varphi_k^s)^*(f_a)}(\varphi_k^s)^*\mathcal{O}_E/\mathfrak{a}_E^{>a/p^s}\\ &\downarrow&&\downarrow\\ (\varphi_k^s)^*\mathcal{O}_{L_{s+1}}/\mathfrak{a}_{L_{s+1}}^{>b/p^s}&\xrightarrow{(\varphi_k^s)^*(f_b)}(\varphi_k^s)^*\mathcal{O}_E/\mathfrak{a}_E^{>b/p^s}\end{array},
$$

which in turn induces a commutative square

$$
J_a^{(s)}(L_{s+1}) \xrightarrow{\qquad} J_a^{(s)}(E)
$$

$$
\downarrow \rho_{a,b}^{(s)}(L_{s+1}) \qquad \qquad \downarrow \rho_{a,b}^{(s)}(E)
$$

$$
J_b^{(s)}(L_{s+1}) \xrightarrow{\qquad} J_b^{(s)}(E) .
$$

Taking images of the vertical maps, we obtain an injection $I_{a,b}^{(s)}(L_{s+1}) \hookrightarrow I_{a,b}^{(s)}(E)$. By Proposition [4.10](#page-10-0) applied to L_{s+1} , $I_{a,b}^{(s)}(L_{s+1}) \simeq T$, and therefore the injection $\iota_{E,s}$ from Proposition [4.10](#page-10-0) has to be an isomorphism (it is an injection of finite sets where the source has siye at least as much as the target). It follows by Proposition [4.10](#page-10-0) again that $L_{s+1} \subseteq E$. This finishes the proof. □

Finally, we are ready to prove the ramification bound in full.

Theorem 4.12. For

$$
\alpha = \left(\left\lfloor \log_p \left(\frac{ip}{p-1} \right) \right\rfloor + 1 \right) \text{ and } \beta = \max \left\{ 0, \frac{ip}{p^a (p-1)} - \frac{1}{p-1} \right\},\
$$

one has $\mu_{L/K} \leq 1 + \alpha + \beta$.

Proof. Set $s = \alpha$ so that $p^s > ip/(p-1) = a$. First we estimate $\mu_{L_{s+1}/K}$. By Lemma [2.3,](#page-3-2) we have

$$
\mu_{L_{s+1}/K} = \max \{ \mu_{K_{p^{s+1}}/K}, \phi_{K_{p^{s+1}}/K}(\mu_{L_{s+1}/K_{s+1}}) \}.
$$

Propositions [4.11](#page-10-1) and [2.2](#page-3-1) show that $\mu_{L_{s+1}/K_{s+1}} \leq p^s(p-1)m = ip$. A classical computation (e.g. $[\text{Ser13, }\$IV]$) shows that $\mu_{K_{p^{s+1}/K}} = s+1$, and that $\phi_{K_{p^{s+1}/K}}(t)$ has the last break point given by $\phi_{K_{p^{s+1}}/K}(p^s) = s+1$, with last slope $1/(p^s(p-1))$. Therefore, we may estimate

$$
\phi_{K_{p^{s+1}}/K}(t) \le 1 + s - \frac{1}{p-1} + \frac{t}{p^s(p-1)},
$$

and we obtain

$$
\mu_{L_{s+1}/K} \le \max\{1+s, 1+s-\frac{1}{p-1}+\frac{ip}{p^s(p-1)}\}=1+s+\max\{0, \frac{ip}{p^s(p-1)}-\frac{1}{p-1}\}.
$$

Finally, observing that $\mu_{L/K} \leq \mu_{L_{s+1}/K}$, we obtain the desired bound. □

Remark 4.13. Let us briefly compare the bound from Theorem [4.12](#page-11-0) with the results [\[Hat09,](#page-13-3) [CL11\]](#page-12-6) (i.e., the semistable case) and $[\text{Cou21}]$. For general comparison between the three, see $[\text{Cou21}, \S 5.2]$. Here we only summarize that for K absolutely unramified, the bounds of $\left[CL11, \text{Coul21}\right]$ $\left[CL11, \text{Coul21}\right]$ $\left[CL11, \text{Coul21}\right]$ both become

(4.3)
$$
\mu_{L/K} \le 1 + \alpha + \max \left\{ \frac{ip}{p^{\alpha}(p-1)} - \frac{1}{p^{\alpha}}, \frac{1}{p-1} \right\},\,
$$

(with the same α as in Theorem [4.12\)](#page-11-0). In order to compare with $[\text{Hat}09]$, one needs to further assume $i < p-1$, in which case all three bounds agree.

On the other hand, Theorem [4.12](#page-11-0) gives

(4.4)
$$
\mu_{L/K} \le 1 + \alpha + \max \left\{ \frac{ip}{p^{\alpha}(p-1)} - \frac{1}{p-1}, 0 \right\},
$$

which is a stronger bound in all cases (since α is always at least 1).

Example 4.14. To show that Theorem [4.12](#page-11-0) in general excludes torsion *semistable* representations, we consider the example from [\[Hat09\]](#page-13-3) for which the ramificaion bounds of *loc. cit.* are optimal. Let $K = \mathbb{Q}_p$, and consider the Tate curve E_p at *p*, i.e. the elliptic curve over \mathbb{Q}_p with $E_P(\overline{\mathbb{Q}_p}) = \overline{\mathbb{Q}_p}^{\times}/p^{\mathbb{Z}}$. It is well–known that E_p has semistable (and not good) reduction.

The set $E_P(\overline{\mathbb{Q}_p})[p]$ can be identified with the set of all *p*-th roots of unity together with $p^{1/p}$ and all its conjugates. Consequently, the splitting field for $H^1_{\text{\'et}}(E_{p,\mathbb{C}_K}, \mathbb{Z}/p\mathbb{Z})$ is $L = \mathbb{Q}_p(\zeta_p, p^{1/p})$. By [\[Hat09,](#page-13-3) Remark 5.5], one has $\mu_{L/K} = 2 + 1/(p-1)$.

On the other hand, the bound from Theorem 4.12 for $i = 1$ would give the stronger estimate $\mu_{L/K} \leq 2$. This shows that the bounds obtained in Theorem [4.12](#page-11-0) are "genuinely crystalline", i.e. not satisfied by varieties with semistable reduction in general.

REFERENCES

- [Abr90] Victor Abrashkin, *Ramification in étale cohomology*, Inventiones mathematicae **101** (1990), no. 1, 631–640.
- [Abr15] , *Ramification estimate for Fontaine–Laffaille Galois modules*, Journal of Algebra **427** (2015), 319– 328.
- [Ber04] Laurent Berger, *Limites de représentations cristallines*, Compositio Mathematica **140** (2004), no. 6, 1473– 1498.
- [BM02] Christophe Breuil and William Messing, *Torsion étale and crystalline cohomologies*, Astérisque **279** (2002), 81–124.
- [BMS18] Bhargav Bhatt, Matthew Morrow, and Peter Scholze, *Integral p–adic hodge theory*, Publications mathématiques de l'IHÉS **128** (2018), no. 1, 219–397.
- [BMS19] , *Topological Hochschild homology and integral p–adic Hodge theory*, Publications mathématiques de l'IHÉS **129** (2019), no. 1, 199–310.
- [Bre98] Christophe Breuil, *Letter to Gross*, 1998.
- [BS22] Bhargav Bhatt and Peter Scholze, *Prisms and prismatic cohomology*, Annals of Mathematics **196** (2022), no. 3, 1135–1275.
- [BS23] , *Prismatic f-crystals and crystalline galois representations*, Cambridge Journal of Mathematics **11** (2023), no. 2, 507–562.
- [Car08] Xavier Caruso, *Conjecture de l'inertie modérée de Serre*, Inventiones mathematicae **171** (2008), no. 3, 629– 699.
- [Car13] , *Représentations galoisiennes p-adiques et* (*φ, τ*)*–modules*, Duke Mathematical Journal **162** (2013), no. 13, 2525–2607.
- [CL11] Xavier Caruso and Tong Liu, *Some bounds for ramification of p ⁿ–torsion semi–stable representations*, Journal of Algebra **325** (2011), no. 1, 70–96.
- [Col99] Pierre Colmez, *Représentations cristallines et représentations de hauteur finie*, Journal fur die Reine und Angewandte Mathematik **514** (1999), 119–144.
- [Čou21] Pavel Čoupek, *Crystalline condition for A*inf*-cohomology and ramification bounds*, arXiv preprint arXiv:2108.03833 (2021).
- [EG23] Matthew Emerton and Toby Gee, *Moduli stacks of étale* (*φ,* Γ)*–modules and the existence of crystalline lifts*, Princeton University Press, Princeton, 2023.
- [FKW21] Benson Farb, Mark Kisin, and Jesse Wolfson, *Essential dimension via prismatic cohomology*, arXiv preprint arXiv:2110.05534 (2021).

(Pavel Čoupek) Department of Mathematics, Michigan State University *Email address*: coupekpa@msu.edu

.

14 PAVEL ČOUPEK