MA 16010 Lesson 2: Limits Numerically

Limits.

Example. The function

$$f(x) = \frac{x^2 - 4}{x - 2} \left(= \times + 2 \text{ except when } \times = 2 \right)$$

is not defined at
$$x=2$$
: $f(2)=\frac{z^2-4}{z-2}=0$ - hot defined.

We still wish to understand how the function behaves at least near x = 2. Let us list some values of f(x) near x = 2:

x	1.9	1.99	1.999	2	2.001	2.01	2.1
f(x)	3.9	3.99	3.999		4.001	4.01	4.1

We observe that as x approaches 2, the value f(x) approaches $\underline{\hspace{1cm}}$.

We say that _____ is the <u>limit</u> of $f(x) = \frac{x^2-4}{x-2}$ as x approaches 2, also written as: $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$

In general: We say that L is the limit of f(x) as x approaches (a given

number) cif: as x approades C, the value f(x) approaches L.

We write this fact as

$$\lim_{x \to c} f(x) = L .$$

Infinite limits: We can have $L = \infty$ or $L = -\infty$ in the above.

- $\lim_{x\to c} f(x) = \infty$ means: As x approaches c the value f(x) exceeds any bound
- $\lim_{x\to c} f(x) = -\infty$ means: As x approaches c, the whe fix) gets snaller than any given sound (fox) approaches ∞

Exercise: List the indicated values, rounded to # decimal places, and determine the indicated limit:

$$f(x) = \frac{\sin(x)}{x}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	0.99833	0.99998	1.00000	_	1.00000	0.9999 &	0.99833

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limit:

$$f(x) = 2 + \frac{4}{(x+3)^2}$$

x	-3.1	-3.01	-3.001	-3	-2.999	-2.99	-2.9
f(x)	402	40 002	4000 002		4000 002	4 0 002	402

$$\lim_{x \to -3} \left(2 + \frac{4}{(x+3)^2} \right) = + \infty$$

One-sided limits.

Example. Consider the function

$$f(x) = \frac{x^2}{2x - 2}$$

and its behaviour near x = 1.

x	0.9	0.99	0.999	1	1.001	1.01	1.1
f(x)	-4.05	-49.005	-499.0005		501.0005	51.005	6.05

Does $\lim_{x\to 1} f(x)$ exist? NO (when x approaches x on the left/right)

the behavior of f(x) is very different!)

What can be said:

What can be said:

• As x approaches 1 from the left / from below, f(x) approaches _____

We say that the left-sided limit of f(x) as x approaches 1 (from the left) is equal to _____. We also write: $\lim_{x \to 2} \frac{x^2}{2x-2} = -\infty$.

We say that the right-sided limit of f(x) as x approaches 1 (from the

 $\lim_{x\to 1^+} \frac{x^2}{2x-2} = +\infty$ right test) is equal to + . We also write:

In general: We say that L is the limit of f(x) as x approaches (a given number) c from the left / from the right if $f(\mathbf{x})$ tends to L as x approaches c from the left / from the right. We write this also as

$$\lim_{x \to c^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to c^{+}} f(x) = L, \text{ resp.}$$

Relation to "both-sided limits": $\lim_{x\to c} f(x)$ exists and equals L if and lim f(x) = lim f(x) = L. only if:

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limit:

$$f(x) = \frac{x+2}{x^2-2x-8} \left(= \frac{1}{x-4} \text{ when } x \neq 4 \right)$$

x	4 4.0001		4.001	4.01	4.1
f(x)		10000	1000	100	10

$$\lim_{x \to 4^+} \frac{x+2}{x^2 - 2x - 8} =$$

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limits:

$$f(x) = \frac{|x|}{x}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	-1	-1	-1	_	1	1	1

$$\lim_{x\to 0^-} \frac{|x|}{x} = -1$$

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1$$

$$\lim_{x\to 0} \frac{|x|}{x} = DNE \quad (\text{does not exist}: \lim_{x\to 0^{+}} \frac{|x|}{x} \quad (\text{inn } \frac{|x|}{x})$$

$$\text{do not agree.}$$