MA 16010 Quiz 10 (Lessons 24 – 26)

Write your name, section number (399 for 8:30, 418 for 9:30), and quiz number on the top of your quiz, front and back. You may use a one-line calculator.

- 1. We are putting up a fence around three sides of a rectangular garden (the fourth side is next to a wall). The area of the garden should be 72 m². What dimensions should the garden have if the fence is to be the shortest possible?
- 2. For a cylinder with a surface area of 50 ft², what is the maximum volume that it can have? Round your answer to three decimal places.

(Recall that the volume of a cylinder is $\pi r^2 h$ and the surface area is $2\pi rh + 2\pi r^2$ where r is the radius and h is the height.)

1. I want: minimize length of fence
$$l = 2x + y$$

y constraint: $A = xy = 72$ my $y = \frac{72}{x}$
 $x = \frac{72}{x} = 0$
 $x = \frac{72}{x^2} = 2$
 $x = \frac{72}{x^2} = 2$

Went: maximize volume
$$V = \pi r^2 h$$

h Gostraint: surface area = 50 ft^2 . $2\pi r h + 2\pi r^2 = 50$
 $h = 50 - 2\pi r^2$
 $2\pi r$
 3 off. fin(bson
 $V = \pi r^2$. $50 - 2\pi r^2$
 $2\pi r$
 $2\pi r^2 = 25 r - \pi r^3$
 $V = 25 - 3\pi r^2 = 0$
 $3\pi r^2 = 25$
 $4 = 25 \cdot (5 \cdot 73\pi) - \pi \cdot (5 \cdot 73\pi)$
 $4 \cdot 25 \cdot 3\pi r^2 = 0$
 $5 \cdot 3\pi r^2 = 5$
 $5 \cdot 3\pi r^2 = 5$
 $6 \cdot 3\sqrt{3\pi} = 5$
 $7 \cdot 3\pi r^2 = 5$