MA 16020 Lesson 29: Double integrals III

Recall (geom. interpretation of double integrals):

Given a function z = f(x, y) of two variables and a region R in the xyplane, the integral $\iint_R f(x, y) dA$ has the meaning of: the value that t = f(x, y)and alone the region R

Exercise 1. Compute the volume of the solid bounded by the surface $z = e^x \sqrt{y} + e^x$ from above, by the xy-plane from below and by the planes x = -1, x = 2, y = 0 and y = 2 on the sides.

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ and } y = 2 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = 2, y = 0 \text{ on the sides.}$$

$$x = -1, x = -1, x = 0, y = 0 \text{ on the sides.}$$

$$x = -1, x = -1, x = 0, y = 0 \text{ on the sides.}$$

$$x = -1, x = -1, x = 0, y = 0 \text{ on the sides.}$$

$$x = -1, x = -1, x = 0, y = 0 \text{ on the sides.}$$

$$x$$

Exercise 2. Compute the volume under the surface $z = x^2y$ and above

the triangle with vertices
$$(1, 1, 0), (1, 5, 0)$$
 and $(4, 1, 0)$.

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

1 $(4, 1)$

$$a = 5 - 5$$

$$1 = (5 - 6)^{14} + 5$$

$$1 = 20 - 45 + 5$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 20 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 = 35 - 35$$

$$1 =$$

2. Compute the volume and the state of the with vertices
$$(1,1,0)$$
, $(1,5,0)$ and $(4,1,0)$.

1 = $\frac{4}{3}$ = $\frac{4}{3}$ × $\frac{4}{3}$ $\frac{4}{3}$ × $\frac{4}$

- (352 1 - 152 1 + 16 · 1)

= 54.2

Recall; If fy=f(x) is a function of one variable, the average of f over the inderval [a,5] is given by Sava = 5-a f(x) dx

Arec

4 note f If Z=f(x14) is a function of the variables, and R is a region then In the xty-plane, then the average value of f over the region R is given as A = area of -R

(favg = 1 f(x,y)dA)

Exercise 3. There is a heater in a corner of a rectangular room of dimensions 8×10 m. As a result, the temperature in ${}^{\circ}C$ in the room is described by

$$T(x,y) = 60 - 0.3(x^2 + y^2),$$

where (x, y) are the coordinates of a given point in the room (the heater is placed at (0,0)). What is the average temperature in the room?

Targ =
$$\frac{1}{80} \int \left(\frac{60 - 0.3(x^2 + y^2)}{60 - 0.3(x^2 + y^2)} \right) dy dx$$

$$= \frac{1}{80} \int \left(\frac{60y - 0.3x^2y - 0.3x$$

Exercise 4. The water temperature in a lake during the night is given approximately (in ${}^{\circ}F$) by the function

$$T(d,t) = \frac{350e^{-0.05t}}{d+5}$$

where t is the number of hours that passed since 8 pm and d is the depth in m. What is the average temperature of the water from the surface to the depth of 5 m and between 10 pm and 1 am?

What: Targ for
$$0 \le d \le 5$$
,

 $2 \le t \le 5$

Targ = $\frac{1}{5 \cdot (5-2)} \cdot \int_{0.2}^{5} 350 e^{-0.05t} dt dd$

= $\frac{1}{10} \cdot \int_{0}^{5} \left[\frac{350}{0+5} \cdot \left[\frac{1}{0.05} \right] \cdot e^{-0.05t} \right] dd$

= $\frac{1}{10} \int_{0}^{10} \frac{7000}{0+5} \cdot \left[e^{-0.25} - e^{-0.1} \right] dd = \left[\frac{u = 0.05}{0+5} \right] dd$

= $\frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.1} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} \left(e^{-0.25} - e^{-0.25} \right) du = \frac{1}{15} \int_{0}^{10} \frac{7000}{0+5} du = \frac{1}{15} \int_{0}^{10} \frac{700$