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Plan:

1. Overview of Chabauty—Coleman, Chabauty-Kim program, Quadratic Chabauty
2. Geometric Quadratic Chabauty over Q (Edixhoven-Lido)

3. Geometric Quadratic Chabauty over number fields (j.w. Lilienfeldt, Xiao, Yao)



Rational points on curves

Let C be a smooth, projective, geometrically connected curve of genus g > 2 over a
number field K.

Theorem (Mordell’s conjecture; Faltings "83)
C(K) is a finite set.

Questions of effectivity and explicit methods:
» How to algorithmically compute C(K)?
» How to produce sharp bound?
» How to make optimal bounds in families?
|



Chabauty’s argument

Let J denote the Jacobian of C. Denote r = rankz J(K)(< co) its Mordell-Weil rank.

Theorem (Chabauty "41)
Ifr < g —1 then #C(K) is finite.

Strategy:
Choose a point b € C(K), inducing Abel-Jacobi map jj : C < J, and a prime p C Ok.
C(K) C(Kp)
\[jb (rrﬂfﬁ \[jb
J(K) J(K) J(Kyp)

C(K,),J(K) are p-adic manifolds of dimensions 1 and r’ < r, resp., in the p-adic manifold
J(Kp) of dimension g > r’. Then

C(K) C C(K,) NJT(K) ... finite.



Chabauty’s argument




Chabauty—Coleman

Theorem (Coleman ’85)
Under the same assumption, fix an unramified prime p|p of good reduction such that p > 2g. Then

#C(K) <N(p) +2g(vN(p) +1) — 1.

Corollary (Coleman ‘85, McCallum-Poonen 2013)
For K = Q and a prime p of good reduction with 2g < p, one further has

#C(Q) < #C(Fp) + (28 — 2).

(Some) further improvements:
» Stoll (2006), Katz—Zurieck-Brown (2013): primes of bad reduction
» Katz—-Rabinoff-Zurieck-Brown (2016): uniform bound
> ...



Chabauty—Coleman

Strategy:
C(K) C(Ky)
4 . J
\[Jb - (HJJJJﬁ \[Jb lo\
J(K) J(K) J(Kp) —2 HO(J, A )

log, | are given by x — [, (), the Coleman integral. Let

V:{weHO(JQ}K /K, )| Jyw=0 Vx€JK)}
Then
C(Kp) NJ(K) C {x € C(Ky) | [, jiw =0 Yw € V} =: C(Kyp)1.

If ' < g, then V # 0 and a bound on #C(K,); can be computed.



Chabauty—Coleman

Example (Hirakawa-Matsumura 2019)

Q: Can a rational right triangle and a rational isosceles triangle have the same area and
perimeter?

Setting up parameters appropriately, this leads to the task of finding C(Q) for
C:y*=x5+12x° —32x* + 520> —48x + 16 (g =2)

A list of 10 points is
oot (0, +4), (1,+1), (2,48), P* =(12/11,+868/11°).

Only P* corresponds to a pair of triangles.
Chabauty—Coleman bound (p = 5): #C(Q) < 10 = the list is complete.
The unique pair of triangles has sides (377,135,352) and (366, 366, 132), up to scaling.



Restriction-of-Scalars Chabauty

» Siksek (2013)
» Version of Chabauty—Coleman over a number field K

Idea: replace C by Resk (C), and work p-adically:
P y R€Sq p y

C(K) = Resg(C)(Q) Resg(C)(Qy)

J B

Resgy(J)(Q) > Resg(J)(Q) — Resj(/)(Qy)

» Generally works whenr < (g—1)d, d=[K:Q]
» Drawback: it is not guaranteed to work.



Chabauty—Coleman

Problem when ' = g :

C(Kp)

~ need to “extend the method beyond Jacobian”.



Chabauty-Kim program

> Kim (2005, 2009)

Goal: Extend the method beyond the r < g case
C(K) — C(Ky)

J b

loc
Sel(Uy) —— H}(K,, Uy) L8, 4R (Ci, )n/Fil’
U, = certain unipotent quotients of 7§*(Cg)

C(Kp)n :jn_,; (locy (Sel(Uy)))

Conjecture (Kim)
Forn >> 0, C(Ky)n is finite and coincides with C(K).



Quadratic Chabauty

| 4
>

Version of n = 2 of Kim’s program
uses double Coleman integrals: “z — [,/ (o)

locp

Sel(Uy) —— Hf (Kyp, Us) *> TR (Ck, )2 JFil® —— (further quotient)
Balakrishnan-Dogra (2016, 2017) - quadratic Chabauty over Q

Balakrishnan-Dogra-Miiller-Tuitman-Vonk (2017)
- determined rational points of X;(13), “cursed curve”

Balakrishnan-Besser-Bianchi-Miiller (2019)
- explicit quadratic Chabauty for hyperelliptic curves over number fields



Geometric quadratic Chabauty over Q

» Edixhoven-Lido (2019)
Goal: Formulate quadratic Chabauty in terms of “simple” geometry:

Q) C(Qp)

i i

»|J(Q) —— J(Qp) J(@p) 7

I |

T(Q) —— T(Q) —— T(Q)

T is a certain Gf, '-torsor onJ,  p = rank NS(J)

Problem: T(Q) has too many points (Q**~! in fibers)



Geometric quadratic Chabauty over Q

» Edixhoven-Lido (2019)

Goal: Formulate quadratic Chabauty in terms of “simple” geometry

C(Zy)
Jb \[jb

Jb 7) H(Zp) jb
{I I(Z) — T(Zp)

T is a certain Gﬁfl—torsor on/,
d is the Néron model of J,
€ is the smooth locus in a regular proper model of C.



Geometric quadratic Chabauty over Q

N




Line bundles and G,,—torsors

» A Gp—torsor on a scheme X is a scheme T with Gp—action, together with a map
7 : T — X such that

YU C X small enough open: (77 *(T) = U) =~ (U x Gy, gl U)

(+ compeatibility conditions).
» Recall: There is a 1-1 correspondence between torsors T and line bundles L, given by

L<+— T=L":=L\ zero section

» in particular: torsors are parametrized by the Picard scheme Pic(X)




Poincaré biextension

Let P — J x JY be the Poincaré line bundle:
» P|)y x} = Ly, the line bundle corresponding to x € J¥(Q)
» P|;x {0}, P|{oyxsv are trivial line bundles on J,JV, resp.
» duality ¥ exchanges J and JY and leaves P unchanged

Then P* has the structure of a G,,-biextension:

> Given (x1,Y), (x2,y) € J x JY(S), theorem of the cube provides an isomorphism of
invertible sheaves, and operation on nowhere vanishing sections

(x1,)"P @0y (X2,¥)*P =~ (x1 +X2,¥)"P
SQt~s+1t



Poincaré biextension

P* has the structure of a G,,-biextension:

» This defines a group law over JV, +;1 : P* x,;v P* — P* making P* an extension
0— (Gp)yv =P = () —0.
» Dually, one has +; : P* x; P* — P* and an extension
0— (Gp)y—P*— (JV);—0.
» +1,+ are compatible,
(@+1b)+2(c+1d) = (a+z2¢) +1 (b +24d)

for a,b,c,d € P*(S) whenever it makes sense.



Poincaré biextension

L]\/

P><



Constructing T

From now on, assume that p = rank NS(J) = 2. We need a non-trivial Gp,—torsor T such

that C lifts to T — equivalently, such that T|¢ is a trivial torsor over C:
P><

T|c

id; 77
RSO SV %

Need to find suitable map ?? : J — J to achieve this.



Constructing T

Kerj; —— Kerji

[ l

0 —— JY —— Pic(J) —— NS(J) —— 0

ok

0 —— J —— Pic(C) Z 0

Then rank Kerj; = p — 1 = 1, so there is essentialy unique Gp-torsor on J that is trivial
over C — J. Moreover, it is of the form

T' = (idy, t. o f)*P*, f € Hom(J,J")*, ¢ € JY(Q),

Then ?? = m - ot. o f for suitable integer m (in order to spread out over Z)



Parametrization of T(Z)

» Work on residue disks:

X(Zp)x = set of all x € X(Z,) reducing to a given x € X(IFp),
X(Z)x = X(Zp) N X(Z).

3o UZ)y — Uy a7
[ > [ 7] [

Zy —== 4202y — TDy — TToliy = B

b (u)
> ryz is constructed using +; and +, of P*

1 . . .
> K Zy — 7§ can be expressed in terms of p-adically convergent power series.



Parametrization of T(Z)

As a consequence, the maps U(Z,)y) LN ‘J’(Zp)ﬁ(u) +— J(Z)o ® Z, induce maps of rings
of p-adically convergent power series

ZP<‘Xl> <J~;* ZP<X1a v an+1> L) ZP<Y17 e Yr>7
b
and upon setting A =Z,(Y1,...,Y.)/I, I= (fi*(Kerj;*)),
w1 (T(Zp)5; () N W(Zp)u) corresponds to Hom(A, Z,).

Theorem (Edixhoven-Lido)
Assuming that A = A ® F,, is finite, one has

#U(Z), < dimg,A.

Example (Edixhoven-Lido)

[EL] use the method to explicitly determine C(Q) for a curve C with g =2,r=2,p = 2.
C=Xo(129)/(w3,wa3; );  #C(Q) = 14.



Geometric quadratic Chabauty over number fields

Let K/Q be a number field, [K: Q] =d =r; + 2r,.

Main obstacles in the number field case:
1. The class group Cl(K) = Pic(Ox) may prevent lifting Og-points and curves:

T T BT — T

7 r ,’>( S r A

HIZA R 2

SpecOx —— U%H
b

Pic(U) — Pic(C) has an h-torsion kernel, h = #Pic(O)

2. T(Ok) — J(Ok) has still too many points, namely
OF P! ~ (torsion) x Z9P=1  § =r| 4+ ry — 1 in (trivial) fibres



Geometric quadratic Chabauty over number fields

Solution to 1 (for p = 2):
p*T T P
» r 7 r
! p_.~~
S\‘ /,/
) - id; hm-ot.o
Spec Ok P d (i fm-otcof) gxgve

Let T/ = (id, m- o t;, o f;)} P*.
Then by the biextension law, one can show that
T = (id, hm- o t. o f)*P* = (T')®",

p*rJ- — (p*.:]-/)®h

= p*T is an h-th power of a torsor on Spec Ok, therefore trivial, i.e. s exists.



Geometric quadratic Chabauty over number fields

Solution to 2: We include O; """ as part of the parametrization:

3(OK)QXOI?£71 U((’)K)u

\[ x
(3(OR)0xOE ) @ Zy —"= T(Ok)5

Parametrization includes action on fibers by a torsion-free part of

GHH(Ok), O™ = 7001,

Key fact: The G,‘;l_l-action on P*r~1is expressible in terms of +;, +2 = Kz is still
expressible in terms of +1, 43, and p-adic interpolation still works.



Summary over number fields

» Fix a rational prime p of good reduction, e(p;/p) <p — 1 Vp;|p,
and work on “multiresidue disks”: fibers of

X(Ox) € x(HoK,p[.) - :x(H Fyp,)

» Parametrization of a “multiresidue” disk now takes the form:
3(Ox)o x O;’p ! W(Ok)u — W(Okplu = Okp

P >~ [~

Z," Y 5 (3(Z)o x Og ) @ Zy 3 T(O)50 + T(Okpliw £ 050

» Okp = []; Ok, p; by a restriction of scalars procedure, or when p splits completely,
may view Ok, ~ Z1, then x becomes

. gr+6(p—1) d(g+p—1)
Koo Ly T — TP



Main result, Chabauty condition

Theorem (C, Lilienfeldt, Xiao, Yao 2022)

Given a choice of "multiresidue” disks, there is an explicitely computable Fp-algebra A such that,
assuming A is finite,

#U((’)K)u S dimFPZ.

» Method expected to work when r + §(p — 1) < d(g+ p — 2), equivalently
r<(@-1d+(p—-1)(ra+1)

» agrees with [BBBM] (quadratic Chabauty /K, hyperelliptic curves) when p = 2
» Over Q, this gives r < g+ p — 2 - same as [EL], [BD]
» Siksek (linear Chabauty /K): condition r < (g — 1)d



Thank you!
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