Ramification bounds for $\bmod p$ étale cohomology via prismatic cohomology

Pavel Čoupek
Michigan State University

Monodromy and its Applications
Dec 72023

Motivation \& Background

Theorem (Fontaine '85)

There is no non-trivial abelian scheme over \mathbb{Z}. Equivalently, there is no non-zero abelian variety over \mathbb{Q} with good reduction everywhere.

Key input in proof: let

- K / \mathbb{Q}_{p} be a finite extension,
- $e=e\left(K / \mathbb{Q}_{p}\right)$ be the absolute ramification index,
- $G_{K}^{\mu}, \mu \geq-1$ be the upper-indexed ramification subgroups of $G_{K}=\operatorname{Gal}(\bar{K} / K)$.

Theorem (Fontaine '85)

Let Γ be a finite flat commutative group scheme over \mathcal{O}_{K} that is annihilated by p^{n}. Then G_{K}^{μ} acts trivially on $\Gamma(\bar{K})$ when

$$
\mu>e\left(n+\frac{1}{p-1}\right)-1 .
$$

Motivation \& Background

Conjecture (Fontaine '85)

Given a smooth proper \mathcal{O}_{K}-scheme X and $T=H_{e t t}^{i}\left(X_{\bar{K}}, \mathbb{Z} / p^{n} \mathbb{Z}\right), G_{K}^{\mu}$ acts trivially on T when

$$
\mu>e\left(n+\frac{i}{p-1}\right)-1
$$

- Special cases proved: - by Fontaine ('93) when $n=e=1, i<p-1$, - by Abrashkin ('90) when $e=1, \quad i<p-1$
- Similar bounds by Hattori ('09), Caruso-Liu ('11):
$-\bmod p^{n}$ reductions of lattices in semistable \mathbb{Q}_{p}-representations
- applies to $H_{\mathrm{et}}^{i}\left(X_{\bar{K}}, \mathbb{Z} / p \mathbb{Z}\right)$ when X has semistable reduction and ie $<p-1$

Main result

Theorem (Č.)

Let X be a smooth and proper formal \mathcal{O}_{K}-scheme, $\mathbb{C}_{K}=\widehat{\bar{K}}, T=H_{\text {ett }}^{i}\left(\mathcal{X}_{\mathbb{C}_{K}}, \mathbb{Z} / p \mathbb{Z}\right)$. Then G_{K}^{μ} acts trivially on T when

- $e \leq p$ and $\mu>e\left(\left\lfloor\log _{p}\left(\frac{i p}{p-1}\right)\right\rfloor+1\right)+e$,
- $e>p$ and $\mu>e\left(\left\lfloor\log _{p}\left(\frac{i e}{p-1}\right)\right\rfloor+1\right)+p$,
- $i=1$ (e, p arbitrary) and $\mu>e\left(1+\frac{1}{p-1}\right)$.

Some comparisons:

- ie $<p-1$ or $i=1$: agrees with Hattori, Caruso-Liu
- $e=1$ and $i<p-1$: Fontaine, Abrashkin are slightly stronger
- Bound of Caruso ('13) a posteriori applies; which bound is stronger depends on K

Fontaine's condition $\left(P_{m}\right)$

- Fix L / K finite Galois extension.
$\left(P_{m}^{L / K}\right)$
For every alg. extension E / K :

$$
\exists \mathcal{O}_{L} \rightarrow \mathcal{O}_{E} / \mathfrak{a}_{E}^{>m} \text { over } \mathcal{O}_{K} \Rightarrow \exists L \hookrightarrow E \text { over } K
$$

- here $\mathfrak{a}_{E}^{>m}=\mathcal{O}_{E}$-elements of K-valuation $>m$

Proposition (Fontaine, Yoshida)

$$
\inf \left\{\mu \mid \operatorname{Gal}(L / K)^{\mu-1}=1\right\}=\inf \left\{m \mid\left(P_{m}^{L / K}\right) \text { holds }\right\} .
$$

"Meta-strategy" of proof:

- To the rep. T, attach associated linear-algebraic data (modules)
- Encode and prove $\left(P_{m}\right)$ in terms of these modules

Breuil-Kisin(-Fargues) modules, prismatic cohomology

- $\mathcal{O}_{K} \hookrightarrow \mathcal{O}_{\mathbb{C}_{K}}+$ choice of $\pi \in K$ uniformizer, $\pi_{s}=\pi^{1 / p^{s}}, s \geq 0$ determine

$$
\begin{aligned}
\mathfrak{S}=W(k)[[u]] & \longleftrightarrow A_{\mathrm{inf}}=W\left(\mathcal{O}_{\mathbb{C}_{K}}^{b}\right) \\
u & \longmapsto[\underline{\pi}], \quad \underline{\pi}=\left(\pi_{s}\right)_{s} \in \mathcal{O}_{\mathbb{C}_{K}}^{b}
\end{aligned}
$$

- A Breuil-Kisin module is a fin.-gen. \mathfrak{S}-module $M_{\mathrm{BK}}+$ a semilinear operator $\varphi: M_{\mathrm{BK}} \rightarrow M_{\mathrm{BK}}$ with certain invertibility condition
- geometrically comes as Breuil-Kisin cohomology of Bhatt-Morrow-Scholze:

$$
\mathrm{R} \Gamma_{\Delta}(X / \mathfrak{S}) \text { and } \mathrm{R} \Gamma_{\Delta, 1}(X / \mathfrak{S})=\mathrm{R} \Gamma_{\Delta}(X / \mathfrak{S}) \otimes^{\mathrm{L}} \mathbb{Z} / p \mathbb{Z}
$$

- if the scalar extension $M_{\mathrm{inf}}=M_{\mathrm{BK}} \otimes_{\mathfrak{S}} A_{\text {inf }}$ has G_{K}-action, we obtain a Breuil-Kisin-Fargues G_{K}-module.
- geometrically comes as $A_{\text {inf }}$-cohomology of Bhatt-Morrow-Scholze:

$$
\mathrm{R} \Gamma_{\Delta}\left(X_{\mathcal{O}_{\mathrm{C}}} / A_{\text {inf }}\right) \simeq \mathrm{R} \Gamma_{\Delta}(X / \mathfrak{S}) \widehat{\otimes}_{\mathfrak{S}} A_{\text {inf }} \text { and } \mathrm{R} \Gamma_{\Delta, 1}\left(X_{\mathcal{O}_{\mathbb{C}}} / A_{\text {inf }}\right)=\mathrm{R} \Gamma_{\Delta}\left(X_{\mathcal{O}_{\mathbb{C}}} / A_{\text {inf }}\right) \otimes \otimes^{\mathrm{L}} \mathbb{Z} / p \mathbb{Z}
$$

The conditions $\left(\mathrm{Cr}_{s}\right)$

- Set $\quad G_{s}=\operatorname{Gal}\left(\bar{K} / K\left(\pi_{s}\right)\right), \quad G_{\infty}=\bigcap_{s} G_{s}$
- Fix $\quad M_{\mathrm{BK}}=H_{\Delta, 1}^{i}(X / \mathfrak{S}), \quad M_{\mathrm{inf}}=H_{\Delta, 1}^{i}\left(X_{\mathcal{O}_{\mathrm{C}}} / A_{\text {inf }}\right)$, and set

$$
T^{\mathrm{BK}}=\left.\operatorname{Hom}_{\mathfrak{S}, \varphi}\left(M_{\mathrm{BK}}, \mathcal{O}_{\mathbb{C}_{K}}^{b}\right) \simeq T^{\vee}\right|_{G_{\infty}}, \quad T^{\mathrm{inf}}=\operatorname{Hom}_{A_{\mathrm{inf}, \varphi}, \varphi}\left(M_{\mathrm{inf}}, \mathcal{O}_{\mathbb{C}_{K}}^{b}\right) \simeq T^{\vee} .
$$

- Idea: Mutate $T^{\mathrm{BK}}, T^{\text {inf }}$ enough to verify Fontaine's property $\left(P_{m}\right)$
- Key step: relate the G_{s}-actions on T^{BK} and T^{inf} as follows:

$$
\forall g \in G_{s}:(g-1) M_{\mathrm{BK}} \subseteq \mathfrak{a}^{>c} M_{\mathrm{inf}}
$$

- Reminiscent of a crystallinity criterion of Gee-Liu ('19):

$$
\begin{equation*}
\forall g \in G_{K}: \quad(g-1) M_{\mathrm{BK}} \subseteq\left(\left[\underline{\varepsilon}^{1 / p}\right]-1\right)[\underline{\pi}] M_{\mathrm{inf}} \tag{0}
\end{equation*}
$$

The conditions $\left(\mathrm{Cr}_{s}\right)$

There is a decreasing sequence of ideals $I_{s} \subseteq A_{\mathrm{inf}}, s \geq 0$ such that:

Theorem (Č.)

For every i and every $s \geq 0$, one has (termwise on a representing complex)
(Cr_{s})

$$
\forall g \in G_{s}: \quad(g-1) R \Gamma_{\Delta}(X / \mathfrak{S}) \subseteq I_{s} R \Gamma_{\Delta}\left(X_{\mathcal{O}_{C_{K}}} / A_{\mathrm{inf}}\right)
$$

Consequently,
(1) For every i, the cohomology groups satisfy

$$
\begin{equation*}
\forall g \in G_{K}: \quad(g-1) H_{\Delta}^{i}(X / \mathfrak{S}) \subseteq\left(\left[\underline{\varepsilon}^{1 / p}\right]-1\right)[\pi] H_{\Delta}^{i}\left(X_{\mathcal{O}_{C_{K}}} / A_{\mathrm{inf}}\right) . \tag{0}
\end{equation*}
$$

(2) For every i and every $s \geq 0$, one has

$$
\forall g \in G_{s}: \quad(g-1) H_{\Delta, 1}^{i}(X / \mathfrak{S}) \subseteq\left(\left[\underline{\varepsilon}^{1 / p}\right]-1\right)[\underline{\pi}]^{p^{s}} H_{\Delta, 1}^{i}\left(X_{\mathcal{O}_{\mathbb{C}_{K}}} / A_{\text {inf }}\right) .
$$

Thank you!

