MA 16020 Lesson 33: Inverse matrices

Recall (Unit matrix): The matrix I (or, more precisely, I_{n}) denotes the $n \times n$ identity matrix

$$
I_{n}=
$$

It has the properties that 1) for every $n \times k$ matrix B,
2) for every $k \times n$ matrix C,

Inverse matrices. Given a square $(n \times n)$ matrix A, its inverse matrix, is an $(n \times n)$ matrix A^{-1} such that:

Example:

Matrix multiplication and systems of equations. Using matrix multiplication, a system of linear equations can be expressed as a single matrix equation.

Example:

$$
\begin{aligned}
2 x+y+z & =1 \\
x+2 z & =-2 \quad \text { corresponds to } \\
y-z & =4
\end{aligned}
$$

The system

The inverse matrix in this case is:

We can use the inverse matrix to solve the matrix equation as follows:

How to compute the inverse matrix. Matrices for which the inverse exist are called invertible. If a marix is not inveritible, then it is called singular.
Example: If it exists, find the inverse of the matrix $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$.

Finding the inverse of a matrix - summary.

1. For the matrix A to be inverted, write down the augmented matrix:
2. Perform Gauss-Jordan elimination.
3. The matrix A^{-1} can be read off from the result as:

Exercise 1. If it exists, find the inverse of the matrix:

$$
\left[\begin{array}{ccc}
-3 & 0 & -9 \\
2 & 1 & 6 \\
1 & -2 & 4
\end{array}\right]
$$

Exercise 2. Using the inverse of the coefficient matrix, solve the following system of equations:

$$
\begin{aligned}
3 x-6 y+z & =2 \\
2 y+6 z & =3 \\
2 x-4 y+z & =5
\end{aligned}
$$

Exercise 3. If it exists, find the inverse of the matrix:
$\left[\begin{array}{lll}3 & 1 & 5 \\ 1 & 0 & 1 \\ 2 & 1 & 4\end{array}\right]$

