MA 16010 Lesson 3: Limits Analytically

Preview: Continuity

A function f(x) is continuous at x = c if: • _______,

• _____

Rule of thumb: Functions defined by a single formula are continuous at every point where they are defined (if they are also defined around the point).

Examples:

•
$$f(x) = \frac{1}{2}x + 2$$
:

$$\bullet$$
 $f(x) = \sqrt{x}$:

$$\bullet$$
 $f(x) = \frac{1}{x}$:

We can use this implicit continuity to compute simple limits quickly:

Example: Compute:

$$\lim_{x \to -1} \frac{x-1}{x-2}$$

Computational rules for limits.

Assuming that $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ exist, we have:

- $\bullet \lim_{x \to c} (f(x) \pm g(x)) =$
- $\bullet \lim_{x \to c} (f(x) \cdot g(x)) =$
- $\bullet \lim_{x \to c} \left(f(x)/g(x) \right) =$
- $\bullet \lim_{x \to c} (k \cdot f(x)) =$
- $\bullet \, \lim_{x \to c} \left(f(x)^n \right) =$

as long as the expressions on the right-hand side make sense.

(Example:

makes sense:

does not make sense:

Example: Using that $\lim_{x\to 0} \frac{\sin(x)}{x} = \underline{\qquad}$, compute:

$$\lim_{x \to 0} \left(\frac{x+2}{x} \cdot \sin(x) + 4x \right)$$

More complicated limits:

1. Type "0/0":

Strategy:

Example:

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x}$$

2. Type "(finite number)/0":

Strategy:

Example:

$$\lim_{x \to 3} \frac{3x + 2}{x - 3}$$

Example:

$$\lim_{x \to 3} \frac{3x + 2}{(x - 3)^2}$$

3. Function defined piecewise by formulas:

Example: Consider f(x) defined by

$$f(x) = \begin{cases} 3x + 3, & x \le 0\\ 1 + \frac{4}{x}, & 0 < x \le 2\\ \frac{3x^2 - 6x}{2x - 4}, & x > 2. \end{cases}$$

Strategy:

Example (continued): For the function f(x) defined above, find:

- (a) $\lim_{x \to 0^{-}} f(x)$ (b) $\lim_{x \to 0^{+}} f(x)$ (c) $\lim_{x \to 0} f(x)$ (d) f(0)
- (e) $\lim_{x \to 2^{-}} f(x)$ (f) $\lim_{x \to 2^{+}} f(x)$ (g) $\lim_{x \to 2} f(x)$ (h) f(2)