Geometric Quadratic Chabauty over number fields

joint with David Lilienfeldt, Luciena X. Xiao, Zijian Yao

Pavel Čoupek
Michigan State University
IU AG \& NT Seminar,
03/19/2024

Plan:

1. Overview of Chabauty-Coleman, Chabauty-Kim program, Quadratic Chabauty
2. Geometric Quadratic Chabauty over \mathbb{Q} (Edixhoven-Lido)
3. Geometric Quadratic Chabauty over number fields (j.w. Lilienfeldt, Xiao, Yao)

Rational points on curves

Let C be a smooth, projective, geometrically connected curve of genus $g \geq 2$ over a number field K.

Theorem (Mordell's conjecture; Faltings '83)
$C(K)$ is a finite set.

Questions of effectivity and explicit methods:

- How to algorithmically compute $C(K)$?
- How to produce sharp bound?
- How to make optimal bounds in families?
- ...

Chabauty's argument

Let J denote the Jacobian of C. Denote $r=\operatorname{rank}_{\mathbb{Z}} J(K)(<\infty)$ its Mordell-Weil rank.
Theorem (Chabauty '41)
If $r \leq g-1$ then $\# C(K)$ is finite.

Strategy:

Choose a point $b \in C(K)$, inducing Abel-Jacobi map $j_{b}: C \hookrightarrow J$, and a prime $\mathfrak{p} \subseteq \mathcal{O}_{K}$.

$C\left(K_{\mathfrak{p}}\right), \overline{J(K)}$ are \mathfrak{p}-adic manifolds of dimensions 1 and $r^{\prime} \leq r$, resp., in the \mathfrak{p}-adic manifold $J\left(K_{\mathfrak{p}}\right)$ of dimension $g>r^{\prime}$. Then

$$
C(K) \subseteq C\left(K_{\mathfrak{p}}\right) \cap \overline{J(K)} \ldots \text { finite }
$$

Chabauty's argument

Chabauty-Coleman

Theorem (Coleman '85)

Under the same assumption, fix an unramified prime $\mathfrak{p} \mid p$ of good reduction such that $p>2 g$. Then

$$
\# C(K) \leq N(\mathfrak{p})+2 g(\sqrt{N(\mathfrak{p})}+1)-1 .
$$

Corollary (Coleman '85, McCallum-Poonen 2013)
For $K=\mathbb{Q}$ and a prime p of good reduction with $2 g<p$, one further has

$$
\# C(\mathbb{Q}) \leq \# C\left(\mathbb{F}_{p}\right)+(2 g-2) .
$$

(Some) further improvements:

- Stoll (2006), Katz-Zurieck-Brown (2013): primes of bad reduction
- Katz-Rabinoff-Zurieck-Brown (2016): uniform bound

Chabauty-Coleman

Strategy:

\log , \int are given by $x \mapsto \int_{b}^{x}(\bullet)$, the Coleman integral. Let

$$
V=\left\{\omega \in H^{0}\left(J, \Omega_{J_{K_{\mathfrak{p}}} / K_{\mathfrak{p}}}^{1}\right) \mid \int_{b}^{x} \omega=0 \quad \forall x \in \overline{J(K)}\right\} .
$$

Then

$$
C\left(K_{\mathfrak{p}}\right) \cap \overline{J(K)} \subseteq\left\{x \in C\left(K_{\mathfrak{p}}\right) \mid \int_{b}^{x} j_{b}^{*} \omega=0 \quad \forall \omega \in V\right\}=: C\left(K_{\mathfrak{p}}\right)_{1} .
$$

If $r^{\prime}<g$, then $V \neq 0$ and a bound on $\# C\left(K_{\mathfrak{p}}\right)_{1}$ can be computed.

Chabauty-Coleman

Example (Hirakawa-Matsumura 2019)

Q: Can a rational right triangle and a rational isosceles triangle have the same area and perimeter?

Setting up parameters appropriately, this leads to the task of finding $C(\mathbb{Q})$ for

$$
C: y^{2}=x^{6}+12 x^{5}-32 x^{4}+52 x^{2}-48 x+16 \quad(g=2)
$$

A list of 10 points is

$$
\infty^{ \pm},(0, \pm 4),(1, \pm 1),(2, \pm 8), \quad P^{ \pm}=\left(12 / 11, \pm 868 / 11^{3}\right) .
$$

Only P^{+}corresponds to a pair of triangles.
Chabauty-Coleman bound $(p=5): \quad \# C(\mathbb{Q}) \leq 10 \Rightarrow$ the list is complete.
The unique pair of triangles has sides $(377,135,352)$ and $(366,366,132)$, up to scaling.

Restriction-of-Scalars Chabauty

- Siksek (2013)
- Version of Chabauty-Coleman over a number field K

Idea: replace C by $\operatorname{Res}_{\mathbb{Q}}^{K}(C)$, and work p-adically:

- Generally works when $r \leq(g-1) d, \quad d=[K: \mathbb{Q}]$
- Drawback: it is not guaranteed to work.

Chabauty-Coleman

Problem when $r^{\prime}=g$:

\rightsquigarrow need to "extend the method beyond Jacobian".

Chabauty-Kim program

- $\operatorname{Kim}(2005,2009)$

Goal: Extend the method beyond the $r<g$ case

$U_{n}=$ certain unipotent quotients of $\pi_{1}^{e t}\left(C_{\bar{K}}\right)$

$$
C\left(K_{\mathfrak{p}}\right)_{n}=j_{n, p}^{-1}\left(\operatorname{loc}_{p}\left(\operatorname{Sel}\left(U_{n}\right)\right)\right)
$$

Conjecture (Kim)
For $n \gg 0, C\left(K_{\mathfrak{p}}\right)_{n}$ is finite and coincides with $C(K)$.

Quadratic Chabauty

- Version of $n=2$ of Kim's program
- uses double Coleman integrals: " $z \mapsto \int_{b}^{z} \int_{b}^{z}(\bullet)$ "

- Balakrishnan-Dogra $(2016,2017)$ - quadratic Chabauty over \mathbb{Q}
- Balakrishnan-Dogra-Müller-Tuitman-Vonk (2017) - determined rational points of $X_{s}(13)$, "cursed curve"
- Balakrishnan-Besser-Bianchi-Müller (2019) - explicit quadratic Chabauty for hyperelliptic curves over number fields

Geometric quadratic Chabauty over \mathbb{Q}

- Edixhoven-Lido (2019)

Goal: Formulate quadratic Chabauty in terms of "simple" geometry:

T is a certain $\mathbb{G}_{m}^{\rho-1}$-torsor on $J, \quad \rho=\operatorname{rank} N S(J)$
Problem: $T(\mathbb{Q})$ has too many points $\left(\mathbb{Q}^{\times, \rho-1}\right.$ in fibers)

Geometric quadratic Chabauty over \mathbb{Q}

- Edixhoven-Lido (2019)

Goal: Formulate quadratic Chabauty in terms of "simple" geometry

\mathcal{T} is a certain $\mathbb{G}_{m}^{\rho-1}$-torsor on \mathcal{J},
J is the Néron model of J,
\mathcal{C} is the smooth locus in a regular proper model of C.

Geometric quadratic Chabauty over \mathbb{Q}

Line bundles and \mathbb{G}_{m}-torsors

- A \mathbb{G}_{m}-torsor on a scheme X is a scheme T with \mathbb{G}_{m}-action, together with a map $\pi: T \rightarrow X$ such that

$$
\forall U \subseteq X \text { small enough open: }\left(\pi^{-1}(T) \xrightarrow{\pi} U\right) \simeq\left(U \times \mathbb{G}_{m} \xrightarrow{\mathrm{pr}_{U}} U\right)
$$

(+ compatibility conditions).

- Recall: There is a 1-1 correspondence between torsors T and line bundles L, given by

$$
L \longleftrightarrow T=L^{\times}:=L \backslash \text { zero section }
$$

- in particular: torsors are parametrized by the Picard scheme $\operatorname{Pic}(X)$

Poincaré biextension

Let $P \rightarrow J \times J^{\vee}$ be the Poincaré line bundle:

- $\left.P\right|_{J \times\{x\}}=L_{x}$, the line bundle corresponding to $x \in J^{\vee}(\mathbb{Q})$
- $\left.P\right|_{J \times\{0\}},\left.P\right|_{\{0\} \times J^{\vee}}$ are trivial line bundles on J, J^{\vee}, resp.
- duality ${ }^{\vee}$ exchanges J and J^{\vee} and leaves P unchanged

Then P^{\times}has the structure of a \mathbb{G}_{m}-biextension:

- Given $\left(x_{1}, y\right),\left(x_{2}, y\right) \in J \times J^{\vee}(S)$, theorem of the cube provides an isomorphism of invertible sheaves, and operation on nowhere vanishing sections

$$
\begin{aligned}
\left(x_{1}, y\right)^{*} \mathcal{P} \otimes \mathcal{O}_{s}\left(x_{2}, y\right)^{*} \mathcal{P} & \simeq\left(x_{1}+x_{2}, y\right)^{*} \mathcal{P} \\
s \otimes t & \rightsquigarrow s+_{1} t
\end{aligned}
$$

Poincaré biextension

P^{\times}has the structure of a \mathbb{G}_{m}-biextension:

- This defines a group law over $J^{\vee},+_{1}: P^{\times} \times_{J^{\vee}} P^{\times} \rightarrow P^{\times}$making P^{\times}an extension

$$
0 \rightarrow\left(\mathbb{G}_{m}\right)_{J \vee} \rightarrow P^{\times} \rightarrow(J)_{J \vee} \rightarrow 0 .
$$

- Dually, one has $+_{2}: P^{\times} \times{ }_{J} P^{\times} \rightarrow P^{\times}$and an extension

$$
0 \rightarrow\left(\mathbb{G}_{m}\right)_{J} \rightarrow P^{\times} \rightarrow\left(J^{\vee}\right)_{J} \rightarrow 0 .
$$

- $+_{1},+_{2}$ are compatible,

$$
(a+1 b)+2\left(c+{ }_{1} d\right)=\left(a+{ }_{2} c\right)+_{1}\left(b+{ }_{2} d\right)
$$

for $a, b, c, d \in P^{\times}(S)$ whenever it makes sense.

Poincaré biextension

Constructing T

From now on, assume that $\rho=\operatorname{rank} N S(J)=2$. We need a non-trivial \mathbb{G}_{m}-torsor T such that C lifts to T - equivalently, such that $\left.T\right|_{C}$ is a trivial torsor over C :

Need to find suitable map ?? : $J \rightarrow J^{\vee}$ to achieve this.

Constructing T

Then $\operatorname{rank} \operatorname{Ker} j_{b}^{*}=\rho-1=1$ ，so there is essentialy unique \mathbb{G}_{m}－torsor on J that is trivial over $C \hookrightarrow J$ ．Moreover，it is of the form

$$
T^{\prime}=\left(\mathrm{id}_{J}, \mathrm{t}_{c} \circ f\right)^{*} P^{\times}, f \in \operatorname{Hom}\left(J, J^{\vee}\right)^{+}, c \in J^{\vee}(\mathbb{Q}),
$$

Then $? ?=m \cdot \circ \boldsymbol{t}_{c} \circ f$ for suitable integer m（in order to spread out over \mathbb{Z} ）

Parametrization of $\overline{\mathfrak{T}(\mathbb{Z})}$

- Work on residue disks:

$$
\begin{aligned}
X\left(\mathbb{Z}_{p}\right)_{x} & =\text { set of all } \tilde{x} \in X\left(\mathbb{Z}_{p}\right) \text { reducing to a given } x \in X\left(\mathbb{F}_{p}\right), \\
X(\mathbb{Z})_{x} & =X\left(\mathbb{Z}_{p}\right)_{x} \cap X(\mathbb{Z}) .
\end{aligned}
$$

- $\kappa_{\mathbb{Z}}$ is constructed using $+_{1}$ and $+{ }_{2}$ of $\mathcal{P} \times$
- $\kappa: \mathbb{Z}_{p}^{r} \rightarrow \mathbb{Z}_{p}^{g+1}$ can be expressed in terms of p-adically convergent power series.

Parametrization of $\overline{\mathcal{T}(\mathbb{Z})}$

As a consequence, the maps $\left.\mathcal{U}\left(\mathbb{Z}_{p}\right)_{u}\right) \xrightarrow{\tilde{j}_{b}} \mathcal{T}\left(\mathbb{Z}_{p}\right)_{\tilde{j}_{b}(u)} \stackrel{\kappa}{\leftarrow} \mathcal{J}(\mathbb{Z})_{0} \otimes \mathbb{Z}_{p}$ induce maps of rings of p-adically convergent power series

$$
\mathbb{Z}_{p}\left\langle X_{1}\right\rangle \stackrel{\tilde{j}_{b}^{*}}{ } \mathbb{Z}_{p}\left\langle X_{1}, \ldots, X_{g+1}\right\rangle \xrightarrow{\kappa^{*}} \mathbb{Z}_{p}\left\langle Y_{1}, \ldots, Y_{r}\right\rangle,
$$

and upon setting $\quad A=\mathbb{Z}_{p}\left\langle Y_{1}, \ldots, Y_{r}\right\rangle / I, \quad I=\left(\kappa^{*}\left(\operatorname{Ker}{\widetilde{j_{b}}}^{*}\right)\right)$, $\kappa^{-1}\left(\overline{\mathcal{T}\left(\mathbb{Z}_{p}\right)_{\tilde{j_{b}}(u)}} \cap \mathcal{U}\left(\mathbb{Z}_{p}\right)_{u}\right)$ corresponds to $\operatorname{Hom}\left(A, \mathbb{Z}_{p}\right)$.

Theorem (Edixhoven-Lido)

Assuming that $\bar{A}=A \otimes \mathbb{F}_{p}$ is finite, one has

$$
\# U(\mathbb{Z})_{u} \leq \operatorname{dim}_{\mathbb{F}_{p}} \bar{A} .
$$

Example (Edixhoven-Lido)

[EL] use the method to explicitly determine $C(\mathbb{Q})$ for a curve C with $g=2, r=2, \rho=2$.
$C=X_{0}(129) /\left\langle w_{3}, w_{43} ;\right\rangle ; \quad \# C(\mathbb{Q})=14$.

Geometric quadratic Chabauty over number fields

Let K / \mathbb{Q} be a number field, $[K: \mathbb{Q}]=d=r_{1}+2 r_{2}$.
Main obstacles in the number field case:

1. The class group $\operatorname{Cl}(K)=\operatorname{Pic}\left(\mathcal{O}_{K}\right)$ may prevent lifting \mathcal{O}_{K}-points and curves:

$\operatorname{Pic}(\mathcal{U}) \rightarrow \operatorname{Pic}(C)$ has an h-torsion kernel, $h=\# \operatorname{Pic}\left(\mathcal{O}_{K}\right)$
2. $\mathcal{T}\left(\mathcal{O}_{K}\right) \rightarrow \mathcal{J}\left(\mathcal{O}_{K}\right)$ has still too many points, namely $\mathcal{O}_{K}^{\times, \rho-1} \simeq($ torsion $) \times \mathbb{Z}^{\delta(\rho-1)}, \quad \delta=r_{1}+r_{2}-1$ in (trivial) fibres

Geometric quadratic Chabauty over number fields

Solution to 1 (for $\rho=2$):

Let $\mathcal{T}^{\prime}=\left(\mathrm{id}, m \cdot \circ t_{c_{i}} \circ f_{i}\right)_{i}^{*} \mathcal{P}^{\times}$.
Then by the biextension law, one can show that

$$
\begin{aligned}
\mathcal{T} & =\left(\mathrm{id}, h m \cdot \circ t_{c} \circ f\right)^{*} \mathcal{P}^{\times}=\left(\mathcal{T}^{\prime}\right)^{\otimes h}, \\
p^{*} \mathfrak{T} & =\left(p^{*} \mathcal{T}^{\prime}\right)^{\otimes h}
\end{aligned}
$$

$\Rightarrow p^{*} \mathcal{T}$ is an h-th power of a torsor on $\operatorname{Spec} \mathcal{O}_{K}$, therefore trivial, i.e. s exists.

Geometric quadratic Chabauty over number fields

Solution to 2: We include $\mathcal{O}_{K}^{\times, \rho-1}$ as part of the parametrization:

Parametrization includes action on fibers by a torsion-free part of $\mathbb{G}_{m}^{\rho-1}\left(\mathcal{O}_{K}\right), \mathcal{O}_{K, \text { ff }}^{\times, \rho-1} \simeq \mathbb{Z}^{\delta(\rho-1)}$.
Key fact: The $\mathbb{G}_{m}^{\rho-1}$-action on $\mathcal{P}^{\times, \rho-1}$ is expressible in terms of $+_{1},+{ }_{2} \Rightarrow \kappa_{\mathbb{Z}}$ is still expressible in terms of $+_{1},+_{2}$, and p-adic interpolation still works.

Summary over number fields

- Fix a rational prime p of good reduction, $e\left(\mathfrak{p}_{i} / p\right)<p-1 \quad \forall \mathfrak{p}_{i} \mid p$, and work on "multiresidue disks": fibers of

$$
X\left(\mathcal{O}_{K}\right) \subseteq X\left(\prod_{i} \mathcal{O}_{K, \mathfrak{p}_{i}}\right) \rightarrow X\left(\prod_{i} \mathbb{F}_{\mathfrak{p}_{i}}\right)
$$

- Parametrization of a "multiresidue" disk now takes the form:

- $\mathcal{O}_{K, p}=\prod_{i} \mathcal{O}_{K, p_{i}}$; by a restriction of scalars procedure, or when p splits completely, may view $\mathcal{O}_{K, p} \simeq \mathbb{Z}_{p}^{d}$, then κ becomes

$$
\kappa: \mathbb{Z}_{p}^{r+\delta(\rho-1)} \rightarrow \mathbb{Z}_{p}^{d(g+\rho-1)}
$$

Main result, Chabauty condition

Theorem (Č., Lilienfeldt, Xiao, Yao 2022)

Given a choice of "multiresidue" disks, there is an explicitely computable \mathbb{F}_{p}-algebra \bar{A} such that, assuming \bar{A} is finite,

$$
\# \mathcal{U}\left(\mathcal{O}_{K}\right)_{u} \leq \operatorname{dim}_{\mathbb{F}_{p}} \bar{A} .
$$

- Method expected to work when $r+\delta(\rho-1) \leq d(g+\rho-2)$, equivalently

$$
r \leq(g-1) d+(\rho-1)\left(r_{2}+1\right)
$$

- agrees with [BBBM] (quadratic Chabauty / K, hyperelliptic curves) when $\rho=2$
- Over \mathbb{Q}, this gives $r \leq g+\rho-2$ - same as [EL], [BD]
- Siksek (linear Chabauty / K): condition $r \leq(g-1) d$

Thank you!

