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Plan:

1. Overview of Chabauty–Coleman, Chabauty–Kim program, Quadratic Chabauty

2. Geometric Quadratic Chabauty over Q (Edixhoven-Lido)

3. Geometric Quadratic Chabauty over number fields (j.w. Lilienfeldt, Xiao, Yao)



Rational points on curves

Let C be a smooth, projective, geometrically connected curve of genus g ≥ 2 over a
number field K.

Theorem (Mordell’s conjecture; Faltings ’83)
C(K) is a finite set.

Questions of effectivity and explicit methods:
▶ How to algorithmically compute C(K)?
▶ How to produce sharp bound?
▶ How to make optimal bounds in families?
▶ . . .



Chabauty’s argument

Let J denote the Jacobian of C. Denote r = rankZ J(K)(<∞) its Mordell-Weil rank.

Theorem (Chabauty ’41)
If r ≤ g− 1 then #C(K) is finite.

Strategy:
Choose a point b ∈ C(K), inducing Abel–Jacobi map jb : C ↪→ J, and a prime p ⊆ OK.

C(K) C(Kp)

J(K) J(K) J(Kp)

jb jb

C(Kp), J(K) are p-adic manifolds of dimensions 1 and r′ ≤ r, resp., in the p-adic manifold
J(Kp) of dimension g > r′. Then

C(K) ⊆ C(Kp) ∩ J(K) . . . finite.



Chabauty’s argument



Chabauty–Coleman

Theorem (Coleman ’85)
Under the same assumption, fix an unramified prime p|p of good reduction such that p > 2g. Then

#C(K) ≤ N(p) + 2g(
√

N(p) + 1)− 1.

Corollary (Coleman ’85, McCallum–Poonen 2013)
For K = Q and a prime p of good reduction with 2g < p, one further has

#C(Q) ≤ #C(Fp) + (2g− 2).

(Some) further improvements:
▶ Stoll (2006), Katz–Zurieck-Brown (2013): primes of bad reduction
▶ Katz–Rabinoff–Zurieck-Brown (2016): uniform bound
▶ . . .



Chabauty–Coleman

Strategy:

C(K) C(Kp)

J(K) J(K) J(Kp) H0(J,Ω1
JKp/Kp

)∨

jb jb

∫
log

log,
∫

are given by x 7→
∫ x

b (•), the Coleman integral. Let

V = {ω ∈ H0(J,Ω1
JKp/Kp

) |
∫ x

b ω = 0 ∀x ∈ J(K)}.

Then

C(Kp) ∩ J(K) ⊆ {x ∈ C(Kp) |
∫ x

b j∗bω = 0 ∀ω ∈ V} =: C(Kp)1.

If r′ < g, then V ̸= 0 and a bound on #C(Kp)1 can be computed.



Chabauty–Coleman

Example (Hirakawa–Matsumura 2019)
Q: Can a rational right triangle and a rational isosceles triangle have the same area and
perimeter?

Setting up parameters appropriately, this leads to the task of finding C(Q) for

C : y2 = x6 + 12x5 − 32x4 + 52x2 − 48x + 16 (g = 2)

A list of 10 points is

∞±, (0,±4), (1,±1), (2,±8), P± = (12/11,±868/113).

Only P+ corresponds to a pair of triangles.

Chabauty–Coleman bound (p = 5): #C(Q) ≤ 10⇒ the list is complete.

The unique pair of triangles has sides (377, 135, 352) and (366, 366, 132), up to scaling.



Restriction-of-Scalars Chabauty

▶ Siksek (2013)
▶ Version of Chabauty–Coleman over a number field K

Idea: replace C by ResK
Q(C), and work p–adically:

C(K) = ResK
Q(C)(Q) ResK

Q(C)(Qp)

ResK
Q(J)(Q) ResK

Q(J)(Q) ResK
Q(J)(Qp)

jb jb

▶ Generally works when r ≤ (g− 1)d, d = [K : Q]

▶ Drawback: it is not guaranteed to work.



Chabauty–Coleman

Problem when r′ = g :

⇝ need to “extend the method beyond Jacobian”.



Chabauty-Kim program

▶ Kim (2005, 2009)

Goal: Extend the method beyond the r < g case
C(K) C(Kp)

Sel(Un) H1
f (Kp,Un) πdR

1 (CKp
)n/Fil0

jn jn,p
“
∫

”

locp logn

Un = certain unipotent quotients of πet
1 (CK)

C(Kp)n = j−1
n,p(locp(Sel(Un)))

Conjecture (Kim)
For n >> 0, C(Kp)n is finite and coincides with C(K).



Quadratic Chabauty

▶ Version of n = 2 of Kim’s program
▶ uses double Coleman integrals: “z 7→

∫ z
b

∫ z
b (•)”

C(K) C(Kp)

Sel(U2) H1
f (Kp,U2) πdR

1 (CKp
)2/Fil0 (further quotient)

j2 j2,p

∫ ∫
locp log2

▶ Balakrishnan-Dogra (2016, 2017) - quadratic Chabauty over Q
▶ Balakrishnan-Dogra-Müller-Tuitman-Vonk (2017)

- determined rational points of Xs(13), ”cursed curve”
▶ Balakrishnan-Besser-Bianchi-Müller (2019)

- explicit quadratic Chabauty for hyperelliptic curves over number fields



Geometric quadratic Chabauty over Q

▶ Edixhoven–Lido (2019)

Goal: Formulate quadratic Chabauty in terms of “simple” geometry:

C(Q) C(Qp)

J(Q) J(Qp) J(Qp)

T(Q) T(Q) T(Qp)

jb

j̃b

jb

j̃b

T is a certain Gρ−1
m -torsor on J, ρ = rank NS(J)

Problem: T(Q) has too many points (Q×,ρ−1 in fibers)



Geometric quadratic Chabauty over Q

▶ Edixhoven–Lido (2019)

Goal: Formulate quadratic Chabauty in terms of “simple” geometry

C(Z) C(Zp)

J(Z) J(Z) J(Zp)

T(Z) T(Z) T(Zp)

jb

j̃b

jb

j̃b

T is a certain Gρ−1
m -torsor on J,

J is the Néron model of J,
C is the smooth locus in a regular proper model of C.



Geometric quadratic Chabauty over Q



Line bundles and Gm–torsors
▶ A Gm–torsor on a scheme X is a scheme T with Gm–action, together with a map

π : T → X such that

∀U ⊆ X small enough open: (π−1(T) π→ U) ≃ (U ×Gm
prU→ U)

(+ compatibility conditions).
▶ Recall: There is a 1-1 correspondence between torsors T and line bundles L, given by

L←→ T = L× := L \ zero section

▶ in particular: torsors are parametrized by the Picard scheme Pic(X)



Poincaré biextension

Let P→ J × J∨ be the Poincaré line bundle:
▶ P|J×{x} = Lx, the line bundle corresponding to x ∈ J∨(Q)

▶ P|J×{0}, P|{0}×J∨ are trivial line bundles on J, J∨, resp.
▶ duality ∨ exchanges J and J∨ and leaves P unchanged

Then P× has the structure of a Gm-biextension:

▶ Given (x1, y), (x2, y) ∈ J × J∨(S), theorem of the cube provides an isomorphism of
invertible sheaves, and operation on nowhere vanishing sections

(x1, y)∗P ⊗OS (x2, y)∗P ≃ (x1 + x2, y)∗P
s⊗ t⇝ s +1 t



Poincaré biextension

P× has the structure of a Gm-biextension:
▶ This defines a group law over J∨, +1 : P× ×J∨ P× → P× making P× an extension

0→ (Gm)J∨ → P× → (J)J∨ → 0 .

▶ Dually, one has +2 : P× ×J P× → P× and an extension

0→ (Gm)J → P× → (J∨)J → 0 .

▶ +1,+2 are compatible,

(a +1 b) +2 (c +1 d) = (a +2 c) +1 (b +2 d)

for a, b, c, d ∈ P×(S) whenever it makes sense.



Poincaré biextension



Constructing T

From now on, assume that ρ = rank NS(J) = 2. We need a non-trivial Gm–torsor T such
that C lifts to T – equivalently, such that T|C is a trivial torsor over C:

T|C T P×

C J J × J∨

⌜ ⌜

jb

j̃b
s

(id; ??)

Need to find suitable map ?? : J → J∨ to achieve this.



Constructing T

Ker j∗b Ker j∗b

0 J∨ Pic(J) NS(J) 0

0 J Pic(C) Z 0

≃

≃ j∗b j∗b

Then rank Ker j∗b = ρ− 1 = 1, so there is essentialy unique Gm-torsor on J that is trivial
over C ↪→ J. Moreover, it is of the form

T′ = (idJ, tc ◦ f)∗P×, f ∈ Hom(J, J∨)+, c ∈ J∨(Q),

Then ?? = m · ◦tc ◦ f for suitable integer m (in order to spread out over Z)



Parametrization of T(Z)

▶ Work on residue disks:

X(Zp)x = set of all x̃ ∈ X(Zp) reducing to a given x ∈ X(Fp),

X(Z)x = X(Zp)x ∩ X(Z).

J(Z)0 U(Z)u U(Zp)u Zp

Zr
p J(Z)0 ⊗ Zp T(Z)j̃b(u)

T(Zp)j̃b(u)
Zg+1

p

κZ

≃

≃ κ
≃

▶ κZ is constructed using +1 and +2 of P×

▶ κ : Zr
p → Zg+1

p can be expressed in terms of p-adically convergent power series.



Parametrization of T(Z)

As a consequence, the maps U(Zp)u)
j̃b−→ T(Zp)j̃b(u)

κ←− J(Z)0 ⊗ Zp induce maps of rings
of p-adically convergent power series

Zp⟨X1⟩ Zp⟨X1, . . . , Xg+1⟩ Zp⟨Y1, . . . , Yr⟩,
j̃b
∗

κ∗

and upon setting A = Zp⟨Y1, . . . , Yr⟩/I, I = (κ∗(Ker j̃b
∗
)),

κ−1
(
T(Zp)j̃b(u)

∩ U(Zp)u
)

corresponds to Hom(A,Zp).

Theorem (Edixhoven–Lido)
Assuming that A = A⊗ Fp is finite, one has

#U(Z)u ≤ dimFpA.

Example (Edixhoven–Lido)
[EL] use the method to explicitly determine C(Q) for a curve C with g = 2, r = 2, ρ = 2.
C = X0(129)/⟨w3,w43; ⟩; #C(Q) = 14.



Geometric quadratic Chabauty over number fields

Let K/Q be a number field, [K : Q] = d = r1 + 2r2.

Main obstacles in the number field case:
1. The class group Cl(K) = Pic(OK) may prevent lifting OK-points and curves:

p∗T T j∗bT T

SpecOK J U J

⌜ ⌜

p

??

jb

?
?

Pic(U)→ Pic(C) has an h-torsion kernel, h = #Pic(OK)

2. T(OK)→ J(OK) has still too many points, namely
O×,ρ−1

K ≃ (torsion)× Zδ(ρ−1), δ = r1 + r2 − 1 in (trivial) fibres



Geometric quadratic Chabauty over number fields

Solution to 1 (for ρ = 2):
p∗T T P×

SpecOK J J× J∨◦

⌜ ⌜

p

p̃
s

(id; hm·◦tc◦f)

Let T′ = (id, m· ◦ tci ◦ fi)∗i P
×.

Then by the biextension law, one can show that

T = (id, hm· ◦ tc ◦ f)∗P× = (T′)⊗h,

p∗T = (p∗T′)⊗h

⇒ p∗T is an h-th power of a torsor on SpecOK, therefore trivial, i.e. s exists.



Geometric quadratic Chabauty over number fields

Solution to 2: We include O×,ρ−1
K as part of the parametrization:

J(OK)0×O×,ρ−1
K,tf U(OK)u

(J(OK)0×O×,ρ−1
K,tf )⊗ Zp T(OK)j̃b(u)

κZ

κ

Parametrization includes action on fibers by a torsion-free part of
Gρ−1

m (OK), O×,ρ−1
K,tf ≃ Zδ(ρ−1).

Key fact: The Gρ−1
m -action on P×,ρ−1 is expressible in terms of +1,+2 ⇒ κZ is still

expressible in terms of +1,+2, and p-adic interpolation still works.



Summary over number fields

▶ Fix a rational prime p of good reduction, e(pi/p) < p− 1 ∀pi|p,
and work on ”multiresidue disks”: fibers of

X
(
OK) ⊆ X(

∏
i

OK,pi

)
→ X(

∏
i

Fpi

)
▶ Parametrization of a ”multiresidue” disk now takes the form:

J(OK)0 ×O×,ρ−1
K,tf U(OK)u U(OK,p)u OK,p

Zr+δ(ρ−1)
p (J(Z)0 ×O×,ρ−1

K,tf )⊗ Zp T(OK)j̃b(u)
T(OK,p)j̃b(u)

Og+ρ−1
K,p

κZ

≃

≃ κ
≃

▶ OK,p =
∏

iOK,pi ; by a restriction of scalars procedure, or when p splits completely,
may view OK,p ≃ Zd

p, then κ becomes

κ : Zr+δ(ρ−1)
p → Zd(g+ρ−1)

p



Main result, Chabauty condition

Theorem (Č., Lilienfeldt, Xiao, Yao 2022)
Given a choice of ”multiresidue” disks, there is an explicitely computable Fp-algebra A such that,
assuming A is finite,

#U(OK)u ≤ dimFpA.

▶ Method expected to work when r + δ(ρ− 1) ≤ d(g + ρ− 2), equivalently

r ≤ (g− 1)d + (ρ− 1)(r2 + 1)

▶ agrees with [BBBM] (quadratic Chabauty /K, hyperelliptic curves) when ρ = 2
▶ Over Q, this gives r ≤ g + ρ− 2 - same as [EL], [BD]
▶ Siksek (linear Chabauty /K): condition r ≤ (g− 1)d



Thank you!
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