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Introduction

Central topic of the thesis is the study of spectral properties of sets of

matrices. We focus our attention on three classes of families of matrices:

• families generated by rank–one perturbations of a fixed complex matrix

• families of stochastic matrices

• families of generic square matrices

About the first class we are particulary interested in analysing the spec-

tral properties of matrices perturbed using one of their eigenvectors, namely,

given a generic complex square matrix A and nonzero complex vectors x and

v such that Ax = λx and v∗x = 1, we want to study the spectral properties

of A(c) = cA +(1− c)λxv∗ as functions of the complex variable c. This class

of perturbed matrices includes a distinguished one: the Google matrix, i.e.

the matrix associated with the Google PageRank model.

Since the publication of the paper “The Page–Rank citation ranking:

bringing order to the web” in 1998 [37] and the foundation of the Google

enterprise by Sergey Brin and Larry Page the PageRank model has become

a essential instrument for an effective web search. Before the introduction

of this algorithm all web search engines, like AltaVista, Yahoo! or Northern

Light, they were unable to sort the results of a specific web search in a

convenient way: it is almost useless to obtain, as a result of a web search,

one thousand of web pages randomly ordered, no one will look for a good

answer to his/her request among all these results. Nowadays it is normal to

find more than fifty thousands web pages related to a specific web search, this

is due to the fact that the number of pages, which are currently present on

the internet, is estimated around ten billions and is consistently increasing.
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As a matter of fact this model could be of interest not only in Web

ranking, but also for ranking human resources as well as in many aspects of

marketing, in political/social sciences e.g. for ranking who/what is influen-

tial and who/what is not, for ranking the importance of a paper and/or of

a researcher looking in scientific databases (see [4]) etc.

However, even if the PageRank works undoubtedly well, there are patho-

logical behaviors and limitations of the actual model, pointed out in this

thesis, that can reduce considerably the adherence to the reality of the re-

sults. For this reason we propose possible improvements to the model that

remove the old pathologies without introducing new ones and preserving its

efficiency (fast computation).

Furthermore we make use of the theoretic results concerning rank–one

perturbed matrices, presented in the first Chapter, to shed new light on the

eigenvalues and eigenvector structure of the original Google matrix G(c) =

cG + (1− c)λxvT as functions of the parameter c (with G the basic Google

matrix, λ = 1, x = [1 1 · · · 1]T , and v a nonnegative probability vector). In

particular we would like to understand the behavior (regularity, expansions,

limits, conditioning etc.) of the left 1–eigenvector y(c) of G(c), the so–called

PageRank, as a function of c especially in the limit case of c close or equal

to 1.

Our interest in computing the PageRank y(c) with c as close as possible

to 1 is related to the role of this parameter: the more c is close to 1 the

more the computed PageRank, besides being meaningful in terms of surfing

model, is meaningful in terms of the notion of importance (in the limit y(1) is

exactly a generalization of the notion, common in social sciences and daily

life, of very important person, as clarified in Chapter 2). Therefore the

evaluation of the PageRank y(1) gains in importance from the perspective

of using this kind of models not only in search engines optimization, but

also in other contexts.

It is known that for c = 1 the problem is ill–posed since there exist

infinitely many left eigenvectors y(1), with l1 norm equal 1, which form a

convex set. On the other hand, for c ∈ [0,1), the solution exists and is

unique, but the known algorithms become very slow when c is close to 1.

Nevertheless we want to compute y(c) in these difficult cases, especially in the
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limit as c tends to 1; to do so we make use of the analytical characterization

of y(c), which we obtain from the study of the G(c) spectral properties, and

what we discover and present in the following is, in our opinion, extremely

interesting and promising.

About the second class we are interested in analysing products of stochas-

tic matrices which are associated with a model, proposed by Vicsek et al.

in 1995 [50], for the coordination of groups of autonomous agents. This

model allows to represent the behavior of a wide range of biological swarm-

ing systems like herds of quadrupeds, schools of fish, flocks of flying birds,

bacterial colonies [50] and also the behavior of artificial systems like groups

of unmanned aerial vehicles, mobile robots or networks of sensors [103].

More in general it allows to solve distributed agreement problems: given a

system of agents this model provides a protocol that enables the agents to

agree upon quantities of interest via a process of distributed decision mak-

ing. Our aim is to study sufficient conditions that ensure the convergence to

a global consensus among the autonomous agents. This is made possible, as

suggested by Jadbabaie et al. in [89], studying the spectral properties of the

family of stochastic matrices associated with the system. The model proves

to be related to the PageRank one and its analysis is based on algorithms,

developed for generic families of matrices, which we present in the third part

of the thesis.

Regarding the last case, during the past few decades there has been

an increasing interest in studying the behavior of long products generated

using matrices of a given generic family and in particular in analysing the

maximal growth rate of these products. This study can be done considering

the generalization of the spectral radius of a matrix to the case of a family

of matrices, which is called joint spectral radius or simply spectral radius

and it was first introduced by Rota and Strang in the three pages paper “A

note on the joint spectral radius” published in 1960 [110]. To be precise this

generalization can be formulated in many different ways, but for the families

of matrices which are common in applications, i.e. bounded and finite, all

the possible generalizations coincide with each other in a unique value that

is called joint spectral radius, as explained in Chapter 4.
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The joint spectral radius analysis proves to be useful in many differ-

ent contexts like, for example, in the construction of wavelets of compact

support [70], in analysing the asymptotic behavior of solutions of linear dif-

ference equations with variable coefficients [77, 78, 79], in the coordination

of autonomous agents [89, 103, 73] and many others [113].

The same quantity, however, can prove to be hard to compute and can

lead even to undecidable problems [63, 54]. In this thesis we present all the

known generalizations of spectral radius, the properties, theoretical results

and challenges associated with them and an algorithm for the exact evalua-

tion of the joint spectral radius. We make use of this algorithm to prove a

finiteness conjecture about 2×2 sign–matrices proposed recently by Blondel,

Jungers and Protasov [56, 91].

Thesis Outline

The work, as previously mentioned, is divided into three parts:

The first one concerns families of matrices generated by rank–one per-

turbations of a fixed square complex matrix. In Chapter 1 we introduce

the complete principle of biorthogonality as a generalization of the classical

Brauer’s principle of biorthogonality and we use it to deduce eigenvalues and

Jordan blocks of rank–one perturbed matrix A(c) = cA + (1− c)λxv∗ with A

square complex matrix, c complex variable, x and v nonzero complex vectors

such that Ax = λx and v∗x = 1. We derive also a representation for a distin-

guished left λ–eigenvector y(c) of A(c) and we study the limit of y(c) as c→ 1

in the complex plane. Chapter 2 concerns, first of all, a discussion on the

Google model and on its adherence to the reality: a basic example presented

in Section 2.2 it is used to point out pathologies and limitations of the actual

model and to propose some possible improvements. Furthermore, given the

basic (stochastic) Google matrix G, a real parameter c such that 0 < c < 1, a

nonnegative probability vector v and the all–ones vector e, it is known that

for the real valued matrix G(c) = cG + (1− c)evT , there is a unique nonneg-

ative vector y(c) such that y(c)T G(c) = y(c)T and y(c)T e = 1, which is the

PageRank vector y(c); in this Chapter a complex analog of PageRank y(c)

is presented for the Web hyperlink matrix G(c) = cG + (1− c)ev∗, obtained
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as a special case of the results of the previous Chapter when c is a complex

number and v is a complex vector such that v∗e = 1. We study regularity,

limits, expansions, and conditioning of y(c) in the complex case and we pro-

pose algorithms (e.g. complex extrapolation, power method on a modified

matrix etc.) that may provide an efficient way to compute PageRank also

with c close or equal to 1. An interpretation of this limit value of y(c) and

a critical discussion on the original model of PageRank, on its adherence to

reality and on possible ways for its improvement represent our contribution

on modeling issues.

The second part, Chapter 3, is devoted to the study of spectral proper-

ties of stochastic matrices with particular emphasis to the applications to

the so–called consensus problem. We present the Vicsek model [50], which

allows to represent the distributed coordination of autonomous agents, and

the analysis of the convergence to a global consensus in the agents net-

work. This analysis, based on the spectral properties of stochastic matrices

products associated with the evolution of the system, is obtained applying

techniques developed in the following Chapter. We give sufficient conditions

that ensure a global consensus among the agents and provide an estimate

for the maximal rate of convergence to this solution. A few simulations are

presented to give the reader a foretaste of the potentiality of this approach.

We present, furthermore, alternative proofs of a few Theorems on this sub-

ject presented in the literature and the connections between the Google and

Vicsek model.

Third part is about generic families. In Chapter 4 the generalizations

of spectral radius to the case of a set of matrices are presented. We first

introduce a case of study that requires the analysis of products of matrices

taken from a given set, we then present the definitions of joint, generalized,

common and mutual spectral radii and we describe results and properties,

related to these quantities, valid for bounded or finite sets. In particular

we present the irreducibility, nondefectivity and finiteness properties. The

irreducibility and, more in general, the nondefectivity of a family lead to the

existence of an extremal norm for the family itself. Chapter 5 deals with the

spectral radius exact computation in the case of families of matrices. We

present an algorithm, based on the construction of unit balls of extremal
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polytope norms, that proves to be efficient in many cases and allows us to

prove the finiteness conjecture for 2×2 sign–matrices.

The thesis concludes with an Appendix containing a detailed analysis of

all the 2×2 sign–matrices families presented in Chapter 5 and another one

concerning numerical results on the coordination of autonomous agents.

The original results presented in this thesis have been published in:

• A. Cicone, S. Serra–Capizzano. Google PageRanking problem: the

model and the analysis, Journal of Computational and Applied Math-

ematics 234 (11), 2010, pp 3140–3169.

• A. Cicone, N. Guglielmi, S. Serra–Capizzano, M. Zennaro. Finite-

ness property of pairs of 2×2 sign–matrices via real extremal poly-

tope norms, Linear Algebra and its Applications vol. 432 (2–3), 2010,

pp 796–816.



Part I

Rank-one-perturbation
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Chapter 1

Theory

We consider a square complex matrix A and nonzero complex vectors x

and v such that Ax = λx and v∗x = 1. We use standard matrix analytic tools

to determine the eigenvalues, the Jordan blocks, and a distinguished left λ–

eigenvector of A(c) = cA+(1−c)λxv∗ as a function of a complex variable c. If

λ is a semisimple eigenvalue of A, there is a uniquely determined projection

Y X∗ such that lim
c→1

y(c) = Y X∗v for all v; this limit may fail to exist for some

v if λ is not semisimple.

In Section 1.1 we set notation and terminology for the basic matrix–

theoretic concepts that we employ to analyze a parametric matrices A(c): for

a square complex matrix A, nonzero complex vectors x and v such that Ax =

λx and v∗x = 1, and a complex variable c, we study A(c) = cA +(1− c)λxv∗.

In Section 1.2 we explain how Alfred Brauer used the classical principle of

biorthogonality in 1952 to prove a theorem that reveals the eigenvalues of

A(c). In Section 1.3 we introduce the complete principle of biorthogonality

and use it to obtain the Jordan blocks of A(c) under the assumption that

there is a nonzero vector y such that y∗A = λy∗ and y∗x = 1. In particular,

such a vector y exists if λ is a simple or semisimple eigenvalue of A. In

Section 1.4 we derive a representation for a distinguished left λ–eigenvector

y(c) of A(c); this representation is an explicit rational vector–valued function

of the complex variable c. In Subsection 1.4.1 we study the behavior of the

left eigenvector y(c) as c→ 1 in the complex plane.
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1.1 Terminology and notation

All the matrices and vectors that we consider have real or complex en-

tries. We denote the conjugate transpose of an m–by–n matrix X = [xi j] by

X∗= [x̄ ji], while the simple transpose as XT = [x ji]. For p∈ [1,∞), the lp norm

of a vector w ∈ Cn is given by

‖w‖p = p

√
n

∑
i=1
|w[i]|p

In particular:

l1 – The sum norm

‖w‖1 = ∑
i
|w[i]|

l2 – The Euclidean norm

‖w‖2 =

√
n

∑
i=1
|w[i]|2 =

√
w∗w

while its l∞ norm, known also as max norm, is

‖w‖∞ = max
j=1,...,n

|w[ j]|.

For a square matrix A ∈ Cn×n and for p ∈ [1,∞], ‖A‖p is the associated

induced norm given by

‖A‖p = max
‖x‖p=1

‖Ax‖p

If A is a square matrix, its characteristic polynomial is pA(t) := det(tI−A),

where det stands for determinant [24, Section 0.3]; the (complex) zeroes of

pA(t) are the eigenvalues of A. A complex number λ is an eigenvalue of A if

and only if there are nonzero vectors x and y such that Ax = λx and y∗A = λy∗;

x is said to be an eigenvector (more specifically, a right eigenvector) of A

associated with λ and y is said to be a left eigenvector of A associated with

λ . The set of all the eigenvalues of A is called the spectrum of A and is

denoted by σ(A). The determinant of A, detA, is equivalent to the product

of all its eigenvalues. If the spectrum of A does not contain 0 the matrix
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is said nonsingular (A nonsingular if and only if detA 6= 0). The spectral

radius of A is the nonnegative real number ρ(A) = max{|λ | : λ ∈ σ(A)}. If

λ ∈ σ(A), its algebraic multiplicity is its multiplicity as a zero of pA(t);

its geometric multiplicity is the maximum number of linearly independent

eigenvectors associated with it. The geometric multiplicity of an eigenvalue

is never greater than its algebraic multiplicity. An eigenvalue whose algebraic

multiplicity is one is said to be simple. An eigenvalue λ of A is said to

be semisimple if and only if rank(A− λ I) =rank(A− λ I)2 i.e. λ has the

same geometric and algebraic multiplicity. If the geometric multiplicity and

the algebraic multiplicity are equal for every eigenvalue, A is said to be

nondefective, otherwise is defective.

We let e1 indicate the first column of the identity matrix I: e1 =

[1 0 · · · 0]T . We let e = [1 1 · · · 1]T denote the all–ones vector. When-

ever it is useful to indicate that an identity or zero matrix has a specific

size, e.g., r–by–r, we write Ir or 0r.

Two vectors x and y of the same size are orthogonal if x∗y = 0. The

orthogonal complement of a given set of vectors is the set (actually, a vector

space) of all vectors that are orthogonal to every vector in the given set.

An n–by–r matrix X has orthonormal columns if X∗X = Ir. A square

matrix U is unitary if it has orthonormal columns, that is, if U∗ is the

inverse of U .

A square matrix A is a projection if A2 = A.

A square matrix A is row–stochastic if it has real nonnegative entries

and Ae = e, which means that the sum of the entries in each row is 1; A is

column–stochastic if AT is row–stochastic. We say that A is stochastic if it

is either row–stochastic or column–stochastic.

The direct sum of k given square matrices X1, . . . ,Xk is the block diagonal

matrix


X1 · · · 0
...

. . .
...

0 · · · Xk

= X1⊕·· ·⊕Xk.
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The k–by–k Jordan block with eigenvalue λ is

Jk(λ ) =


λ 1 0

. . .
. . .

. . . 1

λ

 , J1(λ ) = [λ ].

Each square complex matrix A is similar to a direct sum of Jordan blocks,

which is unique up to permutation of the blocks; this direct sum is the Jordan

canonical form of A. The algebraic multiplicity of λ as an eigenvalue of Jk(λ )

is k; its geometric multiplicity is 1. If λ is a semisimple eigenvalue of A with

multiplicity m, then the Jordan canonical form of A is λ Im⊕ J, in which J

is a direct sum of Jordan blocks with eigenvalues different from λ ; if λ is a

simple eigenvalue, then m = 1 and the Jordan canonical form of A is [λ ]⊕J.

A is diagonalizable, i.e. its Jordan canonical form is given by a diagonal

matrix, if and only if is nondefective.

Suppose that a square matrix A is similar to the direct sum of a zero

matrix and a nonsingular matrix, that is,

A = S

[
0m 0

0 B

]
S−1, B is nonsingular. (1.1)

The matrix

AD = S

[
0m 0

0 B−1

]
S−1

is called the Drazin inverse of A; it does not depend on the choice of S or

B in the representation (1.1). [16, Chapter 7] Moreover, both AAD = ADA

and I−AAD are projections. If X and Y have m columns, S = [X S2], and

(S−1)∗ = [Y Z2], then AD = S2B−1Z∗2 and I−AAD = XY ∗.

In a block matrix, the symbol F denotes a block whose entries are not

required to take particular values. Finally we consider A0 = I. For a system-

atic discussion of a broad range of matrix analysis issues, see [24].
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1.2 Basic principle of biorthogonality and eigen-

values

The following observation about left and right eigenvectors associated

with different eigenvalues is the basic principle of biorthogonality [24, The-

orem 1.4.7].

1.2.1 Lemma. Let A be a square complex matrix and let x and y be nonzero

complex vectors such that Ax = λx and y∗A = µy∗. If λ 6= µ, then y∗x = 0

(that is, x and y are orthogonal).

Proof. Compute y∗Ax in two ways: (i) as y∗(Ax) = y∗(λx) = λ (y∗x), and (ii)

as (y∗A)x = (µy∗)x = µ(y∗x). Since λ (y∗x) = µ(y∗x) and λ 6= µ, it follows that

y∗x = 0.

For a given vector v and a matrix A with eigenvalue λ and associated

eigenvector x, how are the eigenvalues of A+xv∗ related to those of A? This

question was asked and answered by Alfred Brauer in 1952 [11, Theorem

26]:

1.2.2 Theorem (Brauer). Let A be an n–by–n complex matrix and let x be

a nonzero complex vector such that Ax = λx. Let

λ ,λ2, . . . ,λn

be the eigenvalues of A. Then for any complex n–vector v the eigenvalues of

A + xv∗ are

λ + v∗x,λ2, . . . ,λn.

Brauer’s proof involved three steps:

(i) Compute

(A + xv∗)x = Ax + xv∗x = λx +(v∗x)x = (λ + v∗x)x,

which shows that λ + v∗x is an eigenvalue of A + xv∗.

(ii) If µ is an eigenvalue of A that is different from λ , and if y is a left

eigenvector of A associated with µ, then Lemma 1.2.1 ensures that

y∗(A + xv∗) = y∗A + y∗xv∗ = µy∗+(y∗x)v = µy∗+ 0 · v = µy∗.
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Thus, the distinct eigenvalues of A that are different from λ are all eigenval-

ues of A + xv∗, but perhaps not with the same multiplicities.

(iii) Brauer completed his proof with a continuity argument to show that

the multiplicities of the common eigenvalues of A and A + xv∗ (setting aside

the respective eigenvalues λ and λ + v∗x) are the same.

Brauer’s theorem tells us something interesting about the eigenvalues of

A(c).

1.2.3 Corollary. Let A be an n–by–n complex matrix. Let λ be an eigenvalue

of A, let x and v be nonzero complex vectors such that Ax = λx and v∗x = 1,

and let A(c) = cA +(1− c)λxv∗. Let

λ ,λ2, . . . ,λn

be the eigenvalues of A. Then for any complex number c, the eigenvalues of

A(c) are

λ ,cλ2, . . . ,cλn.

Proof. In the statement of Brauer’s Theorem, replace A and v by cA and

(1− c̄)λ̄v, respectively. The eigenvalues of cA are cλ ,cλ2, . . . ,cλn, x is an

eigenvector of cA associated with the eigenvalue cλ , and Brauer’s Theorem

tells us that the eigenvalues of cA+x((1− c̄)λ̄v)∗ = cA+(1−c)λxv∗ are cλ +

(1− c)λv∗x,cλ2, . . . ,cλn, which are λ ,cλ2, . . . ,cλn since v∗x = 1.

Robert Reams [38, p. 368] revisited Brauer’s theorem in 1996. He ob-

served that the Schur triangularization theorem [24, Theorem 2.3.1] can

be used to prove Brauer’s Theorem without a continuity argument: Let

S = [x S1] be any nonsingular matrix that upper triangularizes A as

S−1AS =


λ F · · · F

λ2
. . .

...
. . . F

0 λn


and whose first column is an eigenvector x associated with the eigenvalue λ .
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Since I = S−1S = [S−1x F], we see that S−1x = e1. Compute

S−1 (xv∗)S =
(
S−1x

)
(v∗S) =


1

0
...

0


[

v∗x F · · · F
]

=


v∗x F · · · F
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .

Therefore, the similarity

S−1 (A + xv∗)S =


λ + v∗x F · · · F

0 λ2
. . .

...
...

. . .
. . . F

0 · · · 0 λn

 ,

reveals both the eigenvalues of A + xv∗ and their multiplicities.

A new alternative proof that the eigenvalues of A(c) are λ ,cλ2, . . . ,cλn,

only based on polynomial identities, is proposed below.

For any n–by–k complex matrices Z and W with n≥ k, the n eigenvalues of

ZW ∗ are the k eigenvalues of W ∗Z together with n−−k zero eigenvalues [24,

Theorem 1.3.20]. In particular, for any vectors z,w ∈ Cn the n eigenvalues

of zw∗ are w∗z,0, . . . ,0, so the n eigenvalues of I + zw∗ are 1 + w∗z,1, . . . ,1. It

follows that det(I + zw∗) = 1 + w∗z.

Since (tI− cA)x = (t − cλ )x, we have (tI− cA)−1x = (t − cλ )−1x for any

t 6= cλ . For any z ∈ Cn and for t 6= cλ , compute

pcA+xz∗(t) = det(tI− (cA + xz∗))

= det((tI− cA)− xz∗)

= det(tI− cA)det(I− (tI− cA)−1xz∗)

= pcA(t)det(I− (t− cλ )−1xz∗)

= pcA(t)
(
1− (t− cλ )−1z∗x

)
=

pcA(t)(t− cλ − z∗x)

t− cλ
.
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Thus, for any z ∈ Cn we have the polynomial identity

(t− cλ )pcA+xz∗(t) = (t− (cλ + z∗x))pcA(t), (1.2)

where it is again legal to have t = cλ by continuity arguments. The zeroes

of the left–hand side are cλ together with the eigenvalues of cA + xz∗; the

zeroes of the right–hand side are cλ + z∗x,cλ ,cλ2, . . . ,cλn. It follows that the

eigenvalues of cA + xz∗ are cλ + z∗x,cλ2, . . . ,cλn.

Now set z = (1− c)λv, use the condition v∗x = 1, and conclude that the

eigenvalues of A(c) are λ ,cλ2, . . . ,cλn for any c ∈ C.

Finally, it is worth mentioning a two–lines proof of Brauer’s theorem

due to Iannazzo [26] which could be considered a special case of a proof

trick used in the functional formulation of the shift [6][Section 3.2], in a

structured Markov chains context. Based on the matrix–polynomial identity

and Axv∗ = λxv∗

(A + xv∗−µI)(µ−λ )I = (A−µI)((µ−λ )I− xv∗),

by taking the determinant of both members and using the formula for the

characteristic polynomial of a dyad, it holds that

pA+xv∗(µ)(µ−λ )n = (−1)n pA(µ)px∗v(µ−λ )

= (−1)n pA(µ)(µ−λ )n−1(µ−λ − v∗x).

The unique factorization theorem for polynomials achieves the proof.

It is worthwhile to remark that the interest of Iannazzo for Brauer’s

theorem does not come from the Google matrix, but from fast Markov chains

computations, Riccati matrix equations etc. See [5] and references reported

therein.

1.3 Complete principle of biorthogonality and Jor-

dan blocks

Brauer used the basic principle of biorthogonality to analyze the eigen-

values of A + xv∗. We now want to analyze the Jordan blocks of A + xv∗.

The basic principle of biorthogonality is silent about what happens when

λ = µ. In that event, there are three possibilities: (i) y∗x = 0 (we can
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normalize so that x∗x = y∗y = 1); (ii) y∗x 6= 0 (we can normalize so that

y∗x = 1); or (iii) x = αy (we can normalize so that x = y and x∗x = 1). The

following complete principle of biorthogonality addresses all the possibilities

and describes reduced forms for A that can be achieved in each case.

1.3.1 Theorem. Let A be an n–by–n complex matrix and let x and y be

nonzero complex vectors such that Ax = λx and y∗A = µy∗.

(a) Suppose that λ 6= µ and x∗x = y∗y = 1. Then y∗x = 0. Let U = [x y U1], in

which the columns of U1 are any given orthonormal basis for the orthogonal

complement of x and y. Then U is unitary and

U∗AU =


λ F F

0 µ 0

0 F B

 , B = U∗1 AU1 is (n−2)–by–(n−2).

(b) Suppose that λ = µ, y∗x = 0, and x∗x = y∗y = 1. Let U = [x y U1], in

which the columns of U1 are any given orthonormal basis for the orthogonal

complement of x and y. Then U is unitary, the algebraic multiplicity of λ is

at least two, and

U∗AU =


λ F F

0 λ 0

0 F B

 , B = U∗1 AU1 is (n−2)–by–(n−2).

(c) Suppose that λ = µ and y∗x = 1. Let S = [x S1], in which the columns

of S1 are any given basis for the orthogonal complement of y. Then S is

nonsingular, (S−1)∗ = [y Z1], the columns of Z1 are a basis for the orthogonal

complement of x, and

S−1AS =

[
λ 0

0 B

]
, B = Z∗1AS1 is (n−1)–by–(n−1). (1.3)

(d) Suppose that λ = µ, x = y, and x∗x = 1. Let U = [x U1], in which the

columns of U1 are any given orthonormal basis for the orthogonal comple-

ment of x. Then U is unitary and

U∗AU =

[
λ 0

0 B

]
, B = U∗1 AU1 is (n−1)–by–(n−1). (1.4)



12 Theory

Proof. (a) Lemma 1.2.1 ensures that x and y are orthogonal. Let U = [x y U1],

in which the columns of U1 are a given orthonormal basis for the orthogonal

complement of x and y. The n columns of U are an orthonormal set, so U is

unitary. Compute the unitary similarity

U∗AU =


x∗

y∗

U∗1

A[x y U1] =


x∗Ax x∗Ay x∗AU1

y∗Ax y∗Ay y∗AU1

U∗1 Ax U∗1 Ay U∗1 AU1



=


λx∗x x∗Ay x∗AU1

λy∗x µy∗y µy∗U1

λU∗1 x U∗1 Ay U∗1 AU1

=


λ F F

0 µ 0

0 F U∗1 AU1

 .

(b) As in (a), construct a unitary matrix U = [x y U1], in which the columns

of U1 are a given orthonormal basis for the orthogonal complement of x and

y. The reduced form of A under unitary similarity via U is the same as in

(a), but with λ = µ. The characteristic polynomial of A is

pA(t) = det(tI−A) = det


t−λ F F

0 t−λ 0

0 F tI−B


A Laplace expansion by minors down the first column gives

pA(t) = (t−λ )det

[
t−λ 0

F tI−B

]
.

Finally, a Laplace expansion by minors across the first row gives

pA(t) = (t−λ )2 det(tI−B) = (t−λ )2 pB(t),

so λ is a zero of pA(t) with multiplicity at least two.

(c) Let the columns of S1 be a given basis for the orthogonal complement of y

and let S = [x S1]. The columns of S1 are linearly independent, so S is singular

only if x is a linear combination of the columns of S1, that is, only if x = S1ξ

for some vector ξ . But then 1 = y∗x = y∗S1ξ = 0ξ = 0. This contradiction

shows that S is nonsingular. Partition (S−1)∗ = [η Z1] and compute

I = S−1S =

[
η∗

Z∗1

][
x S1

]
=

[
η∗x η∗S1

Z∗1x Z∗1S1

]
=

[
1 0

0 In−1

]
. (1.5)
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Thus, the n−1 columns of Z1, necessarily linearly independent, are orthog-

onal to x, so they are a basis for the orthogonal complement of x. Also,

η∗S1 = 0 means that η is orthogonal to the orthogonal complement of y, so

η = αy. But 1 = η∗x = (αy)∗x = ᾱy∗x = ᾱ, so α = 1 and η = y. Finally,

compute the similarity

S−1AS =

[
y∗

Z∗1

]
A
[

x S1

]
=

[
y∗Ax y∗AS1

Z∗1Ax Z∗1AS1

]

=

[
λy∗x λy∗S1

λZ∗1x Z∗1AS1

]
=

[
λ 0

0 Z∗1AS1

]
.

(d) Let the columns of U1 be a given orthonormal basis for the orthogonal

complement of x. Then the n columns of U = [x U1] are an orthonormal set,

so U is unitary. Compute the unitary similarity

U∗AU =

[
x∗

U∗1

]
A
[

x U1

]
=

[
x∗Ax x∗AU1

U∗1 Ax U∗1 AU1

]

=

[
λx∗x λx∗U1

λU∗1 x U∗1 AU1

]
=

[
λ 0

0 U∗1 AU1

]
.

We now use the complete principle of biorthogonality to establish an

analog of Brauer’s Theorem 1.2.2 for Jordan blocks.

1.3.2 Theorem. Let A be an n–by–n complex matrix. Let λ ,λ2, . . . ,λn be

the eigenvalues of A, and let x and y be nonzero complex vectors such that

Ax = λx and y∗A = λy∗. Assume that y∗x = 1. Then the Jordan canonical

form of A is

[λ ]⊕ Jn1(ν1)⊕·· ·⊕ Jnk(νk)

for some positive integers k,n1, . . . ,nk and some set of eigenvalues

{ν1, . . . ,νk} ⊆ {λ2, . . . ,λn}. For any complex vector v such that λ + v∗x 6= λ j

for each j = 2, . . . ,n, the Jordan canonical form of A + xv∗ is

[λ + v∗x]⊕ Jn1(ν1)⊕·· ·⊕ Jnk(νk). (1.6)
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Proof. The hypotheses and Theorem 1.3.1(c) ensure that

S−1AS =

[
λ 0

0 B

]
(1.7)

for some nonsingular S of the form S = [x S1], so that S−1x = e1. The eigen-

values of B are λ2, . . . ,λn; let

Jn1(ν1)⊕·· ·⊕ Jnk(νk)

be the Jordan canonical form of B. Just as in Reams’ proof of Brauer’s

Theorem, we have

S−1 (xv∗)S =
(
S−1x

)
(v∗S) = e1

[
v∗x v∗S1

]
=

[
v∗x w∗

0 0

]
, (1.8)

in which we set w∗ := v∗S1. Combining the similarities (1.7) and (1.8), we

see that

S−1(A + xv∗)S =

[
λ + v∗x w∗

0 B

]
.

Now let ξ be any given (n−1)–vector, verify that[
1 ξ ∗

0 I

]−1

=

[
1 −ξ ∗

0 I

]
,

and compute the similarity[
1 −ξ ∗

0 I

][
λ + v∗x w∗

0 B

][
1 ξ ∗

0 I

]
=

[
λ + v∗x w∗+ ξ ∗((λ + v∗x)I−B)

0 B

]
.

We have assumed that λ + v∗x is not an eigenvalue of B, so we may take

ξ
∗ :=−w∗((λ + v∗x)I−B)−1,

in which case w∗+ξ ∗((λ +v∗x)I−B) = 0 and A+xv∗ is revealed to be similar

to [
λ + v∗x 0

0 B

]
.

Thus, the Jordan canonical form of A+xv∗ is (1.6): the direct sum of [λ +v∗x]

and the Jordan canonical form of B.
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The following result strengthens the conclusion of Corollary 1.2.3 to de-

scribe not only the eigenvalues of A(c), but also its Jordan blocks.

1.3.3 Corollary. Let A be an n–by–n complex matrix. Let λ ,λ2, . . . ,λn be

the eigenvalues of A; let x, y, and v be nonzero complex vectors such that

Ax = λx, y∗A = λy∗, and v∗x = 1; and let A(c) = cA + (1− c)λxv∗. Assume

that y∗x = 1 and integers k,n1, . . . ,nk and the set {ν1, . . . ,νk} are defined as

in the previous Theorem. Let the Jordan canonical form of A be

[λ ]⊕ Jn1(ν1)⊕·· ·⊕ Jnk(νk).

Then for any nonzero complex number c such that

cλ j 6= λ for each j = 2, . . . ,n, (1.9)

the Jordan canonical form of A(c) is

[λ ]⊕ Jn1(cν1)⊕·· ·⊕ Jnk(cνk).

Proof. We proceed as in the proof of Corollary 1.2.3. In the statement of

Theorem 1.3.2, replace A and v, respectively, by cA and (1− c̄)λ̄v, respec-

tively. For any c, cA is similar to

[cλ ]⊕ cJn1(ν1)⊕·· ·⊕ cJnk(νk),

but if c 6= 0, we can say more: this direct sum is similar to

[cλ ]⊕ Jn1(cν1)⊕·· ·⊕ Jnk(cνk).

Moreover, x is an eigenvector of cA associated with the eigenvalue cλ , the

remaining eigenvalues of cA are cλ2, . . . ,cλn, and

cλ +((1− c̄)λ̄v)∗x = cλ +(1− c)λv∗x = cλ +(1− c)λ = λ .

Thus, our assumption (1.9) and Theorem 1.3.2 ensure that the Jordan canon-

ical form of

cA + x((1− c̄)λ̄v)∗ = cA +(1− c)λxv∗ = A(c)

is

[λ ]⊕ Jn1(cν1)⊕·· ·⊕ Jnk(cνk).
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In the above analysis, often the matrix B is determined only up to sim-

ilarity. If convenient, we can take B to be a Jordan canonical form, upper

triangular, a real Jordan form (if A is real), a Schur canonical form, etc. Per-

haps this flexibility can be exploited to achieve a computational advantage.

Finally we stress a pleasant contrast between Corollary 1.2.3 and Corol-

lary 1.3.3. In Corollary 1.2.3 the hypothesis is weaker than that of Corollary

1.3.3, and of course a weaker conclusion is obtained. However, Corollary

1.2.3 is of independent interest, since it gives a broader context for the fa-

mous eigenvalue properties of the Google matrix perturbation: for instance,

similar problems appear and Corollary 1.2.3 is useful in the context of iter-

ative solvers for algebraic Riccati equation, for accelerating the convergence

of cyclic reduction based algorithms (see [7, 5] and references therein and

[29] for further applications of mathematical physics).

1.4 The normalized left λ–eigenvector of A(c)

If λ 6= 0, Corollary 1.2.3 ensures that it is a simple eigenvalue of A(c) for

all but finitely many values of c. We would like to have an explicit expression

for its associated left eigenvector y(c), normalized so that y(c)∗x = 1.

1.4.1 Theorem. Let A be an n–by–n complex matrix. Let λ ,λ2, . . . ,λn be

the eigenvalues of A; let µ1, . . . ,µd be the nonzero eigenvalues of A that are

different from λ ; let x and v be nonzero complex vectors such that Ax = λx

and v∗x = 1; and let A(c) = cA +(1− c)λxv∗. Assume that λ 6= 0.

(i) Suppose that there is a complex vector y such that y∗A = λy∗ and y∗x = 1.

Assume that cλ j 6= λ for each j = 2, . . . ,n. Let S1, Z1, and B be defined as

in Theorem 1.3.1(c). Then λ is not an eigenvalue of cB. Define the vector

y(c) by

y(c)∗ = y∗+(1− c)λv∗S1(λ In−1− cB)−1Z∗1 . (1.10)

Then y(c) is the only vector that satisfies the conditions

y(c)∗A(c) = λy(c)∗ and y(c)∗x = 1. (1.11)

If λ is a simple eigenvalue of A, then it is not an eigenvalue of B.

(ii) Suppose that λ is a semisimple eigenvalue of A with multiplicity m ≥ 2
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and suppose that

cµ j 6= λ for each j = 1, . . . ,d. (1.12)

Let S = [X S2] be any nonsingular matrix such that X has m columns and

S−1AS =

[
λ Im 0

0 E

]
, E is (n−m)–by–(n−m). (1.13)

Then λ is not an eigenvalue of cE or E. Partition (S−1)∗ = [Y Z2], in which

Y has m columns. Then AX = λX , Y ∗A = λY ∗, and Y ∗X = Im. Moreover,

the columns of X may be chosen to be any m linearly independent right λ–

eigenvectors of A, and

XY ∗ = I− (λ I−A)(λ I−A)D (1.14)

is a projection that is determined uniquely by A and λ , regardless of the

choice of columns of X . Define the vector y(c) by

y(c)∗ = v∗XY ∗+(1− c)λv∗S2(λ In−m− cE)−1Z∗2 . (1.15)

Then y(c) satisfies the conditions (1.11); if, in addition, c 6= 1, then y(c) is

the only vector that satisfies these conditions. If both A and λ are real, then

XY ∗ is a real projection.

(iii) Suppose that λ is a semisimple eigenvalue of A with multiplicity m. Let

K be a given compact complex set that does not contain any of the points

λ µ
−1
1 , . . . ,λ µ

−1
d . Let c̃ and c be distinct points in K. If m ≥ 2, let y(·)∗ be

defined by (1.15). Then

y(c̃)∗− y(c)∗

c̃− c
= λv∗S2(c̃E−λ I)−1(E−λ I)(cE−λ I)−1Z∗2 ; (1.16)

the derivative of y(c) is

y′(c)∗ = λv∗S2(cE−λ I)−2(E−λ I)Z∗2 ; (1.17)

the derivative of y(c)∗ at c = 0 is

y′(0)∗ = λ
−1v∗S2(E−λ I)Z∗2 = λ

−1v∗(A−λ I); (1.18)
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and the derivative of y(c)∗ at c = 1 is

y′(1)∗ = λv∗S2(E−λ I)−1Z∗2 = λv∗(A−λ I)D. (1.19)

If m = 1 and y(·) is defined by (1.10), then the four preceding identities

are correct if we replace E with B, S2 with S1, and Z2 with Z1. Finally,

independently of m ≥ 1, for each given vector norm ‖ · ‖ there is a positive

constant M (depending on A, λ , v, and K) such that

‖y(c̃)− y(c)‖ ≤M|c̃− c| for all c̃,c ∈ K. (1.20)

Proof. (i) The similarity (1.3) shows that the eigenvalues of B are λ2, . . . ,λn,

so our assumption that λ 6= cλ j for all j = 2, . . . ,n ensures that λ is not an

eigenvalue of cB. If λ is an eigenvalue of B it must have multiplicity at

least two as an eigenvalue of A, so if it is a simple eigenvalue of A it is not

an eigenvalue of B. The vector y(c) defined by (1.10) satisfies the condition

y(c)∗x = 1 because y∗x = 1 and Z∗1x = 0. To show that it is a left λ–eigenvector

of A(c), we begin by combining (1.7) and (1.8):

S−1(cA +(1− c)λxv∗)S =

[
λ (1− c)λv∗S1

0 cB

]
. (1.21)

A calculation verifies that the vector η(c) defined by

η(c)∗ = [1 (1− c)λv∗S1(λ In−1− cB)−1]

is a left λ–eigenvector of the matrix in (1.21) and η(c)∗e1 = 1; if c 6= 1, it is

the only such vector. Therefore, the vector y(c) defined by

y(c)∗ = η(c)∗S−1 = [1 (1− c)λv∗S1(λ In−1− cB)−1]

[
y∗

Z∗1

]
= y∗+(1− c)λv∗S1(λ In−1− cB)−1Z∗1

is a normalized left λ–eigenvector of A(c), and it is the only vector that

satisfies the conditions (1.11).

(ii) Let D denote the block diagonal matrix in (1.13), and let S be any

nonsingular matrix such that S−1AS = D. Partition S = [X S2] and (S−1)∗ =

[Y Z2], in which X and Y have m columns. Then

[AX AS2] = AS = SD = [λX S2D],
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and [
Y ∗A

Z∗2A

]
= S−1A = DS−1 =

[
λY ∗

EZ∗2

]
,

which tells us that the columns of X are a linearly independent set of right

λ–eigenvectors of A and the columns of Y are a linearly independent set of

left λ–eigenvectors of A. The identity S−1S = I tells us that Y ∗X = Im and

hence that X∗Y = (Y ∗X)∗ = I∗m = Im.

Now let R be any given nonsingular m–by–m matrix, let Ŝ = [XR S2] :=

[X̂ S2], partition (Ŝ−1)∗= [Ŷ Z2], compute (Ŝ−1)∗= [Y (R−1)∗ Z2], and notice

that Ŷ X̂∗ = Y X∗. We draw two conclusions from these observations: (1) We

are free to let the columns of X be any linearly independent set of right

λ–eigenvectors of A; and (2) Regardless of the choice of columns of X , the

product Y X∗ remains the same. Moreover, (Y X∗)2 = Y (X∗Y )X∗ = Y ImX∗ =

Y X∗, so Y X∗ (and hence also XY ∗) is a projection.

This second conclusion also follows from a useful representation for XY ∗.

We have

λ I−A = S

[
0 0

0 λ I−E

]
S−1 and (λ I−A)D = S

[
0 0

0 (λ I−E)−1

]
S−1,

and hence

I−(λ I−A)(λ I−A)D = I−S

[
0 0

0 In−m

]
S−1 = [X S2]

[
Im 0

0 0

][
Y ∗

Z∗2

]
= XY ∗.

Let the first column of X be the given λ–eigenvector x such that v∗x = 1,

and write X = [x X̃ ]. Then x is the first column of S, so S−1x = e1 and

v∗S = [v∗X v∗S2] = [v∗x v∗X̃ v∗S2] = [1 v∗X̃ v∗S2].

Thus,

S−1(xv∗)S = (S−1x)(v∗S) =


1

0

0

[ 1 v∗X̃ v∗S2

]
=


1 v∗X̃ v∗S2

0 0 0

0 0 0

 ,

(1.22)
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and so

S−1 (cA +(1− c)λxv∗)S =


λ (1− c)λv∗X̃ (1− c)λv∗S2

0 cλ Im−1 0

0 0 cE

 . (1.23)

The assumption (1.12) (which is satisfied for c = 1) ensures that λ is not an

eigenvalue of cE, and a calculation verifies that η(c) defined by

η(c)∗ = [1 v∗X̃ (1− c)λv∗S2(λ I− cE)−1]

= [v∗X (1− c)λv∗S2(λ I− cE)−1]

is a left λ–eigenvector of the matrix in (1.23) and η(c)∗e1 = 1; if c 6= 1 it is

the unique such vector. Therefore, y(c) defined by

y(c)∗ = η(c)∗S−1 =
[

v∗X (1− c)λv∗S2 (λ I− cE)−1
][ Y ∗

Z∗2

]
= v∗XY ∗+(1− c)λv∗S2(λ I− cE)−1Z∗2

satisfies the conditions (1.11); if c 6= 1 it is the only vector that satisfies these

conditions.

If A and λ are real, the matrix S = [X S2] that gives the reduced form

(1.13) may be taken to be real (one may reduce to the real Jordan form, for

example [24, Theorem 3.4.5]). Then (S−1)∗ = [Y Z2] is real, so the uniquely

determined product XY ∗ must always be real, regardless of the choice of X .

(iii) Using the identity αR−1−βT−1 = R−1(αT −βR)T−1, we compute

y(c̃)∗− y(c)∗ = λv∗S2((1− c̃)(λ I− c̃E)−1− (1− c)(λ I− cE)−1)Z∗2

= (c̃− c)λv∗S2(c̃E−λ I)−1(E−λ I)(cE−λ I)−1Z∗2 .

This identity verifies (1.16). One obtains (1.17) by letting c̃→ c; (1.18) and

(1.19) follow by setting c = 1 and c = 0, respectively. The bound (1.20)

follows from taking the norm of both sides of (1.16) and observing that the

right–hand side is a continuous function on a compact set, so it is bounded.

The vector function y(c) defined by (1.15) is a complex analytic function

at all but finitely many points in the complex plane, provided that λ is a
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nonzero semisimple eigenvalue of A. The points c = 0 and c = 1 are of special

interest.

• The condition (1.12) is satisfied for all c such that |c|<min{|λ µ
−1
j | : j =

1, . . . ,d}. Thus, y(c) is analytic in an open neighborhood of c = 0 and

can be represented there by a Maclaurin series obtained from (1.15)

by expanding (λ In−m− cE)−1 as a power series in c:

y(c)∗ = v∗
(

I +
∞

∑
k=1

λ
−k
(

S2(E−λ I)Ek−1Z∗2
)

ck

)

= v∗
(

I +
∞

∑
k=1

λ
−k
(

(A−λ I)Ak−1
)

ck

)
. (1.24)

This representation reveals all of the derivatives of y(c) at c = 0.

• The condition (1.12) is also satisfied for all c such that |c− 1| <
min{|λ µ

−1
j −1| : j = 1, . . . ,d}. Thus, y(c) is analytic in an open neigh-

borhood of c = 1. If we let γ = c−1, use (1.15), and expand

(λ I− cE)−1 = (λ I−E)−1 (I− γE(λ I−E)−1)−1

as a power series in γ, we obtain

y(γ + 1)∗ = v∗
(

XY ∗−λ

∞

∑
k=1

(
S2(λ I−E)−kEk−1Z∗2

)
γ

k

)
. (1.25)

This series reveals all the derivatives of y(c) at c = 1. We can use the

Drazin inverse to write this series as

y(γ + 1)∗ = v∗
(

XY ∗−λ

∞

∑
k=1

(
((λ I−A)D)kAk−1

)
γ

k

)
. (1.26)

In particular, the first derivative is

y′(1)∗ = λv∗S2(E−λ I)−1Z∗2 = λv∗(A−λ I)D. (1.27)

1.4.1 The behavior of y(c) as c→ 1

We are interested in the behavior of the left eigenvector y(c) defined by

(1.10) as c→ 1 in the complex plane for λ 6= 0.
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The existence of the limit as c tends to 1 via any complex path requires

the eigenvalue λ 6= 0 to be semisimple as the following two examples show.

Example 1. Consider

A =


1 0 0

0 1 0

0 0 2

 , λ = 1, x = y = e1, v∗ =
[

1 α β

]

and the vector y(c) defined by

y(c)∗ =
[

1 α
(c−1)β

2c−1

]
.

y(c)∗ is the normalized left eigenvector of

cA +(1− c)λxv∗ =


λ + c(1−λ ) λ (1− c)α λ (1− c)β

0 c 0

0 0 2c


associated with the eigenvalue λ = 1. Moreover,

lim
c→1

y(c)∗ =
[

1 α 0
]
.

Although λ = 1 is not a simple eigenvalue of A, it is semisimple.

Example 2. Consider

A =


1 0 0

0 1 1

0 0 1

 , λ = 1, x = y = e1, v∗ =
[

1 α β

]

and the vector y(c) defined by

y(c)∗ =
[

1 α β + cα

1−c

]
.

y(c)∗ is the normalized left eigenvector of

cA +(1− c)λxv∗ =


λ + c(1−λ ) λ (1− c)α λ (1− c)β

0 c c

0 0 c


associated with the eigenvalue λ = 1. However, lim

c→1
y(c)∗ does not exist unless

α = 0. In this case, λ = 1 is not semisimple.
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As previously mentioned, when λ 6= 0, the essential hypothesis required

to ensure that lim
c→1

y(c) exists for all choices of v is that λ is semisimple. The

following Theorem verifies this assertion and gives an explicit formula for

the limit.

1.4.2 Theorem. Let A be an n–by–n complex matrix with eigenvalues

λ ,λ2, . . . ,λn. Suppose that λ is a nonzero semisimple eigenvalue of A with

multiplicity m ≥ 1; let x and v be given nonzero complex vectors such

that Ax = λx and v∗x = 1; and let A(c) = cA + (1− c)λxv∗. If m = 1, let

y be the unique vector such that y∗A = λy and y∗x = 1. If m > 1, let

XY ∗ = I− (λ I−A)(λ I−A)D be the projection defined in Theorem 1.4.1(ii).

Then

(i) For some ε > 0 and all complex c such that 0 < |c−1|< ε, as well as for

all complex c such that λ 6= cλ j for all j = 2, . . . ,n, the vector y(c) defined by

(1.10) when λ is simple, or by (1.15) when it is not, is the unique vector

that satisfies y(c)∗A(c) = λy(c)∗ and y(c)∗x = 1.

(ii) If λ is a simple eigenvalue of A, then lim
c→1

y(c) = yx∗v = y.

(iii) If m > 1, then

lim
c→1

y(c) = Y X∗v = (XY ∗)∗v. (1.28)

Proof. (i) If λ and 0 are the only eigenvalues of A, then any positive value

of ε will do. If the nonzero eigenvalues of A that are different from λ are

µ1, . . . ,µd , let

ε = min{|1−λ µ
−1
1 |, . . . , |1−λ µ

−1
d |}.

Then the hypothesis (1.9) is satisfied and the assertion follows from Theorem

1.4.1. Since y(c) is defined in a punctured open complex neighborhood of

the point c = 1, it is reasonable to ask about the limit of y(c) (as a function

of the complex variable c) as c→ 1.

(ii) The assertion follows from (1.10) since λ is not an eigenvalue of B:

lim
c→1

y∗(c) = y∗+ lim
c→1

(
(1− c)λv∗S1(λ I− cB)−1Z∗1

)
= y∗+ lim

c→1
(1− c) ·λv∗S1 · lim

c→1
(λ I− cB)−1Z∗1

= y∗+
(
0 ·λv∗S1(λ I−B)−1Z∗1

)
= y∗ = v∗xy∗.
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(iii) This assertion follows in the same way from (1.15):

lim
c→1

y(c)∗ = v∗XY ∗+ lim
c→1

(
(1− c)λv∗S2(λ In−m− cE)−1Z∗2

)
= v∗XY ∗+ lim

c→1
(1− c) ·λv∗S2 · lim

c→1
(λ In−m− cE)−1Z∗2

= v∗XY ∗+ 0 ·λv∗S2 · (λ In−m−E)−1Z∗2 = v∗XY ∗.



Chapter 2

Google PageRanking

In this Chapter we have four main expository and research goals.

The first concerning a discussion on the model and on its adherence to

the reality: a basic example presented in Section 2.2 is used to point out

pathologies and limitations of the actual model and to propose some possible

improvements.

Second we would like to understand the characteristics of the matrix

G(c) as a function of the complex parameter c (by completing the analysis in

[39, 9]): we are interested in the eigenvalues and in the eigenvector structure,

so that the analysis of canonical forms (Jordan, Schur etc.) is of prominent

interest.

Third we would like to understand the behavior (regularity, expansions,

limits, conditioning etc.) of the PageRank vector y(c) as a function of c

also for c close or equal to 1, and fourth we are interested in using the

analytical characterization of y(c) for computational purposes. In particular,

it is known that for c = 1 the problem is ill–posed since there exist infinitely

many left eigenvectors y(1) of l1 norm equal 1 and they form a convex set.

On the other hand, for c ∈ [0,1), the solution exists and is unique, but the

known algorithms become very slow when c is close to 1. Our interest is to

compute y(c) in these difficult cases, especially in the limit as c tends to 1.

The philosophical message that can be extracted from the latter three

points is as follows: it has been said that the “PageRank problem is closely

related to Markov chains” [13, p. 553]; however, framing the PageRank prob-
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lem in the general setting of standard matrix–analytic properties of complex

matrices can liberate one’s imagination and stimulate novel approaches that

might not be considered in the context of Markov chains.

This Chapter is organized as follows. In Section 2.1 we present the basic

Google model, while in Section 2.2 we analyze it from a critical point of

view and we propose improvements that prevent pathologic behaviors. In

Section 2.3 we focus on the special case A(c) = cA + (1− c)λxv∗ in which A

is the basic Google matrix G, λ = 1, x = e while v and c are complex; in this

respect Section 2.4 is devoted to a comparison with the explicit formulae of

y(c) and of the Jordan form in [39], to a detailed analysis of the conditioning

of y(c) also for c = 1, and of the eigenvector structure of G(c). In Section

2.5, we propose few algorithmic ideas for computing PageRank. The first

exploits properties of G(c) as a function of the complex variable c, especially

in the unit open disk and in a proper disk centered at c = 1, while the second

is based on a proper shift of the matrix G. Furthermore some remarks on

the interpretation of the vector ỹ, the limit value of y(c) as c tends to 1, are

given. Section 2.6 mentions some prior work and Section 2.7 is devoted to

concluding remarks and future work.

2.1 Google PageRanking model

As customary in the literature (see e.g. [31]), the Web can be regarded as

a huge directed graph whose n nodes are all the Web pages and whose edges

are constituted by all the direct links between pages. If deg(i) indicates the

cardinality of the pages different from i which are reached by a direct link

from page i, the simplest Google matrix G is defined as Gi, j = 1/deg(i) if

deg(i) > 0 and there exists a link in the Web from page i to a certain page

j 6= i. In the case where deg(i) = 0 (the so–called dangling nodes), we set

Gi, j = 1/n where n is the size of the matrix, i.e., the cardinality of all the

Web pages. This definition is a model for the behavior of a generic Web

user: if the user is visiting page i with deg(i) > 0, then with probability

1/deg(i) he/she will move to one of the pages j 6= i linked by i; if i is a

dangling node, i.e., it has no links, then the user will make just a random

choice with uniform distribution 1/n. The basic PageRank is an n sized
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vector which gives a measure of the importance of every page in the Web

and this notion of importance of a given page is measured according to the

limit probability that a generic user reaches that page asymptotically, i.e.,

after infinitely many clicks: this is the surfing model. On the other hand,

we would like to have a more intrinsic and intuitive notion of importance or

ranking of the Web pages. Indeed, taking inspiration from social sciences,

the following ideas are quite natural:

• a page j is more important if there exists a page i referring to it,

• if i is a “very important page” and is referring j, then the importance

of j is increased,

• if i is referring to many pages including j 6= i, i.e. deg(i) is large, then

this adds little importance to j.

It is worth mentioning that the idea contained in the above itemized sen-

tences is exactly a quantification of the notion of VIP (very important per-

son) appearing in social sciences or, quite equivalently, according to a famous

sentence of the PopArt master Andy Warhol “Don’t pay attention to what

they write about you. Just measure it in inches” (with several distinguished

precursors“I don’t care what you say about me, as long as you say something

about me, and as long as you spell my name right” (George Cohan), “The

only thing worse than being talked about is not being talked about” (Oscar

Wilde), etc.). By the way, this basic observation shows the large potential

of these researches in terms of the broad range of possible applications; see

e.g. [4] for a recent study in the context of bibliometry.

Now we translate in formulae these concepts. More in detail, after a

reasonable normalization, for every j = 1, . . . ,n, the importance y[ j] of page

j is defined as follows

y[ j] = ∑
i→ j

y[i]
deg(i)

, y[ j]≥ 0,
n

∑
i=1

y[i] = 1.

The definition is nice in principle and can be interpreted in matrix–vector

terms as yT Ĝ = yT , y[ j]≥ 0, for all j, ∑
n
i=1 y[i] = 1, where Ĝi, j = Gi, j if there

exists in the Web a link from i to j and Ĝi, j = 0 otherwise: G and Ĝ are the
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same with the exception of the management of dangling nodes. However,

even by interpreting the above relations as an eigenvector problem with

respect to the eigenvalue 1, either 1 may belong or may fail to belong to the

spectrum of the resulting matrix. Explicit and very simple examples can be

constructed: take e.g. the matrix[
0 1

0 0

]

associated with a toy Web with only two nodes i, j with i < j and a unique

link from i to j; it is clear that the problem defined by yT Ĝ = yT , y[ j] ≥ 0,

for all j, ∑
n
i=1 y[i] = 1 has no solution, since 1 is not in the spectrum of Ĝ.

The reason is again the presence of dangling nodes that in turn implies the

existence of identically zero rows. Hence, for giving a solution to the above

mathematical incongruence, we define

deg∗(i) = deg(i), if deg(i) > 0, (2.1)

deg∗(i) = n, if deg(i) = 0,

and we correct accordingly the relations concerning y[ j] in the following way:

y[ j] = ∑
i→ j

y[i]
deg∗(i)

, y[ j]≥ 0,
n

∑
i=1

y[i] = 1. (2.2)

Putting the above relations in matrix terms, and introducing the l1 norm

of a real or complex vector w as ‖w‖1 = ∑
n
j=1 |w[ j]|, we have

yT G = yT , y≥ 0, ‖y‖1 = 1. (2.3)

Interestingly enough, it should be observed that any vector y solution to (2.3)

represents also a solution in the sense of the surfing model and vice versa.

Therefore, in other words, with the above choice, there is an identification,

which can be criticized between the surfing model and the definition of

importance: in fact the definition of G referred to the dangling nodes is

perfectly coherent in the surfing model, while is not justified at all when

defining a notion of importance (see Section 2.2).

Now looking at (2.3), a basic PageRank is a nonnegative left eigenvector

y of G associated with the dominating eigenvalue 1 normalized so that ‖y‖1 =
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yT e = 1, e being the vector of all ones (see e.g. [37, 28]). Since the matrix

G is nonnegative and has row sum equal to 1 it is clear that a (canonical)

right eigenvector related to 1 is e and that all the other eigenvalues are in

modulus at most equal to 1.

Consequently, the good news is that a solution always exists; the bad

news is that there might be multiple independent nonnegative solutions.

And even if there is a unique solution, computing it by standard methods

such as the power method [22] may fail, because G has one or more eigen-

values different from 1 that have modulus 1, see [23].

In fact, the structure of G is such that we have no guarantee for its

aperiodicity and for its irreducibility: therefore the gap between 1 and the

modulus of the second largest eigenvalue can be zero, see [23]. This means

that the computation of the PageRank by the application of the standard

power method (see e.g. [22]) to the matrix GT (or one of its variations for

our specific problem) is not convergent in general. A solution is found by

considering a change in the model: given a value c ∈ [0,1), from the basic

Google matrix G we define the parametric Google matrix G(c) as cG +(1−
c)evT with v[i]≥ 0, ‖v‖1 = 1. This change corresponds to the following user

behavior: if the user is visiting page i, then the next move will be with

probability c according to the rule described by the basic Google matrix G

and with probability 1− c according to the rule described by v. We notice

that this change is again meaningful in terms of the surfing model, but there

is no clear interpretation in terms of notion of importance. Generally a value

of teleportation parameter c as 0.85 is considered in the literature (see e.g.

[28]). For c� 1, the good news is that the y(c), i.e., the left dominating

nonnegative eigenvector solution of (2.3) with G = G(c), is unique and can be

computed in a fast way since G(c) has second eigenvalue whose modulus is

dominated by c (the matrix G(c) is now irreducible and primitive ref Section

3.1, see also [31] and references therein): therefore the convergence to y(c) is

such that the error at step k decays in the generic case as ck. Of course the

computation becomes slow if c is chosen close to 1 and there is no guarantee

of convergence if c = 1.



30 Google PageRanking

2.2 Comments and proposals on the model

Let us start our discussion on the model, by considering in detail the

following (extreme) example:

1GFED@ABC 2GFED@ABC 3GFED@ABC . . . . . . 109GFED@ABC

AGFED@ABC

BGFED@ABC CGFED@ABC

)) %%
�� ��
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�
yy
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According to the classical algorithm in the ideal case (i.e. for c = 1,

y(1) = ỹ) the page A has zero PageRank (as the 109 pages in the first row)

and the importance is concentrated in B and C. In some sense the obtained

ranking is against common sense since, given the topology of the graph, it

is clear that page A should have a significant PageRank measure. This and

other related pathologies need further investigations and this is the goal of

the rest of this section in which we will suggest a revision of the PageRank

model.

2.2.1 A monotonicity principle and the transient behavior

As already mentioned, according to the classical algorithm in the “ideal

case”, page A has zero ranking (as the 109 pages in the first row) and the

importance is concentrated in B and C. This ranking is highly counter–

intuitive and indeed wrong: if you are a leader of 109 people, you are really

powerful no matter if any of your followers has low ranking, i.e., he/she is

not important . . .

Now suppose that C is deleted, i.e., the considered Web page is deleted:

this can be also interpreted as merging B and C in a unique node that we can

still call B. Then the rankings of any of 109 pages in the first row will move

slightly from 0 to 1/(3(109 + 1)); on the other hand the ranking of B goes
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down dramatically from 1/2 to 1/3 + 1/(3(109 + 1)) and A becomes really a

leader moving from 0 to 1/3. Again this sharp modification of the ranking is

highly counter–intuitive and indeed wrong. At least, one would expect that

the cumulative ranking of B and C equal to 1, before deletion of C, and the

ranking of B alone after deletion of C should remain roughly speaking equal:

a sort of monotonicity which is substantially violated by the actual model,

which, on the other hand, induces an unmotivated discontinuous behavior in

the solutions. In this respect, the original reason of such a pathology relies

on the opposite extremal behavior of functions deg(·) and deg∗(·) in which a

zero row is replaced by eT/n. We notice that in the literature a wider idea

has been considered by replacing eT/n by any stochastic vector wT : however

the discontinuity in the model still remains and in the following different

solutions to the problem are considered.

A strong and macroscopic evidence of the problems in the actual model

is that for most of the nodes in real Web examples (what is called “core”

in the literature) the ranking is zero. Indeed, only the use of values of the

teleportation parameter c far away from 1 (e.g. 0.85) partly alleviates the

problem (in Latin “ex falso quod libet” . . ., is an expression capturing the

fact that from something wrong anything can derive and, by coincidence,

also good things. . .). In actuality, a basic error is the confusion between the

notion of “importance” (PageRanking) and the stochastic model for surfing

on the web. We can identify two critical points.

We have a somehow unnatural (wrong) treatment of dangling nodes:

with the actual model, there is no monotonicity as the example of deletion

of node C in the above graph shows. In a new model, the management of

dangling nodes should be changed for insuring a sort of monotonicity.

The other substantial problem is that the transient effects are not taken

into account. A user is on the Web for a finite number of clicks, at every

visit. This implies that looking at the stationary vector, as the number of

clicks tends to infinity, is just theoretical and far from reality. A new model

has to incorporate the transient behavior (see also the functional approach

in [1]), which would give the right importance to a node as A in our example.
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2.2.2 New proposals

Following Del Corso, Gulĺı and Romani [18], one objective of the section

is a precise policy for providing to any dangling node a link to itself or to itself

and its parents, with a given distribution (in order to impose monotonicity,

at least in a weak sense). A link to itself models a reload action and hence

it could be also used for the other non–dangling nodes.

A second and more relevant objective is to incorporate the transient

behavior for differentiating our ranking from the limit solution to the surfing

model. This will be done:

• by eliminating the teleportation parameter that induces a confusion

between the notion of ranking and the surfing model,

• by introducing a weighting by experience for reinforcing the role of the

transient phenomena,

• by using the Cesaro mean for avoiding oscillatory phenomena at the

limit,

• by defining a nonlinear model, in the spirit of a dynamical system,

for using the computed PageRank at time t in order to update the

PageRank at time t + ∆ t.

A new policy for dangling nodes

Now we describe a way for implementing weighted self–loops and

weighted links to parents.

Let in(A) be the set of ingoing edges to node A including possibly the node

A itself, let deg−(A) be its cardinality (this number could be theoretically

zero), out(A) be the set of outgoing edges from node A including possibly

the node A itself, and let deg(A) be its cardinality (this number could be

theoretically zero and in this case, as already observed, node A is a dangling

node). In the following v[in(A)] is the sum of v[B] for B such that the edge

from B to A exists, v[out(A)] is the sum of v[B] for B such that the edge from

A to B exists, v being as usual the personalization vector, and g is a positive
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Figure 2.1:

damping parameter. A reasonable choice is g such that g/(1 + g) = 1/10,

i.e., g = 1/9 (ref Fig. 2.1).

The resulting policy will be the following (any form 0/0 is set to zero).

Case 1 If deg−(A) = deg(A) = 0 then there will be a unique edge from A to

A (a loop) with weight of the node equal to 1; in case v[A] = 0 the node

is simply deleted with its edges.

Case 2 If deg(A) = 0 and deg−(A) > 0 then there will an edge from A to A

with weight

v[A]/(v[in(A)]/deg−(A)+ v[A])

and deg−(A) edges from A to B, with B belonging to the set of ingoing

nodes of A and with weight

v[B]/(v[in(A)]+ deg−(A)v[A]);

in case v[in(A)]+ v[A] = 0 the node is simply deleted with its edges.

Case 3 If deg(A) > 0 and deg−(A) = 0, then there will an edge from A to A

with weight

gv[A]/(v[out(A)]/deg(A)+ gv[A])

and deg(A) edges from A to B, with B belonging to the set of outgoing

nodes of A and with weight

v[B]/(v[out(A)]+ gdeg(A)v[A]);

in case v[out(A)]+ v[A] = 0 the node is simply deleted with its edges.
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Case 4 Otherwise, there will be an edge from A to A with weight

gv[A]deg−(A)/{(1 + g)(v[in(A)]+ deg−(A)v[A])},

deg(A) edges from A to B, with B belonging to the set of outgoing nodes

of A and with weight

v[B]/{(1 + g)v[out(A)]},

and deg−(A) edges from A to B, with B belonging to the set of ingoing

nodes of A and with weight

gv[B]/{(1 + g)(v[in(A)]+ deg−(A)v[A])}.

in case v[in(A)]+v[out(A)]+v[A] = 0 the node is simply deleted with its

edges.

To have an idea in a concrete but exemplified case, by setting g = 1/9, i.e.,

g/(1+g) = 1/10 and by supposing the personalization vector v uniform, i.e.,

with all entries equal to 1/n, the described policy amounts to the following

scheme: If deg−(A) = deg(A) = 0 then there will be a unique edge from A to

A (a loop) with weight of the node equal to 1; If deg(A) = 0 and deg−(A) > 0

then there will an edge from A to A with weight 1/2 and deg−(A) edges from

A to B, with B belonging to the set of ingoing nodes of A and with weight

1/(2deg−(A)); If deg(A) > 0 and deg−(A) = 0, then there will an edge from

A to A with weight 1/10 and deg(A) edges from A to B, with B belonging

to the set of outgoing nodes of A and with weight 9/(10deg(A)); Otherwise,

there will be an edge from A to A with weight 1/20, deg(A) edges from A

to B, with B belonging to the set of outgoing nodes of A and with weight

9/(10deg(A)), and deg−(A) edges from A to B, with B belonging to the set

of ingoing nodes of A and with weight 1/(20deg−(A)).

We observe that is it possible to apply this new policy in the construction

of the matrix G of the PageRank model. In this way we get a matrix G that

can be reduced into the direct sum of irreducible and primitive blocks (ref

Section 3.1) and the Perron Frobenius theory ensures us that there exists

always a unique ranking, function of the personalization vector v. It is

possible to obtain this solution applying the power method to the matrix
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G(1) = G. At this point the problem related to the presence of dangling

nodes is solved, but transient phenomena are not yet taken into account. A

further modification of the PageRank model must be considered.

Introducing transient phenomena

An improved ranking may be

computed starting from the uniform vector u with components all equal

to w[0]/n (with n being the size of the Web) and adding all the vectors

w[ j]P je/n, where P = GT , G = G(1), is the transpose of the Google matrix

with parameter c = 1, j ranges from 0 to a reasonable number of clicks,

w[ j] > 0 is the jth term of a sequence forming a convergent series. Here the

Google matrix is that of the old model with c = 1 and classical treatment of

dangling nodes: moreover, the present proposal is not limited to choosing a

hyperlink at random within a page with uniform distribution; if statistical

data are known about actual usage patterns, then that information can

be included since any arbitrary distribution u describing the choice of the

hyperlink can be considered. Here the speed of the decay of w[ j] to zero, as

j tends to infinity, can be used for deciding to give more or less importance

to the stationary limit distribution (solution to the surfing model) or to

the transient behavior. Indeed, if one should choose a page where to put

the advertisement of a new product, the user would prefer a page with

high transient ranking (transient, i.e., for j moderate e.g. at most 10, 15)

because many people will have a chance of looking at it, instead of a page

with low transient ranking and high final ranking (final, i.e., as j tends

to infinity). In fact no user will wait so much or, if he/she waits on the

Web, then he/she will be probably terribly tired and unable to appreciate

any commercial suggestion. This can motivate a first concrete proposal of

w[0] = w[1] = · · · = w[k] = (p− 1)/(pk), for a reasonably moderate k (e.g. k

integer with k in the interval [7,20]), p belonging to [2,10], and the remaining

w[ j], j > k, such that w[k + 1] + w[k + 2] + · · ·= 1/p. In practice, for j larger

of any reasonable number of clicks, dictated e.g. by the “physical resistance”

of a generic user, we could set w[ j] = 0. Furthermore, since the Cesaro

sum of the P ju tends to a stationary distribution (as in the Google model)
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and this stationary distribution is the limit as the teleportation parameter c

tends to 1 of y(c), y(c) being the PageRank, instead of the general condition

w[k + 1] + w[k + 2] + · · · = 1/p we can safely choose w[k + 1] = 1/p, w[m] = 0

for every m larger than k + 1 and the classical y(1) instead of Pk+1u. The

choice of y(1) is recommended for stabilizing the computation: indeed the

sequence P ju may fail to converge, while its Cesaro mean converges to the

ergodic projector.

A natural problem at this point is: how to manage SPAM pages? An

interesting idea used in the previous model is based on a careful choice of

the personalization vector v (see below): hence as before, in the previous

sum, the uniform vector u is replaced by the personalization vector v.

A second natural problem is the computation of y(1) intended, by defi-

nition, as the limit as the teleportation parameter c tends to 1 of y(c) with

generic personalization vector v.

In fact from the analysis in [39, 25] we know that y(c) is an analytic func-

tion of c on the complex plane, except for a finite number of points different

from 1 outside the open unit disk (see Sections 2.3 and 2.4). Therefore y(1)

can be approximated, just by continuity, by y(c) with c close to 1 (0.9,0.99):

there is a lot of work by Golub and Greif (using Arnoldi, see [21]), Del Corso,

Gulĺı, Romani (using the linear system representation and preconditioned

GMRES, see [18]), Breziski et al. (vector extrapolation based on explicit ra-

tional formulae of y(c), see [13, 14, 15]) etc. for making such computations

fast. Otherwise the straightforward but effective algorithm in Subsection

2.5.2 can be conveniently employed.

An appropriate choice of the involved parameters, based on the experi-

ence, is also possible with special reference to k, p and to the weights w[ j].

Here is a first embodiment: a visit to the page A will make A more important

if it is longer: following this principle the value w[ j] could be decided as a

monotone function of the average time of a generic user between the click j

and the click j + 1 (see below). While the previous model is trying to rank

the importance at the limit (the asymptotic stationary distribution, i.e., the

solution to the surfing model), the present approach can be seen as a global

ranking, i.e., as a weighted integral over the discrete time (decided by clicks

on the Web) of the ranking. Of course, as already informally observed, the
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weights w[ j], like in any weighted quadrature formula, decide where to put

the attention for giving the final decision on the global ranking.

Another healthy effect of the integral approach is the stabilization of

the involved quantities which prevent from spurious oscillations and this

stabilization is typical of any Cesaro like process. Indeed, by considering

again the example above, with the old model the ranking of page B and C

are oscillating. Depending on starting distribution vector, they exchange the

first and the second top positions at every j and the difference between their

ranking is not negligible. Of course, the use of teleportation just alleviates

the phenomenon, which is eliminated at the limit, but in practice it remains

well visible. The averaging implied by the integral approach substantially

reduces this fact as any Cesaro like process does: however, it should be

noticed that a plain Cesaro approach would again give emphasis only on the

limit behavior, since its representing matrix would converge to the spectral

projector (see again [33, 40]).

Furthermore, let us give more details on a more accurate proposal for

the determination of the sequence w[ j], based on experience. Consider for a

moment to have the following information on all the visits on the Web for

a certain window of observation (one week for instance). Let surfing[ j ] with

j ≥ 0 be a nonnegative integer that represents the number of visits to the

Web that last at least j clicks. If you are on the Web and you change Web

page not clicking, but by writing explicitly the address, then this is counted

as a restart, i.e., in the number surfing[0]. Moreover, there exists only a finite

number of indices j with nonzero surfing[ j ], due to the finiteness of the time

interval and due to the physical resistance of the generic user. Now we make

a statistic on the lengths t j+1, with j ≥ 0, of the time intervals between the

click number j and the click j + 1, if the click j is not the last click, or the

time intervals between the click number j and the exit, if the click j is the

last. Let us denote by T [ j + 1] the average value of these t j+1 based on our

observations over all the visits. Then calling γ[ j] = surfing[ j ] ·T[j + 1], j ≥ 0,

and s[h] the sum of all γ[ j] with j ≥ h, our integral will be

y = F(P,v,w) = w[0]v + w[1]Pv + · · ·+ w[k]Pkv + w[k + 1]y(1) (2.4)

with w[ j] = γ[ j]/s[0], j = 0, . . . ,k, and w[k + 1] = s[k + 1]/s[0].
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In this way more influence is given to Psv if the “area” w[s] is maximal:

w[ j] may be viewed as the area of a rectangle where the length of the basis is

the average time between click j and click j +1 and the length of the height

is equal to the value surfing[ j ] i.e. the number of visits that last at least j

clicks. It is not excluded that the behavior of such a sequence w[ j] can be

roughly approximated by a Poisson distribution with a given mean.

Along the same line the personalization vector v can be described. It

should be nonnegative and with unit l1 norm (just a matter of scaling).

Moreover v[ j] should be put at zero if j is recognized as a SPAM page and

for the other pages the value v[ j] has to be proportional to the sum over the

visits to j at the first click of the visit–time.

Of course these parameters have to be estimated, but the leaders of Web–

Searching Market (as Google, Microsoft, Yahoo etc.) for sure have access to

such information.

We can now apply the new policy for nodes, described in the former

Subsection, in the construction of the matrix P = GT that appears in the

formula (2.4). Thanks to the structure of this new P there are no more

spurious oscillations in the terms P jv for j increasing. So instead of y(1) in

(2.4) we can consider safely the term Pk+1v.

y = F(P,v,w) = w[0]v + w[1]Pv + · · ·+ w[k + 1]Pk+1v (2.5)

with w[ j] evaluated as previously proposed.

The ranking coming out of the joining of these two techniques seems to

be exempt from the pathologies of the classical PageRank.

Finally, the latter statement suggests to look at the problem in a time

dependent and nonlinear way, since the Web evolves in time and the expected

values of the various time intervals, i.e. T [ j] for j = 1,2, . . . , also depend

on the ranking that we attribute to Web pages. A concrete proposal is the

following: if ŷ(t) denotes this new definition of the PageRank according to

the formula (2.5), then we define the new ranking at t + ∆ t as

ŷ(t +∆ t) = F(P(t +∆ t),z,w(t +∆ t)), z = mŷ(t)+(1−m)v(t +∆ t), 0≤m≤ 1,

where P(t + ∆ t) is the Web matrix at the time t + ∆ t, w(t + ∆ t) is the
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vector of the weights at the time t + ∆ t, and where z is defined as a convex

combination of v(t +∆ t) (the personalization vector defined as before at time

t + ∆ t) and ŷ(t) which carries the information on ranking at the older time

t. The nonnegative parameters m and 1−m of the convex combination can

be interpreted as weights that measure the level of fidelity, which is based

on the “past importance”.

Further possibilities

In summary two goals are achieved by the new model. The actual ef-

ficiency (fast computation) is preserved, since the new computation will

involve at most two vectors, which already were computed in the preced-

ing model, and it seems that the old pathologies are removed without in-

troducing new ones. The new ranking method according to the proposal

may be called the VisibilityRank or the CommercialRank, since a query–

independent measure is given of the“fair value”of any Web page for deciding

e.g. the cost of putting an advertisement in that page, as in the determi-

nation of the cost of renting a space for advertisement in a given place of a

given street, square in a given town etc.

As a final remark on this model part, it is worth mentioning that this

model could be of interest not only in Web ranking, but also in politi-

cal/social sciences e.g. for ranking who/what is influential and who/what

is not (as an example one could be interested in answering to the following

questions: Bill Clinton’s opinion is really influential and at which level? How

to rank immaterial forces such as a religious authority vs material forces such

as economic/military powers?), in many aspects of marketing, for ranking

human resources, for ranking the importance of a paper and/or of a re-

searcher looking in scientific databases, see [4]. Let us think to MathSciNet

for Mathematicians where a generic node is any paper in the database and

a link from A to B is just a bibliographic reference to paper B in paper A.

For evaluating the impact (i.e. the ranking) of a paper the very same model

and the same procedure as described before could be applied to the related

graph. For evaluating or ranking a researcher (a very hot topic nowadays

in several countries) it would be enough to modify the graph where every
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single node is a researcher and a link from A to B means that the researcher

A has written at least one paper referring to at least one paper of the re-

searcher B: the links have to be weighted and the related weights will be

proportional to the number of such papers and will be properly normalized

according to the number of authors in the referring papers of A and in the

referred papers of B. The algorithm will be again the same and again the

same idea would work for ranking researcher groups or Institutions such as

Departments, Faculties, Universities (see e.g. the hierarchical approach in

European Patent 1, 653, 380 A1). In addition it is worth stressing that the

described procedures for defining the graph and for computing the ranking

are unchanged in any Scientific homogeneous community.

Of course, for modeling in a convincing way such complex phenomena,

it would be recommended to enrich the structure of the graph by adding to

nodes and/or to edges more information (meta–graph? . . .). However, the

essential basic idea for defining and computing the ranking has to remain

virtually the same.

2.3 The general parametric Google matrix

We begin with a summary of the properties of a row–stochastic matrix

that are relevant to our analysis of the general parametric Google matrix.

2.3.1 Lemma. [2, 25] Let A be a row–stochastic matrix. Then

(i) λ = 1 is an eigenvalue of A associated with the right eigenvector x = e.

(ii) Every entry of A is in the real interval [0,1].

(iii) For each k = 1,2, . . ., Ak is row–stochastic, so its entries remain bounded

as k→ ∞.

(iv) Every eigenvalue of A has modulus at most 1.

(v) Every eigenvalue of A that has modulus 1 is semisimple.

(vi) If the eigenvalue 1 has multiplicity m, then the Jordan canonical form

of A is

Im⊕ Jn1(ν1)⊕·· ·⊕ Jnk(νk),

in which each ν j 6= 1, each |ν j| ≤ 1, and n j = 1 if |ν j|= 1.
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(vii) If 1 is a simple eigenvalue of A, then there is a unique vector y with

nonnegative entries such that yT A = yT and yT e = 1.

Since the basic Google matrix G has all the properties stated in the

preceding lemma, and since these properties are special cases of the key

hypotheses in our analysis in the preceding Chapter, specialization of our

general results permits us to identify several pleasant and useful properties

of the general parametric Google matrix G(c) = cG+(1−c)xv∗ with complex

c and v. In fact the following Theorem is an interpretation of Theorems

1.4.1 and 1.4.2 when A is the Google matrix and hence λ = 1.

2.3.2 Theorem. Let G be an n–by–n row stochastic matrix, and let its

eigenvalue λ = 1 (necessarily semisimple) have multiplicity m≥ 1. If m = 1,

let y be the unique vector with nonnegative entries such that yT G = yT and

yT e = 1. If m > 1, let the m columns of X be any linearly independent set

of right 1–eigenvectors of G, and let Y be the matrix defined in Theorem

1.4.1(ii); its columns are an independent set of left 1–eigenvectors of G. Let

v be a given complex vector such that v∗e = 1, let c be a complex number,

and let G(c) = cG + (1− c)ev∗. Let 1,λ2, . . . ,λn be the eigenvalues of G, let

µ1, . . . ,µd be the nonzero eigenvalues of G that are different from 1, let

ε = min{|1−µ
−1
1 |, . . . , |1−µ

−1
d |},

and let

Im⊕ Jn1(ν1)⊕·· ·⊕ Jnk(νk), each ν j 6= 1 (2.6)

be the Jordan canonical form of G, with {µ1, . . . ,µd} ⊆ {ν1, . . . ,νk} ⊆
{λ2, . . . ,λn}. Then

(i) The eigenvalues of G(c) are 1,cλ2, . . . ,cλn, and |cλ j| ≤ |c| for each

j = 2, . . . ,n.

(ii) In the Jordan canonical form (2.6), n j = 1 for each j such that |ν j|= 1.

(iii) If 0 < |c| < 1 (or, more generally, if c 6= 0 and 1 6= cµ j for each

j = 1, . . . ,d), then the Jordan canonical form of G(c) is

[1]⊕ cIm−1⊕ Jn1(cν1)⊕·· ·⊕ Jnk(cνk)
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if m > 1; it is

[1]⊕ Jn1(cν1)⊕·· ·⊕ Jnk(cνk)

if m = 1.

(iv) Suppose either that |c| < 1 or that 0 < |1− c| < ε. Then 1 is a simple

eigenvalue of G(c).

(v) Suppose either that |c| < 1 or that 0 < |1− c| < ε. If m > 1, the unique

left 1–eigenvector y(c) of G(c) such that y(c)∗e = 1 is defined by

y(c)∗ = v∗XY ∗+(1− c)v∗S2(In−m− cE)−1Z∗2 , (2.7)

and

lim
c→1

y(c) = Y X∗v. (2.8)

The matrices S2, E, and Z2 are defined in Theorem 1.4.1(ii); 1 is not an

eigenvalue of E. The matrix

Y X∗ = I− (I−GT )(I−GT )D (2.9)

is a real projection with nonnegative entries.

(vi) Suppose either that |c|< 1 or that 0 < |1− c|< ε. If m = 1, the unique

left 1–eigenvector y(c) of G(c) such that y(c)∗e = 1 is defined by

y(c)∗ = y∗+(1− c)v∗S1(In−1− cB)−1Z∗1 , (2.10)

and

lim
c→1

y(c) = y. (2.11)

The matrices S1, Z1, and B are defined in Theorem 1.4.1(i); 1 is not an

eigenvalue of B.

(vii) The vector function y(c) defined by (2.7) if m > 1, and by (2.10) if

m = 1, is analytic in the unit disk {c : |c|< 1} and is represented there by the

Maclaurin series

y(c)∗ = v∗
(

I +
∞

∑
k=1

(
(G− I)Gk−1

)
ck

)
. (2.12)
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(viii) Let γ = c−1. The vector function y(c) defined by (2.7) if m > 1, and

by (2.10) if m = 1, is analytic in the disk {c : |1− c|< ε} and is represented

there by the power series

y(c)∗ = y(γ + 1)∗ = v∗
(

XY ∗−
∞

∑
k=1

(
((I−G)D)kGk−1

)
γ

k

)
. (2.13)

In particular, the first derivative at c = 1 is

y′(1)∗ = v∗(G− I)D. (2.14)

(ix) Let K be a given compact complex set that does not contain any of the

points µ
−1
1 , . . . ,µ−1

d . Define y(c) on K by (2.7) if m > 1 and by (2.10) if

m = 1. Then ‖y(c)‖1 ≥ 1 for all c ∈ K and there is a positive constant M

such that

‖y(c̃)− y(c)‖1

‖y(c)‖1
≤ ‖y(c̃)− y(c)‖1 ≤M|c̃− c| for all c̃,c ∈ K.

The assertions in (vii) and (viii) of the preceding Theorem follow from

(1.24), (1.26), and (1.27). The assertion (ix) follows from Theorem 1.4.1(iii)

and the observation that 1 = |y(c)∗e| ≤ ‖y(c)∗‖1.

We emphasize that the representations (2.7) and (2.10) for the unique

normalized left 1–eigenvector of G(c) are valid not only for all real c ∈ (0,1),

but also for all complex c in the open unit disk, as well as for all c in a

punctured open neighborhood of the point 1 in the complex plane. The limits

(2.8) and (2.11) are to be understood as limits of functions of a complex

variable; the existence of these limits ensures that they may be computed

via any sequence of values of c that tends to 1.

The preceding comments have an important consequence. Suppose the

vector v has positive real entries and satisfies vT e = 1. Then for all real

c such that 0 < c < 1, G(c) has positive entries. The Perron–Frobenius

Theorem ensures that each such G(c) has a unique left 1–eigenvector y(c)

that has positive entries and satisfies y(c)T e = 1. Theorem 2.3.2 ensures that

lim
c→1

y(c) = ỹ exists, so if we take this limit with c ∈ (0,1) we know that ỹ has

real nonnegative entries. However, we can also take this limit with c tending

to 1 along some non–real path in the complex plane. Regardless of the path

taken, and even though y(c) can be non–real on that path, nevertheless the
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limit obtained is always the nonnegative vector ỹ (this further degree of

freedom is exploited in the algorithm presented in Section 2.5).

We can draw one more conclusion from the preceding discussion, which

is the last statement in Theorem 2.3.2(v). For each given nonnegative vector

v, we have argued that the vector

ỹ = lim
c→1

y(c) = Y X∗v

has nonnegative entries. But a matrix N has the property that the entries

of Nv are nonnegative whenever the entries of v are nonnegative if and only

if all the entries of N are nonnegative. Thus, the projection

Y X∗ = N = [η1 · · · ηn] = I− (I−GT )(I−GT )D (2.15)

is both real and nonnegative. Its columns η1, . . . ,ηn are a uniquely de-

termined set of nonnegative left 1–eigenvectors of G such that, for any given

nonnegative probability vector v, lim
c→1

y(c) = v1η1 + · · ·+vnηn is a convex com-

bination of them. This matrix is a nonnegative projector coinciding with

the Cesaro mean lim
r→∞

1
r + 1

r

∑
j=0

G j(1): the result is due to Lasserre, who calls

N the ergodic projector in a context of probability theory [33].

Of course the nonnegativity of N could be obtained elementarily also by

using Markov chains arguments.

2.4 Comparison with an explicit prior expression

of Google Jordan form

We now consider a result from [39] and we ask ourselves how one can

obtain, extend, and interpret them, by employing our findings in the previous

sections and by allowing the parameter c in the complex field.

Indeed, we study the Jordan form general case, in which G is not neces-
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sarily diagonalizable, where the decomposition G = SJS−1,

J =



1 0 · · · · · · 0

0 λ2 �
...

. . .
. . .

... λn−1 �

0 · · · · · · 0 λn


(2.16)

is the Jordan Canonical Form of G and � denotes a value that can be either

0 or 1.

2.4.1 Theorem. Let G be a row stochastic matrix of size n, let c∈ (0,1), and

suppose that v is a nonnegative n–vector whose entries add to 1. Consider

the matrix G(c) = cG + (1− c)evT and let G = SJ(1)S−1, S = [e x2 · · · xn],

[S−1]T = [y y2 · · · yn], and

J(c) =



1 0 0 · · · 0

0 cλ2 c ·� . . .
...

...
. . .

. . . 0
... cλn−1 c ·�
0 · · · · · · 0 cλn


,

J(c) = D−1



1 0 0 · · · 0

0 cλ2 �
. . .

...
...

. . .
. . . 0

... cλn−1 �

0 · · · · · · 0 cλn


D (2.17)

in which D = diag(1,c, . . . ,cn−1) and � denotes a value that can be 0 or 1.

Then

G(c) = ZJ(c)Z−1,

in which

Z = SR−1,
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R = In + e1wT , wT = [0 w[2] · · · w[n]],

w[2] = (1− c)vT x2/(1− cλ2), (2.18)

w[ j] = [(1− c)vT x j +[J(c)] j−1, jw[ j−1]]/(1− cλ j), j = 3, . . . ,n. (2.19)

In particular

y(c) = y +
n

∑
j=2

w[ j]y j (2.20)

where y = y(1) if the eigenvalue 1 of G = G(1) is simple and where the quan-

tities w[ j] are expressed as in (2.18)–(2.19). Conversely, y is one of the

basic PageRank vectors when the eigenvalue 1 of G(1) is semisimple but not

simple.

Notice that in the original paper [39], there is a typo since D and D−1

are exchanged in (2.17): we thank Gang Wu and Yimin Wei for pointing

this out to our attention, see [42].

2.4.1 Matching old and new representations

Here we make a critical analysis of the above results in the light of

the conclusions in Section 2.3. From Lemma 2.3.1(vi) and Theorem 2.3.2

we know that the eigenvalue 1 in the matrix G = G(1) is semisimple with

multiplicity m. Therefore [J(c)] j−1, j = 0 and 1− cλ j = 1− c, j = 2, . . . ,m.

Hence, as already acknowledged in [39][Section 3], the coefficient w[ j], j =

2, . . . ,m, is equal to vT x j = xT
j v and then

y(c) = y +
m

∑
j=2

y j(xT
j v)+

n

∑
j=m+1

w[ j]y j.

Therefore the Cesaro averaging projector N already discussed in the previous

sections has the form N = Y X∗ = [y y2 · · · ym][e x2 · · · xm]T and hence y(c) =

Nv + ∑
n
j=m+1 w[ j]y j. Moreover the eigenvalue λ j, j ≥ m + 1, is different from

1, is in modulus bounded by 1, and if unimodular then it is semisimple.

Consequently, by (2.18)–(2.19), we obtain lim
c→1

w[ j] = 0, j = m + 1, . . . ,n, so

that

lim
c→1

y(c) = Nv
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which agrees with (1.28), (2.8), and (2.9): moreover, by the general reasoning

at the end of Section 2.3, we deduce that N is entry–wise nonnegative.

Now, by taking into account the notations in (2.6) considered in Theorem

2.3.2, and by looking carefully at the expression of coefficients w[ j], j =

m + 1, . . . ,n, in (2.18)–(2.19), we can rewrite the vector y(c) as

y(c) = Nv +
n

∑
j=m+1

w[ j]y j =

= Nv +(1− c)
k

∑
j=1

n j

∑
s=1

n j+1−s

∑
t=1

ct−1(1− cν j)
−t(xT

j,sv) y j,t , (2.21)

where the vectors x j,y j, j = m + 1, . . . ,n, in the former representation, have

been reorganized according to the Jordan structure as x j,s,y j,s, j = 1, . . . ,k,

s = 1, . . . ,n j (ref Theorem 2.3.2). If we compare the latter equation with the

Toeplitz matrices (Toeplitz, i.e., constant along diagonals, see e.g. [10]) of

size n j

Jn j (ν j) =



ν j 1 0 · · · 0

0 ν j 1
. . .

...
...

. . .
. . . 0

... ν j 1

0 · · · · · · 0 ν j


,

Tn j (c) =



1− cν j −c 0 · · · 0

0 1− cν j −c
. . .

...
...

. . .
. . . 0

... 1− cν j −c

0 · · · · · · 0 1− cν j



−1

=

=
1

1− cν j



1 c
1−cν j

c2

(1−cν j)2 · · · cn j−1

(1−cν j)
n j−1

0 1 c
1−cν j

· · · cn j−2

(1−cν j)
n j−2

...
. . .

. . .
...

... 1 c
1−cν j

0 · · · · · · 0 1


,
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we observe Tn j (c) = (In j − cJn j (ν j))
−1 and therefore

n j

∑
s=1

n j+1−s

∑
t=1

ct−1(1− cν j)
−t(xT

j,sv) y j,t = [y j,1 · · · y j,n j ]T
T

n j
(c)[x j,1 · · · x j,n j ]

T v.

Hence, taking into account (2.21), we can write

y(c) = Nv +(1− c)
k

∑
j=1

[y j,1 · · · y j,n j ] · (2.22)

·(In j − cJT
n j

(ν j))
−1[x j,1 · · · x j,n j ]

T v

= (1− c)(I− cGT )−1v

which coincides with the general representation (1.15), where X =

[e x2 · · · xm], Y = [y y2 · · · ym], N = Y XT , E = Jn1(ν1)⊕ ·· · ⊕ Jnk(νk), as in

the expression (2.6), and S2 = [X1 · · · Xk], Z2 = [Y1 · · · Yk], X j = [x j,1 · · · x j,n j ],

Yj = [y j,1 · · · y j,n j ], j = 1, . . . ,k.

2.4.2 Eigenvector structure of G(c), discontinuity points in

its Jordan form

When writing the Jordan form in Theorem 2.4.1, the matrix D is chosen

as

diag(1,c, . . . ,cn−1).

However, that matrix is not unique: for instance the matrix

D̂ = Im⊕diag(1,c, . . . ,cn−m−1)

is also a feasible choice, since the Jordan structure of G(c) is equally obtained

as DJ(c)D−1 = D̂J(c)D̂−1. Indeed, following the Jordan blocks structure in

(1.15), we can define a new optimal diagonal matrix D̃ of minimal condi-

tioning with the constraint that DJ(c)D−1 = D̃J(c)D̃−1. This optimal matrix

takes the form

D̃ = Im⊕diag(1,c, . . . ,cn1−1)⊕diag(1,c, . . . ,cn2−1)⊕·· ·⊕diag(1,c, . . . ,cnk−1).

Therefore, switching from G = G(1) to G(c), while the eigenvalues change in

a smooth way since 1→ 1 with the same multiplicity m, ν j→ cν j, j = 1, . . . ,k,
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the left and right vectors change as follows

x j,t → c1−t
[
x j,t − (1− c) ct

1−cν j
e
]
, y j,t → ct−1y j,t , t = 1, . . . ,n j,

xt → xt − e, yt → yt , t = 2, . . . ,m,

x1 ≡ e→ e, y1 ≡ y→ y(1) = Nv.

Therefore, in the given representation and under the assumption of non-

diagonalizable G, the Jordan canonical form has a discontinuity at c = 0,

while it behaves smoothly at c = 1. In fact, lim
c→0

G(c) = evT is not normal in

general but it is diagonalizable, while G(c) with c 6= 0 is not diagonalizable

in general: in fact G(c) has the same Jordan pattern as G(1) for c 6= 0 while

it is diagonalizable for c = 0. Hence, as emphasized in the previous displayed

equations, it is clear that the discontinuity/degeneracy is located in the left

and right vectors associated with nontrivial Jordan blocks. Consequently

the matrix G(c) is continuous at c = 0, but it is not so for its Jordan repre-

sentation. On the other hand the other discontinuities at c = ν
−1
j , for every

j = 1, . . . ,k, are essential not only in the representations, but also in the

matrix G(c), and at the point c = 1 every involved quantity is analytic.

Finally it should be noted the following “surprising” fact: not only noth-

ing bad happens at c = 1, but indeed nothing bad happens for c > 1 (at

least, a little bit bigger than 1) and this is not seen by the power series

representations of y(c) described in the literature, which diverge for c > 1

(see [9]).

2.4.3 Condition number of y(c): general derivation

Given its relevance for numerical stability, we consider in some detail the

conditioning of y(c) in several norms and especially in the more natural l1

norm. More precisely, we are interested in estimating

κ(y(c),δ ) =
‖y(c̃)− y(c)‖
‖y(c)‖

,

with c̃ = c(1 + δ ), δ complex parameter of small modulus, K compact set

in the complex field nonintersecting {µ−1
j : j = 1, . . . ,d}, and c, c̃ ∈ K. Since

y(c) is analytic in its domain, it is clear that

κ(y(c),δ ) = κc
|cδ |
‖y(c)‖

(1 + O(δ ))
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with κc = ‖y′(c)‖. Our next task is the differentiation of y(c) in the light of

(2.22), and especially its norm evaluation. We have

y′(c) = −
k

∑
j=1

[y j,1 · · · y j,n j ](In j − cJT
n j

(ν j))
−1[x j,1 · · · x j,n j ]

T v + (2.23)

+(1− c)
k

∑
j=1

[y j,1 · · · y j,n j ](In j − cJT
n j

(ν j))
−2JT

n j
(ν j)[x j,1 · · · x j,n j ]

T v,

which of course agrees with the differentiation of (2.21), after observing that

(In j − cJn j (ν j))
−2Jn j (ν j) =

1
1− cν j



t0 t1 t2 · · · tn j−1

t0 t1 · · · tn j−2
. . .

. . .
...

0 t0 t1
t0


with ts = scs−1

(1−cν j)s +
(s+1)ν jcs

(1−cν j)s+1 , s = 0, . . . ,n j − 1. In fact, upper triangular

Toeplitz matrices form a commutative algebra and the generic coefficient

on the diagonal in the result is a simple convolution of the coefficients of the

factors. Therefore, putting the two terms of (2.23) together, we find

y′(c) =
k

∑
j=1

[y j,1 · · · y j,n j ]T̃
T

n j
(c)[x j,1 · · · x j,n j ]

T v

=
k

∑
j=1

YjT̃ T
n j

(c)XT
j v (2.24)

= Z2

[
⊕k

j=1T̃ T
n j

(c)
]

ST
2 v,

with

T̃n j (c) =
1

1− cν j



t̃0 t̃1 t̃2 · · · t̃n j−1

t̃0 t̃1 · · · t̃n j−2
. . .

. . .
...

0 t̃0 t̃1
t̃0


,

t̃s = − cs

(1−cν j)s + (1− c)
[

scs−1

(1−cν j)s +
(s+1)ν jcs

(1−cν j)s+1

]
, s = 0, . . . ,n j − 1, and with S2 =

[X1 · · · Xk], Z2 = [Y1 · · · Yk].
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Therefore looking at the dependence with respect to the parameter c we

find that κc grows generically, in a neighborhood of 1, µ
−1
j , j = 1, . . . ,d, as

max
j=1,...,k

∣∣∣∣∣ t̃n j−1

1− cν j

∣∣∣∣∣ , t̃n j−1

1− cν j
=[

z1(1− cν j)
−n j + z2(1− cν j)

−n j−1(1− c)
]

cn j−2, (2.25)

z1 = (n j − 1)(1− c)− c, z2 = cν jn j, which agrees with the estimate in the

introduction (see (2.39)–(2.40)). More precisely, for almost every v nonneg-

ative and with unit l1 norm, there exists a positive constant θ = θ(S,v),

independent of c, such that

κc ≥ θ max
j=1,...,k

∣∣z1(1− cν j)
−n j + z2(1− cν j)

−n j−1(1− c)
∣∣ |c|n j−2. (2.26)

In fact by elementary measure theory argument, the set of all possible v such

that xT
j,sv = 0 for at least one index j = 1, . . . ,k and one index s = 1, . . . ,n j

has zero Lebesgue measure. On the other hand, taking into account (2.24),

a direct majorization of the quantity κc leads to

κc ≤
k

∑
j=1
‖Yj‖‖T̃ T

n j
(c)‖‖XT

j v‖

and to the more appealing

κc ≤ ‖Z2‖ · ‖⊕k
j=1 T̃ T

n j
(c)‖ · ‖ST

2 v‖. (2.27)

If we take reasonable norms as the lp norms with p∈ [1,∞], then by recalling

G = G(1) = SJS−1 and since S2,Z2 are submatrices of S,S−1 respectively, the

bound in (2.27) directly implies the following

κc ≤ κ(S) max
j=1,...,k

∥∥∥T̃ T
n j

(c)
∥∥∥‖v‖. (2.28)

In other words, the first part which does not depend on c, tells us that the

conditioning of y(c) can be associated with the (lack of) orthogonality of

the left and right vectors in the Jordan form of G not associated with the

eigenvalue 1, while the second part carries the information on the parameter

c. Notice that the generic, lower, and upper bounds in (2.25)–(2.28) are

all well defined also at c = 1, and indeed the latter improves the estimates
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known in the literature, where, for 0≤ c < 1, the amplification factor upper–

bound grows as (1− c)−1 and blows up at c = 1: see [30] and references

there reported; however, it has to be pointed out that these estimates in

[30] are more general since they are based on an arbitrary perturbation G̃ of

G = G(1) subject to the only constraint that G̃ is irreducible and stochastic.

Furthermore, for c in the unit disk and far away from c = 1, the obtained

amplification factor is simpler and more useful, i.e., (1−|c|)−1 + |1− c|(1−
|c|)−2 which reduces to 2(1− c)−1 for 0≤ c < 1: therefore our more detailed

analysis is of interest essentially in the vicinity of critical points c = µ
−1
j ,

j = 1, . . . ,d, c = 1, all outside or on the frontier of the unity disk.

2.4.4 Condition number of y(c): norm analysis of T̃ T
n j

(c)

A critical analysis of (2.28) shows that the quantities κ(S) and ‖v‖ are

fixed data of the problem (G = G(1) and v); in particular, since ‖v‖1 = 1 and

‖ · ‖p ≤ ‖ ·‖1, p ∈ [1,∞], we uniformly have ‖v‖p ≤ 1. Hence we should focus

our attention on
∥∥∥T̃ T

n j
(c)
∥∥∥, j = 1, . . . ,k.

For instance, by considering the l1 and the l∞ norms, we have

∥∥∥T̃ T
n j

(c)
∥∥∥

1
=
∥∥∥T̃ T

n j
(c)
∥∥∥

∞

=
n j−1

∑
s=0

∣∣∣∣ t̃s
1− cν j

∣∣∣∣ ,
which grows as

t̃n j−1

1−cν j
, for c in a neighborhood of µ

−1
j . However, |µ−1

j | ≥ 1

while, especially for computational purposes, we are more interested in the

behavior of the conditioning for c of modulus at most 1.

In such a case, independently of the chosen norm among l1, l2, l∞, we

observe the following: for c such that |1−cν j|< |c|, the conditioning of T̃ T
n j

(c)

grows exponentially with the size n j of the Jordan blocks; of course, also for

Jordan blocks of moderate size, the conditioning can become very high.

For |1− cν j| = |c|, it is clear that the conditioning grows as n2
j which can

become large only for quite high–dimensional Jordan blocks. For |1−cν j|>
|c| the situation is very interesting because, irrespectively of the size n j the

conditioning is bounded. Indeed, by looking at the induced l2 (the spectral

norm), classical results on Toeplitz operators (see the Szegö distribution

result in the classical Böttcher, Silbermann book [10]) tell us that there
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exists a proper function g j,c(t) defined on [0,2π)∥∥∥T̃ T
n j

(c)
∥∥∥

2
≤ ‖g j,c(t)‖∞, lim

n j→∞

∥∥∥T̃ T
n j

(c)
∥∥∥

2
= ‖g j,c(t)‖∞.

That function g j,c(t) called symbol is obtained through the coefficients of

T̃n j (c) in the sense that these coefficients are Fourier coefficients of g j,c(t).

In our specific setting a straightforward computation shows that the symbol

g j,c(t) is

∂

∂c
(1−c)(1−c[ν j +exp(−it)])−1 = (ν j−1+exp(−it))(1−c[ν j +exp(−it)])−2, i2 =−1.

Therefore the quantity

max
t∈[0,2π)

∣∣(ν j−1 + exp(−it))(1− c[ν j + exp(−it)])−2∣∣
represents a tight measure, irrespectively of n j, of the contribution of T̃ T

n j
(c)

to the conditioning of y(c) in l2 norm. In this context a tight measure of the

l1 norm would have been more desirable, since the l1 norm represents the

most natural choice for the problem at hand.

2.4.5 Condition number of y(c): extremal examples

Here we are interested in showing two extremal examples taken from

very structured Web graphs. The Web graph is the one produced by a

unique huge loop: page i links only to page i + 1, i = 1, . . . ,n− 1, page n

links only to page 1; since the set of dangling nodes is empty the matrix

G = G(1) is a special cyclic permutation matrix which generates the algebra

of circulants. Circulant matrices are normal and diagonalized by the discrete

Fourier transform so that in the Jordan form we have x j = f j, y j = f̄ j with

f j =
1√
n

(
exp
(
− i2π jk

n

))n−1

k=0
, j = 0, . . . ,n−1.

The eigenvalues of G = G(1), accordingly to the same ordering of the Fourier

eigenvectors, are ω j = exp
(
− i2π j

n

)
, j = 0, . . . ,n−1 (the n roots of unity). We

notice that e, the used vector of all ones, coincides with
√

n f0. Therefore if

the rank–one correction is chosen with v = e/n = f0/
√

n, then evT is also a

circulant matrix. In this specific example the computed vector y(c) coincides
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with v independently of c and therefore kc = 0. Therefore for this given graph,

the chosen vector v lies in the zero measure set excluded when deriving (2.26).

In fact, for this graph and for this vector v we have that the vectors x j,

j = m+1, . . . ,n, m = 1, are all orthogonal to v and then the whole expression

in (2.23) trivially vanishes.

More delicate is to try to satisfy (2.28) with equality. For important

examples the estimate is not tight, but it is not too bad at least in a neigh-

borhood of c = 1. Take the above graph, consider v = e1 with c = 1. In such

a case the estimate (2.28) of κ1 gives

|1−ω1|−1 =
[
|1− cos(2π(n))|2 + sin2(2π/n)

]−1/2 ∼ n/2π.

A direct computation of y′(c) at c = 1 gives the expression

y′(1) =−
n−1

∑
j=1

f̄ j(1−ω j)
−1( f T

j e1)

Since f̄ j, j = 1, . . . ,n− 1, are orthonormal and since | f T
j e1| = 1/

√
n it easily

follows that

‖y′(1)‖2 =

√√√√n−1

∑
j=1

(
√

n|1−ω j|)−2 ∼
√

n

√√√√n−1

∑
j=1

(2π j)−2

so that the real l2 norm of y′(c) differs, asymptotically, from the bound (2.28)

by a factor
√

n.

2.5 Computational suggestions

The spectral structure of G(c) was first comprehended in the context

of sophisticated results about Markov chains, which required that c ∈ [0,1)

and v≥ 0. We now know that the spectral (indeed, the Jordan, Schur etc.)

structure of G(c) follows from basic matrix analytic facts that permit both

c and v to be complex. This new freedom in the Google perturbation is

exploited to compute the PageRank more efficiently, especially when c is

close to 1 or even equal to 1.

The algorithms that we propose have to be regarded as a preliminary

step that, in our opinion, merits further research.
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We choose p small integer number (let us say p = 10) and we compute

y(c j), j = 0, . . . , p− 1, at equally–spaced points c j, j = 0, . . . , p− 1, on the

complex circle of radius (let us say) 0.5 or 0.25. The computations are ex-

tremely fast since the standard power method at the kth iteration converges

with a relative reduction error of at least |c|k (see [22, Chapter 7, p. 330]),

which is independent of the huge size of the problem; indeed, the nature of

our data permits us to use a vector–valued DFT procedure, whose numerical

stability is excellent. We employ these p vectors as a starting point for a

specific extrapolation algorithm at c = 0.85 or c = 0.99, whose details are

given in [15, 13]. The idea is to use the expansion of y(c) around c = 1 as

in (2.13) with γ = c + 1 or as in (2.7) or as in (2.18)–(2.20), and to employ

linear combinations in order to cancel out certain terms in the remainder

y(c)− ỹ, ỹ = y(1) = Nv, and to increase the accuracy; see [12, Chapter 4]

for details. The vector ŷ(c), computed by extrapolation, will be corrupted

by errors of approximation and due to roundoff: therefore, since we know

in advance that y(c) has to be nonnegative and normalized, we set to zero

the real part whenever negative and the imaginary part, and we normalize

the resulting nonnegative vector, by dividing by its l1 norm (in this case

the sum of all the coefficients). Finally we can use a standard iterative pro-

cedure (the power method or iterative techniques for an equivalent linear

system [28, 32, 18, 27]) as an iterative refinement to increase the precision.

We remind that computing the PageRank with c = 0.99 or 1 is very difficult

by straightforward techniques, due to slow convergence or even to lack of

convergence for c = 1; see [18] and references therein, and [31, Section 6.1]

for a specific discussion on the case c = 0.99.

All this comprises a new scheme to compute the PageRank, with c equal

to 1 or very close to it, is:

• Step 1: Compute y(c j), c j = 0.25·exp(i2 jπ/p), i2 =−1, j = 0, . . . , p−1

(Evaluation via vector DFT ).

• Step 2: Vector Extrapolation at the desired (difficult) c ≈ 1 (e.g. c =

0.85, c = 0.99, c = 1) to obtain ŷ(c).

• Step 3: Project ŷ(c) into the nonnegative cone and do l1 normalization.
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• Step 4: Apply Iterative Refinement by classical procedures. Since

c≈ 1, it is advisable to use preconditioning and Krylov techniques, see

[18].

We finally remark that the complex Google setting implicit in Section 2.3

is useful not only for matrix theoretic purposes, but also for computation;

all the needed formulae (also those in Theorem 2.4.1, see also [39]) are well

defined for c in the open unit disk and in a proper disk around c = 1. In

fact it will be interesting to see whether an algorithm that exploits complex

parameters will work well in practice and will enhance the numerical stability

as expected. The results of numerical experiments for n of moderate size have

been promising. See also [14] for a successful numerical experimentation with

real parameters.

A second simpler and maybe more promising possibility comes from look-

ing at the power series in (2.13). The idea is the following: we can zero out

the first–order term by forming y(+γ) + y(−γ). We can zero out the first

and second order terms by forming this sum with γ replaced by ±iγ, and

so on. This looks appealing, but the practical problem is that it requires

solution of some large linear systems in a parameter range where the power

method diverges. The equations certainly have solutions and can be com-

puted by Krylov techniques (see [18]), but they cannot be obtained by the

power method.

2.5.1 Comments on the “ideal” PageRank vector ỹ

First we look at the PageRank problem as an ill–posed problem and

we draw some analogies with another famous case of ill–posedness, i.e., the

image restoration problem [3, Chapter 1]. Then we provide an interpretation

on the vector ỹ, the limit as c tends to 1 of our regularized solutions y(c).

When one considers the pure Google matrix with c = 1, i.e., problem

(2.3), finding the PageRank (that is, a nonnegative left 1–eigenvector whose

entries sum to one) is an ill–posed problem (according to Hadamard [20,

Section 2, p. 31]): infinitely many solutions exist and they can all be de-

scribed as convex combinations of basic nonzero, nonnegative vectors Z[i],

i = 1, . . . ,m [39, Section 4], where m is the multiplicity of the eigenvalue 1
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of G, i.e., the number of irreducible components of the Markov chain repre-

sented by G (see e.g. [23]). These basic vectors are somehow local or sparse

in the sense that they have a huge number of zero entries: in fact, the reason

of such a locality relies on the fact that any Z[i], i = 1, . . . ,m, is associated

with a single irreducible component of G. On the other hand, when we con-

sider instead G(c) with a parameter c ∈ [0,1) (or c in the complex open unit

disk), we make a sort of regularization that forces stability of the associated

numerical problem and uniqueness of the solution. Furthermore, just as in

the image restoration problem, our ill–posed problem requires nonnegativity

of the solution: in this direction, we may ask if classical procedures used to

solve the image restoration problem can be adapted to the PageRank com-

putational problem. Indeed, concerning the algorithm sketched in Section

2.5, we already exploited this similarity in the regularization Step 1 and in

the limit process in Step 2, while we borrowed Step 3 again from standard

image restoration techniques. Pushing further this reasoning, we may ask

in addition if the SPAM pages [31, Section 9.2] can be considered as a noise

disturbance, whose effect has to be diminished or eliminated.

Finally let us briefly mention some features of the vector ỹ. Indeed,

in the limit as c tends to 1, we obtain a special convex combination of

nonnegative solutions, but it is much less local: it has a larger support

(i.e. the set of indices related to nonzero entries), which clearly depends on

the personalization vector v, since ỹ = Nv with N being the Cesaro averaging

projector. For the modeler, this is a good thing, since all of the Web is taken

into account, not just a smaller irreducible subset as in the local vectors Z[i],

i = 1, . . . ,m. The nature of the dependence of the support on v is not yet

completely understood and deserves further investigation. However, even

the vector ỹ in the real Web shows still a huge number of components with

zero ranking; not only this, but many of these pages with zero PageRank

are quite important according to common sense, see [9] and the discussion

and the new proposals of Section 2.2.
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2.5.2 A plain alternative for computing ỹ = lim
c→1

y(c)

Here we make a plain algebraic modification of the matrix G in such a

way that the set of solutions identified by (2.3) remains the same, but the

power method converges unconditionally.

The main idea is to modify the row stochastic Google matrix G via a

convex sum with the matrix I and more precisely for δ ∈ (0,1) we set

Gδ = δG +(1−δ )I.

We apply the power method to this new matrix Gδ , that has λ1(δ ) = 1

as spectral radius and eigenvalue of (geometric and algebraic) multiplicity m

and |λ j(δ )|< 1 for every m+1≤ j≤ n. Therefore we will observe convergence

with an asymptotical rate given by

max
j∈{m+1,...,n}

|λ j(δ )|< 1. (2.29)

Of course the strictly dominating eigenvalue 1 will have an algebraic multi-

plicity and geometrical multiplicity m≥ 1 as in (2.3). So the power method

will give back an eigenvector that is function of the initial choice x0, but,

may be surprisingly, not depending on the parameter δ .

An important question arises: how to choose x0 for which the solution

of the power method applied to Gδ coincides with ỹ = lim
c→1

y(c)?

The interesting fact is that Gδ = NT +Rδ where any eigenvalue of Rδ is of

the form 1−δ +δλ j, j = m+1, . . . ,n, N is the nonnegative projector given in

(2.21) and previously described, and the λ j’s are the eigenvalues of the pure

Google matrix G. We know that |λ j| ≤ 1 and λ j 6= 1 for j = m+1, . . . ,n. Hence

for any δ ∈ (0,1) we have |1−δ +δλ j|< 1 for j = m+1, . . . ,n. Consequently

the unique solution of the power method applied to GT
δ

with starting vector

x0 is exactly Nx0. We notice that if x0 is strictly positive then every iterate

is also strictly positive but many of the entries of the limit vector could be

zero. Therefore for computing numerically ỹ = lim
c→1

y(c) = Nv it is sufficient

to set δ ∈ (0,1) and to apply the power method to GT
δ

with initial guess

v. As already observed the convergence is unconditional, but the speed of

convergence depends on δ . In conclusion a proper choice of δ for maximizing

the convergence rate of the power method is an interesting issue that we

discuss in the next Subsection.
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2.5.3 Rate of convergence of the power method

As we will see the matrix Gδ with eigenvalues λ j(δ ) is such that the

power method shows a rate of convergence given by (2.29): now we allow

the value δ = 1, i.e., we consider δ ∈ (0,1]. The question is which eigenvalue

λ j(δ ) is of maximal modulus for j ∈ {m + 1, . . . ,n}, with n size of Gδ , and

how to choose δ in order to maximize the rate of convergence. We know

that for δ = 1 every eigenvalue λ j(1) = λ j that lies on the unit circle in the

complex plane has a maximal modulus. In this case there is no convergence

since |λ j|= |eiϕ |= 1 for some j ≥ m + 1, ϕ ∈ R.

In general for λ ∈ {λm+1, . . . ,λn} we set λ = reiϕ and then, since λ j 6= 1 for

j ∈ {m+1, . . . ,n} (i.e. we cannot have simultaneously r = 1 and cos(ϕ) = 1),

we find

λ j(δ ) = δλ j + 1−δ = δ r cos(ϕ)+ 1−δ + iδ r sin(ϕ).

Hence

|λ j(δ )|2 = δ
2r2 cos2(ϕ)+ δ

2r2 sin2(ϕ)+(1−δ )2 + 2δ r(1−δ )cos(ϕ)

= δ
2r2 +(1−δ )2 + 2δ r(1−δ )cos(ϕ)

≤setting cos(ϕ)=1 δ
2r2 +(1−δ )2 + 2δ r(1−δ )

= (δ r + 1−δ )2

≤setting r=1 (δ + 1−δ )2 = 1

and where equality to 1 is impossible since we cannot have at the same time

r = 1 and cos(ϕ) = 1. This proves the unconditioned convergence of the

power method for δ ∈ (0,1).

This result can be seen also graphically (ref Fig. 2.2) since for δ ∈ (0,1)

all the eigenvalues λ j(δ ) with j ∈ {m+1, . . . ,n} lie in the disc with boundary

given by Cδ/{1}.
Now the question is how to maximize the rate of convergence i.e. how

to choose δ ∈ (0,1] for minimizing s(δ ) = max
j∈{m+1,...,n}

|λ j(δ )|. This translates

into a typical min–max problem:

ĝ≡ min
δ∈(0,1]

max
j∈{m+1,...,n}

[
δ

2r2
j +(1−δ )2 + 2δ r j(1−δ )cos(ϕ j)

]
(2.30)
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with λ j(1) = λ j = r jeiϕ j . Indeed for δ = 0, Gδ = I and therefore s(0) = 1 so

that the minimum exists in the set (0,1] and is located in the open set (0,1)

if, as it usually happens for large Web matrices, at least one r j equals 1 for

j ≥ m + 1.

Looking at the function δ 2r2
j +(1−δ )2 +2δ r j(1−δ )cos(ϕ j) as a function

of the radius r j we notice that it is increasing for δ ∈ (0,1) and cos(ϕ j);

moreover, setting x j = r j cos(ϕ j) the real part of λ j, the same function δ 2r2
j +

(1− δ )2 + 2δ (1− δ )x j as a function of x j is increasing again for δ ∈ (0,1).

Therefore, if x̄ is the maximal real part of the eigenvalues λ j, j = m+1, . . . ,n,

then it is evident that |x̄|< 1 and

fx̄(δ )≡ δ
2 +(1−δ )2 +2δ (1−δ )x̄≥ max

j∈{m+1,...,n}
δ

2r2
j +(1−δ )2 +2δ r j(1−δ )cos(ϕ j)

so that, by minimizing fx̄(δ ) with respect to δ , we find δopt = 1/2 and the

upper–bound

ĝ≤ fx̄(1/2) =
1
2

(1 + x̄) ∈ [0,1). (2.31)

Finally, if the eigenvalue of Gδ coming from that of G with maximal real

part is the one maximizing δ 2r2
j +(1−δ )2 +2δ (1−δ )x j over j = m+1, . . . ,n,

then we can give interesting lower bounds that is

ĝ≥ 1
4

(1 + 2x + r2)≥ 1
4

(1 + x)2 (2.32)

and

ĝ≥ r̄2− x̄2

1 + r̄2−2x̄
, (2.33)

where r ∈ [x,1] is the modulus of the eigenvalue real part equal to x̄ and ϕ̄

its angle.

This last relation it is obtained evaluating

∂

∂δ

(
δ

2r̄2 +(1−δ )2 + 2δ x̄(1−δ )
)

= 0 (2.34)

and substituting the result

δ =
1− x

1 + r2−2x
for cos(ϕ)2 6= 1 (2.35)

in the square modulus of the eigenvalue with maximal real part, that be-

comes exactly (r̄2− x̄2)/(1 + r̄2−2x̄).
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Figure 2.2: Geršgorin circles of Gδ for δ ∈ [0,1]

These results can also be represented graphically. We start plotting in

the complex plane C1 i.e. the upper half boundary of the Geršgorin region

of matrix G (ref Fig. 2.2), since G is real we have specularity with respect

to the real axis (more details about Geršgorin regions can be found, for

example, in [24, Section 6.1]). If we consider the matrix Gδ for δ ∈ (0,1) we

get the circle Cδ . Finally, when δ = 0 the circle collapses in the point 1 on

the real axis.

We can observe that for δ ∈ (0,1) the trajectory of the generic eigenvalue

of Gδ , λ j(δ ) with j ∈ {m+1, . . . ,n}, is given by the convex combination of the

two vectors [r j cos(ϕ j),r j sin(ϕ j) ]T and [1,0 ]T . It is plain that the minimal

modulus of any of these eigenvalues is achieved for the unique δ such that

the single trajectory intersects the circumference of radius 1/2 centered in

(1/2,0). This coincides with C1/2, i.e. boundary of the Geršgorin region

associated with Gδ for δ = 1/2, that is given by the points satisfying the

relation r = cos(ϕ).

As δ varies in the interval [0,1], it is straightforward that the relative

position of the eigenvalues does not change. This means that if we suppose

to know, for a particular value of δ ∈ (0,1], the eigenvalue with maximal

real part, λh(δ ) with h ∈ {m+1, . . . ,n}, this will remain always the one with
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maximal real part for every δ ∈ [0,1].

Interesting enough we observe that given δ ∈ [0,1/2] the problem stated

in (2.30) (i.e. minimize, with respect to δ , the maximal modulus of

the eigenvalues λ j(δ ) of Gδ for j ∈ {m + 1, . . . ,n}) becomes simply ĝ ≡
max j∈{m+1,...,n} 1/4[r2

j + 1 + 2r j cos(ϕ j)] since for δ decreasing from 1/2 to 0

every eigenvalue increases its modulus. Hence we can restate (2.30) as

ĝ≡ min
δ∈[ 1

2 ,1]
max

j∈{m+1,...,n}

[
δ

2r2
j +(1−δ )2 + 2δ r j(1−δ )cos(ϕ j)

]
(2.36)

Now, assuming that we know the eigenvalue λh(1), except 1 of course,

with maximal real part x̄ = r̄ cos(ϕ̄). We draw in the complex plane the

vertical line that passes through this eigenvalue. This line intersects the C1

in A1 and the real axis in H1. For a generic δ we do the same and we get the

points Aδ and Aδ and Hδ with real part equal to δx + 1− δ . In particular

A1/2 has a minimal distance from the origin among all the possible Aδ . The

previous considerations allow us to state that the quantity ĝ∣∣OH1/2
∣∣2 ≤ ĝ≤

∣∣OA1/2
∣∣2 (2.37)

i.e. relations (2.31) and (2.32).

If we suppose that the trajectory, in function of δ , of the eigenvalue with

maximal real part λh intersects the circumference C1/2 in the point B, we

can rewrite relation (2.33) as

ĝ≥
∣∣OB

∣∣2 (2.38)

Hence if λh lies inside the circle C1/2 the above relation becomes simply

ĝ≥ r̄2. In fact if we impose in (2.35) that δ ∈ [0,1] we get r̄≥ cos(ϕ̄) i.e. the

relation (2.33) valid when λh lies outside circle C1/2.

We observe that in the light of the model proposed in Section 2.2, all

these reasonings hold. We add only that in this last case we do not have

roots of unity among the λ j for j ∈ {m +1, . . . ,n} since the graph associated

with the matrix G can be reduced into the direct sum of irreducible and

primitive blocks (ref Section 3.1). This implies that relation (2.31) becomes

a strict inequality and that the power method will converge even in the case

of δ = 1, but of course not necessarily with a maximal rate of convergence.
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Furthermore, we observe that Gδ = δG + (1− δ )I, δ ∈ (0,1], is a linear

polynomial of G with the condition that the eigenvalue 1 is a fixed point of

the transformation and the coefficients are nonnegative. If instead of Gδ we

consider any polynomial p(G) of G with nonnegative coefficients and such

that p(1) = 1, then we could have a larger degree of freedom for maximizing

the convergence rate but, of course, the already difficult min–max problem

(2.30) would become analytically very intricate. This and other issues such

as a more careful study of the min–max problem (2.30) will be the subject

of future researches.

2.6 Some comments about prior work

The eigenvalues of the standard real parametric Google matrix G(c) were

analyzed by Haveliwala and Kamvar [23] (only the second eigenvalue), Eldén

[19], and Langville and Meyer [31] (their proof is the same as that of Reams).

A different approach via the characteristic polynomial is suggested in [35,

Problem 7.1.17, p. 502]. These authors were apparently unaware of the

prior work of Brauer [11] and Reams [38].

Relying on sophisticated results about Markov chains, [39] gives an anal-

ysis of the Jordan canonical form of the standard real G(c); it also gives a

rational representation for y(c) and computes its limit as c→ 1, again in the

standard real case only. The Maclaurin series for y(c) was studied in [9],

where the partial sums of (2.12) for nonnegative real v and 0 < c < 1 were

identified as the iterates obtained in solving yT G(c) = yT with the power

method starting at v. Finally, comparing our findings with the results in

[9, 30], one important message of the present Chapter is that the point

c = 1 is not a singularity point for y(c), and hence limits and conditioning

of y(c) can be derived and safely handled, both in theory and in practical

computations.

2.7 Concluding remarks and future work

In this Chapter, more specifically in Sections 2.1–2.2, we described the

original Google model and we discussed its adherence to the reality. Patholo-
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gies and limitations of the actual model were pointed out and we proposed

some possible improvements which allow both to remove the old patholo-

gies, without introducing new ones, and to preserve the efficiency of the

original model. As a matter of fact this new model, besides being useful

in Web ranking and search engine optimization, could be of interest also

in political/social sciences in ranking, for instance, who/what is influential

and who/what is not, in ranking the importance of a paper and/or of a

researcher looking in scientific databases (see [4]) etc.

Moreover, in Sections 2.3–2.5, we presented the following results:

1. the eigenvalues of G(c), ∀c ∈ C;

2. the canonical forms of G(c), ∀c∈C such that |c|< 1 (as a matter of fact

the condition |c|< 1 can be replaced by the less restrictive (*): ∀c ∈C
such that cλ j 6= 1, j = 2, . . . ,n, being λ1 = 1,λ2, . . . ,λn the eigenvalues

of G = G(1));

3. a rational expansion for y(c), ∀c ∈ C : |c| < 1 (in fact only (*) is re-

quired);

4. for c = 1 the problem (2.3) is ill–posed, but

lim
c→ 1

(∗) holds

y(c) = lim
c→ 1−

c ∈ R

y(c) = ỹ

and ỹ is a solution of (2.3);

5. for this special solution ỹ we showed that it coincides with Nv where v is

the personalization vector and N is a nonnegative projector coinciding

with the Cesaro mean lim
r→∞

1
r + 1

r

∑
j=0

G j(1): the result is due to Lasserre,

who calls N the ergodic projector, in a context of probability theory

[33], and is known in the field of Web searching engines thanks to [8];

6. if we set y(1) = ỹ, then y(c) is analytic in a proper neighborhood

of 1 and its sensitivity κ(y(c),δ ) = ‖y(c̃)−y(c)‖
‖(y(c)‖ , c̃ = c(1 + δ ), δ com-

plex parameter of small modulus, is defined by the quantity κc where

κ(y(c),δ ) = κc|cδ |(1 + O(δ ))/‖y(c)‖ with respect to a generic induced
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norm ‖·‖; moreover, in a proper neighborhood of c = µ−1, µ belonging

to the spectrum of G = G(1) and up to a function independent of c,

the factor κc grows generically as

max
µ 6=1,µ∈σ(G(1)),n(µ)∈S(µ)

F(µ,c), (2.39)

F(µ,c) =
∣∣∣z1(1− cµ)−n(µ) + z2(1− cµ)−n(µ)−1(1− c)

∣∣∣ |c|n(µ)−2, (2.40)

with z1 = (n(µ)− 1)(1− c)− c, z2 = cµn(µ), σ(W ) denoting the spec-

trum of a given square matrix W and S(µ) denoting the set of all

possible sizes of the Jordan blocks related to the eigenvalue µ.

7. numerical procedures of extrapolation type, based on the third item,

for the computation of y(c), when c is close or equal to 1 (i.e. the limit

Cesaro vector ỹ of the fourth item and fifth item).

The results in 1) follows from Brauer’s Theorem. We discussed the proof

and we provided a short historical account in Section 2.6. Findings 2)–7)

were obtained in the more general setting of special rank one perturbations

studied in the previous Chapter. More specifically, instead of G(c) we con-

sidered A(c) := cA + (1− c)λxv∗ where Ax = λx, v ∈ Cn, c ∈ C, and v∗x = 1.

It is clear that our setting is a special instance of the latter: for example,

the existence of the limit as c tends to 1 via any complex path requires that

the eigenvalue λ is semisimple and this is the case in the Google setting.

However it is important to stress that this generality allows to clarify and

even to simplify the mathematical reasoning and the proofs of the results.

Here we report some further comments.

• The results in items 3)–4) were obtained in [39] with the constraint

that c ∈ [0,1). Moreover, item 4) shows that the parameter c acts

like a regularization parameter that stabilizes problem (for a general

treatment of regularization techniques see [20]): the nice thing is that,

as c tends to 1, we obtain a limit vector ỹ, one of the solutions of the

original problem.

• The above analysis can be attacked also by transforming the PageRank

problem into an equivalent linear system formulation (see e.g. [31]).
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In that case we write y(c) = (1− c)(I− cGT )−1v and indeed this is a

compact version of formula (2.21), used in Section 2.4 for a detailed

analysis of y(c) and of its conditioning as a function of the parameter

c.

• The algorithms that we proposed are new and are partly based on

specialized extrapolation procedures discussed in [15, 13]; moreover,

we should benefit from the choice of a complex parameter thanks to

items 2)–4) with respect to [14], especially in terms of stability.

• Another important issue is how to interpret the computed vector y(c)

when c is equal or close to 1 and how to distinguish it from the infinitely

many solutions existing when c = 1.

As a final remark, we stress that the analysis of our matrix–theoretic

oriented approach is also valid for the modified enhanced models proposed

e.g. in [1, 41] etc. or discussed here in Section 2.2. Indeed the interest

in the general matrix–theoretic analysis relies on its level of adaptability.

In fact the results and the conclusions of Sections 2.3–2.4 are virtually un-

changed if one considers a different way of handling nodes or if one allows

self–links giving raise to a different definition of G(1). Moreover, in this

context we must no forget that there exist completely different applications

[6, 29] including dynamical agents theory [34, 43], where the idea and the

computational suggestions in Section 2.5 have a lot of potential to be further

developed and studied.



Part II

Stochastic families

The consensus problem





Chapter 3

Coordination of autonomous

agents

The modelling and analysis of groups of autonomous agents and their

coordination have attracted a growing number of researchers from differ-

ent fields like physics, biology, engineering and mathematics for a couple

of decades. This is partly due to the existence of several applications of

this subject in different areas like cooperative control and formation of un-

manned air vehicles (UAVs), flocking and schooling of biological and artifi-

cial agents, attitude alignment of clusters of satellites, collaborative mobile

robots, sensor networks and congestion control in communication networks

[103, 50, 89, 46, 47].

Many models have been proposed (see [103, 46] and references therein),

nevertheless in this Chapter we focus our attention on a particular one which

is a discrete–time linear protocol, proposed by Vicsek et al. in 1995 [50],

which allows to model autonomous agents and their tendency to agree each

other through a distributed decision making process.

This tendency is typical of a wide range of biological swarming systems

like herds of quadrupeds, schools of fish, flocks of flying birds, bacterial

colonies [50] and can be found, in addition, in many artificial systems like

groups of unmanned aerial vehicles, mobile robots or networks of sensors

[103, 46].

For this model we analyze the convergence of the solution to a global
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consensus and, following Jadbabaie et al. [89], we give sufficient conditions,

based on the spectral properties of the family of stochastic matrices associ-

ated with the system, which guarantee this convergence. The model proves

to be related to the PageRank one and its analysis is based on algorithms,

developed for generic families of matrices, which we present in the next part

of the thesis.

This Chapter develops, more precisely, in the following way:

Section 3.1 is devoted to present notation, definitions and properties

about directed graphs. In Section 3.2 we recall the Vicsek model, its prop-

erties, a few theoretical results and we describe how, making use of the

so–called joint spectral radius defined in the next Chapter, we can guaran-

tee for the system to reach a global consensus. In the last part of the Section

we discuss the connections between the Vicsek and the Google model and

we present a few simulations. In Section 3.3 we study the convergence to

a global consensus of componentwise weakly connected networks with fixed

topology and we give alternative proofs for a few Theorems presented in the

literature. The Chapter concludes with final remarks and future work.

3.1 Notation and definitions

We start with a quick survey of basic definitions and notions used in this

Chapter.

Given two sets A and B, with the expression B\A we denote the set–

theoretic difference of B and A, i.e. the set of elements which are in B, but

not in A

B\A =
{

x ∈ B
∣∣∣x /∈ A

}
. (3.1)

3.1.1 Definition (Permutation matrix). A matrix P ∈ Rn×n , is called a

permutation matrix if exactly one entry in each row and column is equal to

1, and all other entries are 0.

For every permutation matrix PTP = PPT = I i.e. P−1 = PT [24].

Note that from now on we make use of the letter e to represent the

column vector of all ones, e = [1 1 · · · 1]T .
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3.1.2 Definition (Digraph). A weighted directed graph G (shortly

weighted digraph) of order n is uniquely defined by G = (V ,E ,A), where

V is the set of n vertices/nodes of the graph V = {v1, . . . ,vn}.

E is the set of directed edges between nodes of the graph such that

E = {ei j} ⊆ V ×V , with ei j the edge given by ei j = (vi,v j).

A is the weighted adjacency matrix A = [ai j]
n
i, j=1, where each entry is called

weight or cost. The structure of A derives from E in the following way:

the entry ai j is a positive value (cost or weight) if the corresponding

edge ei j belongs to the set E , 0 otherwise.

It is possible to define also a digraph without specifying the weights. In this

case we have simply a so–called digraph which is identify using the set of

vertices V and edges E , G = (V ,E ). In this latter case the weights are all

1′s and 0′s, therefore, the adjacency matrix A = [ai j] is such that ai j = 1 if

the directed edge ei j between vi and v j belongs to E , 0 otherwise.

The digraph is simple if there are no self–loops (aii = 0 for all i = 1, . . . ,n)

and repeated edges (E contains only distinct elements i.e. there is no more

than one directed edge between any two different and ordered vertices).

The neighborhood of a node/vertex vi is denoted by Ni and it is defined

as the set of the indices of all the nodes with which vi is linked to

Ni =
{

j ∈ {1, . . . ,n}
∣∣∣ (vi,v j) ∈ E

}
(3.2)

the corresponding nodes are called neighbors of vi.

A path in G is a sequence of vertices such that from each of these vertices

there is an edge to the next vertex in the sequence.

We mention for completeness that an undirected graph or simply graph is

defined exactly like a digraph, but with edges that are all undirected. So the

adjacency matrix A associated with an undirected graph is always symmetric

and the ordering of the nodes in an edge does not matter. In an undirected

graph G , two vertices vi and v j are connected if G contains a path from vi

to v j, otherwise they are disconnected. If the two vertices are additionally

connected by a path of length 1, i.e. by a single edge, the vertices are
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defined adjacent . An undirected graph is said to be connected if all the

vertices in the graph are connected each other. A connected component of

an undirected graph G is a maximal connected subgraph of G . Each vertex

and each edge belongs to exactly one connected component of G .

Instead, a digraph G is strongly connected if and only if for every ordered

pair of nodes (vi,v j), with i 6= j, there exists a sequence of directed edges,

a so–called directed path, leading from vi to v j.It is weakly connected if

replacing all of its directed edges with undirected edges produces a connected

(undirected) graph. A strongly connected component or strong component

is a maximal strongly connected subdigraph of G i.e. a maximal subset of

strongly connected nodes. A digraph is componentwise weakly connected if

all the strong components are only weakly connected each other. From now

on we consider always digraph, if not differently stated.

Given G = (V ,E ,A) the subset X ⊆ V is a stable set if ∀vi ∈X it does

not exist any edge ei j ∈ E such that v j ∈ V \X . A stable set X is minimal

if it does not exist any stable set Y such that Y ⊂X or, equivalently, it is

minimal if by passing any node from X to V \X the remaining set X is

no more stable.

Given G = (V ,E ,A) and Y ⊆ V , the subdigraph induced by Y on G is

G̃ = (Y ,EY ,AY ) where EY =
{

ei j ∈ E
∣∣∣ vi,v j ∈ Y

}
, and AY is the submatrix

formed by selecting the i rows and columns of A with i indices of the nodes

in the subset Y .

It is easy to prove the following Lemmas

3.1.3 Lemma. Each stable set contains minimal stable sets. The intersec-

tion of stable sets is stable. Two minimal stable sets are always disjoint.

3.1.4 Lemma ([44, Lemma 2]). Given G = (V ,E ,A) with X ⊆V a minimal

stable set, then the subdigraph induced by X on G is strongly connected.

3.1.5 Definition. Given G = (V ,E ,A) and a node vi ∈ V , we define its

in–degree degin(vi) and out–degree degout(vi) as

degin(vi) =
n

∑
j=1

a ji and degout(vi) =
n

∑
j=1

aij (3.3)
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So the in–degree is related to the set of ingoing edges to node vi while

the out–degree to the outgoing ones.

For G = (V ,E ), digraph with adjacency elements–weights 0/1, we have

that degout(vi) = |Ni|, where |Ni| is the cardinality of Ni.

3.1.6 Definition. The degree matrix of the weighted digraph G is a diagonal

matrix

D =


d11 0

. . .

0 dnn

 (3.4)

where di i = degout(vi) for every i ∈ {1, . . . ,n}.

3.1.7 Definition. The graph Laplacian associated with the weighted simple

digraph G = (V ,E ,A) is defined as

L = D−A. (3.5)

with D the degree matrix of G .

We observe that, by definition, every row sum of the graph Laplacian

matrix is zero, therefore, the Laplacian matrix always has a zero eigenvalue

corresponding to the right eigenvector e and rank(L)≤ n−1.

3.1.8 Definition. The Perron matrix P of a weighted simple digraph G =

(V ,E ,A) is defined as

P = I−∆ tL. (3.6)

with L the graph Laplacian of G and ∆ t the step–size or time interval.

Let us consider values {θi}n
i=1, associated with each node/agent i, which

represent a physical quantity like position, direction, temperature, voltage

etc.

We define the pair (G ,θ) as an algebraic graph or network where θ ∈Rn

and the topology is given by the weighted digraph G .

We say that two nodes, vi and v j, agree in a network if and only if θi = θ j.

The nodes of a network reach a global consensus if and only if θi = θ j for

every i, j ∈ {1, . . . ,n}.
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As recalled in Section 1.1 a square matrix A is row–stochastic if it has

real nonnegative entries and each row entries add up to 1; A is column–

stochastic if AT is row–stochastic. We say that A is stochastic if it is either

row–stochastic or column–stochastic. The row–stochasticity of A can be

formulated also as Ae = e, hence e is a right eigenvector of A associated with

the eigenvalue λ = 1 and span{e} is an invariant subspace of A. It follows

from Lemma 2.3.1 that the spectral radius is ρ(A) = 1 (ref Section 4.1). It is

easy to prove that the sets of row–stochastic and column–stochastic matrices

are both closed under multiplication.

3.1.9 Definition (Ergodicity). Any stochastic matrix A for which limi→∞ Ai

is a matrix of rank one is defined to be an ergodic matrix.

3.1.10 Definition (Irreducibility and primitivity). A nonnegative matrix A

is defined irreducible if and only if, considering A as the adjacency matrix

of a weighted digraph G , G is strongly connected.

A nonnegative, irreducible matrix A having only one eigenvalue on its

spectral circle is said to be primitive, only one eigenvalue has the same

modulus of ρ(A). If, instead, there are h > 1 eigenvalues with modulus equal

to ρ(A), A is said to be imprimitive or cyclic and h is said to be the period

of A, or the index of imprimitivity, or also the order of cyclicity .

It is possible to prove that A is primitive if and only if Am > 0 for some

m > 0 (Frobenius’ Test [35]). We recall also a sufficient condition for the

primitivity

3.1.11 Proposition ([35, Example 8.3.3]). If an irreducible nonnegative

matrix A has at least one positive diagonal element, i.e. trace(A) > 0, then

A is primitive.

The Perron–Frobenius Theorem allows us to state that an irreducible

nonnegative matrix A has a unique eigenvalue λ exactly equal to the spectral

radius of the matrix, λ = ρ(A), and it is the only eigenvalue possessing a right

eigenvector with all positive entries, this is said to be the Perron vector (see

[35, Section 8.3] for a survey on both irreducible matrices and this Theorem).

Therefore an imprimitive matrix A, since by definition it is irreducible and
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nonnegative, has one eigenvalue exactly equal to the spectral radius and

h−1 eigenvalues with modulus equal to ρ(A).

We conclude the Section proving that

3.1.12 Proposition. If a matrix A is primitive stochastic, then it is ergodic.

Proof. It suffices to consider the similarity transformation that reduce A to

its Jordan canonical form. Supposed A row–stochastic, otherwise we consider

the transpose, we have

A = SJS−1 =
[

e S1

][ 1 0

0 B

][
yT

ZT
1

]
(3.7)

where e and y are the Perron vectors of A and AT respectively, while B is given

by the direct sum of the Jordan blocks associated with all the eigenvalues

of A except 1. Since the matrix is primitive stochastic we have that all the

eigenvalues of B are strictly less than 1 in modulus. So

lim
n→∞

An = S
(

lim
n→∞

Jn
)

S−1 =
[

e S1

][ 1 0

0 0

][
yT

ZT
1

]
= eyT (3.8)

3.2 Vicsek model and the consensus problem

3.2.1 The model

The discrete–time model proposed by Vicsek et al. [50] allows to rep-

resent a leaderless coordination system: given n agents/particles, which we

identify using a number from 1 to n, that move freely on the plane, we con-

sider at time t = 0 that all the agents are randomly distributed, they have

the same absolute velocity v and they move in a random direction. The set

Ni(t) contains the indices associated with the neighbors of agent i at time t

which are all the agents that are inside a circle of radius r, value arbitrarily

chosen and equal for all the agents, centered in [xi(t),yi(t)], position of agent

i at time t. We define θi(t) as the direction/angle in which agent i is moving

at time t, with respect to a direction of reference, and we assign the initial

direction θi(0), for every i ∈ {1, . . . ,n}. The evolution of the whole system is



76 Coordination of autonomous agents

considered in discrete time, the time interval ∆ t, between two consecutive

time steps, is fixed for simplicity to 1. θi(t + 1) is the updated direction of

agent i at time step t + 1 and is obtained taking a weighted average of its

own direction and the directions of its neighbors at time step t, as described

in the following evolution equation

θi(t + 1) =
θi(t)+ ∑ j∈Ni(t) wi j(t)θ j(t)

1 + ∑ j∈Ni(t) wi j(t)
for i = 1, . . . ,n. (3.9)

the denominator is intended for normalization. Values wi j represent the

weights we use in averaging, the simplest choice is to consider an not–

weighted digraph i.e. all the weights equal 1 or 0.

The position of every agent changes according to the intuitive law[
xi(t + 1)

yi(t + 1)

]
=

[
xi(t)

yi(t)

]
+

[
vcos(θi(t))

vsin(θi(t))

]
∆ t (3.10)

where ∆ t = 1. Collisions are not taken into account in this model, in fact,

two agents are allowed to occupy the same position at the same time. Fur-

thermore Vicsek et al. added into (3.9) an extra term ∆θ , a random number

which simulate the presence of an external disturbance. We are not go-

ing to consider noise terms in our study, but we observe that it is possible

to take account of this extra term simply inserting one or more phantom

agents/nodes in the system, updating their directions randomly at every

step without applying equation (3.9) and considering these phantom agents

as neighbors of the actual agents of the system.

As we said the autonomous agents do not follow a leader, they just

consider the behavior of their neighbors and change direction consequently.

Despite its simplicity, this model is able to represent a nontrivial behavior:

the emergence of the so–called consensus. For the model just described to

reach the consensus means that there is a kinetic phase transition from no

net–transport (each agent moves in a random direction determining a mean

direction for the system that is around zero) to finite net–transport (the

majority of the agents move in the same direction determining a non zero

mean direction).

We observe that this model turned out to be a special version of a model

introduced a few years before by Reynolds [48] for the visual simulation in
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the animation industry of flocking and schooling behaviors, but also can

be interpreted as a linear approximation of the Kuramoto equation [45]

which models a population of oscillators with sinusoidal coupling terms.

Coupled oscillators are, for instance, orbiting planets, pacemaker cells in

human heart, flashing fireflies; they have several applications in physics and

engineering (we suggest the enjoyable popular scientific book on this topic

“Sync: The Emerging Science of Spontaneous Order” by Strogatz [49]).

The system of n agents and their connectivity can be described by

means of a weighted simple digraph G = (V ,E ,A): the agents can be seen

as the vertices vi ∈ V , the communications between agents are the edges

ei j = (vi,v j) ∈ E and the neighbors of an agent are the neighbors of the cor-

responding vertex (recall Definition 3.1.2). We observe that the information

flow in a flock is typically not bidirectional that is way we consider digraphs

for the consensus problem. Since the topology of the network of agents goes

through changes that are discrete–event in nature (like links failure and

creation or nearest neighbors coupling) we allow for time–dependent com-

munication patterns i.e. we consider a dynamic graph G (t) = (V ,E (t),A(t))

with time–varying adjacency matrix and set of edges. The adjacency matrix

A(t) = [ai j(t)]ni, j=1 is such that ai j(t) = wi j(t), for i, j = 1, . . . ,n, with wi j the

weights which appear in (3.9).

Let us define the evolution matrix

Fi t = [ fhk(t)]nh,k=1= (D(t)+ I )−1 (A(t)+ I ) (3.11)

where i t is an index belonging to the finite or infinite set I , I is the identity

matrix and D(t) is the degree matrix associated with the weighted simple

digraph (recall Definition 3.1.6). Therefore

fhk(t) =


1

1+∑ j∈Nh(t) wh j(t)
if k = h

whk(t)
1+∑ j∈Nh(t) wh j(t)

if k ∈ Nh(t)

0 otherwise

Note that the evolution matrix Fi t is not necessarily symmetric since the

graph is directed, but it is row–stochastic by construction.

We can now rewrite the evolution equation (3.9) in matrix form

θ(t + 1) = Fi t θ(t) (3.12)
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where θ(t) = [θ1(t), . . . ,θn(t)]T .

As an example we consider the following toy simple digraph with fixed

topology which describe, for instance, three sensors that measure the

temperature θ(t) of a chamber and have to agree on a common measure

1GFED@ABC

2GFED@ABC
3GFED@ABC

4

�� 1

AA

0,5 ++WWWWWWWW

The adjacency matrix associated with this digraph is

A =


0 4 0

1 0 0,5

0 0 0

 (3.13)

and, consequently, by (3.11) the evolution matrix F is

F =


0,2 0,8 0

0,4 0,4 0,2

0 0 1

 (3.14)

If we choose as initial state θ(0), the state of the system at time t is given

by

θ(t) = F t
θ(0). (3.15)

However, in many practical problems the position of each agent changes

following equation (3.10) and, consequently, the relations between the agents

change with time . So, in general, we deal with a linear time–varying system:

the connectivity G (t) of the digraph evolves over time and the evolution

matrix Fi t is likely to change at every time step. We define F =
{

Fj
}

j∈I as

the set of all possible evolution matrices Fi t associated with the system of

autonomous agents.

In order to describe completely this system we should include in our

model also equation (3.10) and evaluate Fi t in function of the position in the

plane of each agent at time t. While such relation is easy to derive and is
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essential for simulation purposes, it would be difficult to take into account

it in a convergence analysis. That is why, following Jadbabaie et al. [89], we

ignore this dependence and assume instead that the system evolves following

a random sequence i t which takes values in the set of indices I . The aim is

to find sufficient conditions which ensure a consensus among all the agents

lim
t→∞

θ(t) = lim
t→∞

Fi t ·Fi t−1 · . . . ·Fi1 ·Fi0θ(0) = eθcons. (3.16)

for any possible sequence of indices i t ∈ I and for any initial set of agent

headings θ(0).

About the fixed topology case, the following Proposition is about the

convergence to a global consensus of a directed network with strong connec-

tivity and, in Section 3.3, we present a few Theorems concerning the case of

a digraph componentwise weakly connected, always with fixed topology, and

we provide for them alternative proofs to those presented in the literature.

3.2.1 Proposition. Assume G = (V ,E ,A) is a not time–varying and

strongly connected weighted digraph, consider the associated network of

agents with evolution equation given by (3.12) where Fi t = F for every t ≥ 0.

Then, equation (3.12) globally asymptotically solves a consensus problem for

any initial set of agent headings θ(0), i.e. equation (3.16) holds true for

θcons = yTθ(0), where y is the Perron vector of the irreducible and nonnega-

tive FT .

Proof. The proof is simple and is based on the fact that matrix F (3.11)

is row–stochastic and is the (rescaled) sum of an irreducible and an iden-

tity matrix, therefore, by Proposition 3.1.11, it is primitive. Furthermore

Proposition 3.1.12 guarantees that

lim
t→∞

θ(t) = lim
n→∞

Fn
θ(0) = eyT

θ(0) = eθcons (3.17)

with θcons ∈ R given by the inner product between y, the Perron vector of

FT , and θ(0).

On the other hand, there are also situations in which equation (3.16) does

not hold true. For instance when one agent is in an initial position such that
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it never acquires any neighbors the weighted digraph G has a vertex which

remains always isolated. This condition is highly possible when the density

of the system is low or, equivalently, when the radius r, used to define the set

of neighbors (ref page 75), is very small. The opposite condition previously

cited, a not time–varying and strongly connected weighted digraph, is likely

if r is very large (the density is high), in fact, in this case all the agents

remain neighbors each other for all the time.

The most complex and therefore interesting situation is that of a dynamic

G = (V ,E ,A), i.e. a weighted digraph which changes over time. In order to

study this last case we first recall once more that all the evolution matrices in

F =
{

Fj
}

j∈I , which are associated with the system of autonomous agents

via equation (3.12), are row–stochastic . Furthermore we observe that it

is possible to generalize the concept of spectral radius of a matrix to the

case of a set/family of matrices. There are different ways to make this

generalization, but all coincide with each other in the unique value defined

as ρ(F ) when the set of matrices F is finite or bounded. The ρ(F ) is called

simply spectral radius of F or joint spectral radius , which is how Rota and

Strang called the first generalization introduced in 1960 [110].

The joint spectral radius gives the maximal growth rate of products

of matrices belonging to the set, just as the spectral radius of a matrix

provides the maximal growth rate of its powers, and, in addition, allows

to give information about the uniform asymptotic stability (u.a.s.) of the

system, in fact, the system is u.a.s. if and only if ρ(F ) < 1 (ref Definition

4.2.1 and Property 8 on page 114).

One of the equivalent generalizations of spectral radius of a matrix, the

so–called generalized spectral radius, allows to interpret the spectral radius

ρ(F ) as the sup
k≥1

maxP∈Pk(F ) ρ(P)1/k i.e. the sup among the maximal values

of the normalized spectral radii of all Pk(F ), products of length k generated

using matrices in F (ref Definition 4.2.3 and equation (4.25) ). For a survey

on the spectral radius of a set of matrices and its properties we refer the

reader to Chapter 4.

The joint spectral radius of F and the row–stochasticity of all the evo-

lution matrices play an essential role in the study of the system. As we
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recalled in the previous Section the product of stochastic matrices is always

a stochastic matrix, hence, the spectral radii of all the possible products

of matrices in F are always equal to 1. This implies, by definition of the

generalized spectral radius, that ρ(F ) = 1.

Since ρ(F ) = 1 the system is never u.a.s., so we know that the products

of the evolution matrices never converge to zero or, equivalently, starting

from any θ(0) 6= 0 the headings vector θ(t) never converges to zero. The

question we want to answer is, instead, if all the headings of the n agents

will eventually be equal to a value θcons and, thus, moving all together in

the same direction.

To answer this question the joint spectral radius proves to be extremely

helpful. Jadbabaie et al. in [89] suggest to reduce the set F =
{

Fj
}

j∈I of

n×n evolution matrices to a set F̃ =
{

F̃j

}
j∈I

of (n−1)×(n−1)–matrices

getting rid of the one dimensional common invariant subspace of F span{e}
(recall that e is an invariant subspace for every row–stochastic matrix). De-

fined the matrix

T =


1 0 · · · 0

1 −1 0
...

. . .

1 0 −1

= T−1 (3.18)

we consider the similarity transformation

T FjT−1 =

[
1 F

0 F̃j

]
∀ j ∈I (3.19)

and denoted by σ(Fj) the spectrum of Fj, i.e. the set of all the eigenvalues

of Fj, we have that

σ(Fj) = σ(F̃j)∪{1} ∀ j ∈I (3.20)

where 1 is the eigenvalue associated with the right–eigenvector e of Fj ∈F

for every j ∈ I . Note that the matrices F̃ =
{

F̃j

}
j∈I

are not stochastic

and are not necessarily composed of non–negative elements.

So, the convergence of the generic product Fi t ·Fi t−1 · . . . ·Fi1 ·Fi0 of evolution

matrices belonging to F to a rank–one matrix of the type eyT , with y ∈
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Rn, is equivalent to the convergence to zero of the corresponding product

F̃i t · F̃i t−1 · . . . · F̃i1 · F̃i0 . The limit behavior of this last product can be studied

evaluating the joint spectral radius of the set F̃ which is u.a.s. if and only

if ρ(F̃ ) < 1. For this reason the evaluation of the second spectral radius of

the set F allows to have a priori information about the convergence of a

system of agents to a global consensus.

In fact the convergence rate of the system, in the worst possible dynami-

cal configuration chosen by the agents, is given by the second spectral radius

of the set of matrices F which is the spectral radius of F̃ : the more the

second spectral radius of F is similar to 1 the slower, in the worst case, the

system reaches a common agreement. In the limit case in which this second

spectral radius of the set F is exactly equal 1 there will products of matrices

in F such that they will be not ergodic (ref Definition 3.1.9) an, thus, the

system will not converge to a global consensus. In this last case there will be

two or more subsets of agents, corresponding to all the minimal stable sets

of the system, that will show a local consensus on the headings, while all the

other nodes will have different headings whose values are bounded by the

headings of the nodes in the minimal stable sets, like for a fixed topology

network which is componentwise weakly connected (ref Section 3.3).

So, checking if ρ(F̃ ) < 1 is sufficient to guarantee that even in the worst

case all the headings θ(t)i of the n agents will converge to a common value

θcons for t → ∞. The value θcons depends on the initial state θ(0) and the

effective dynamic of the system.

3.2.2 Connections with the Google model

In Section 2.1 we described the Google model explaining how the matrix

G, which is the adjacency matrix associated with the Web considered as a

huge directed graph, and equation (2.3) can be interpreted as a translation in

formulae of the notion of VIP (very important person). This connection al-

lows to identify the basic PageRank of the Web with the left 1–eigenvector of

the row–stochastic matrix G. Now, if we consider a network of autonomous

agents with fixed topology G = (V ,E ,A), we can associate with the ad-

jacency matrix A both a row–stochastic matrix Fit = F , as it appears in
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equation (3.11), and a Google matrix G. There are only two tiny differences

in the structure of these two matrices: in F , in contrast with G, we include

also self–loops and the weights wi j, for all the neighbors j ∈ Ni of each agent

i, can be different each other, as explained in the previous Section. In the

particular case of a fixed topology Fit = F with F irreducible and primitive, if

we apply equation (2.3) to F instead of G we obtain the left 1–eigenvector of

F which corresponds to the PageRank of the network (the so–called Perron

vector of FT ). So the solution of the iterative equation (3.12) of the Vic-

sek model converges, for a strongly connected system, to the unique right

1–eigenvector of F , that is the vector e, multiplied by the scalar value θcons

given by the inner product between the PageRank y of F and the initial

condition of the system θ(0) (ref Proposition 3.2.1). Therefore the PageR-

ank analysis proves to be all we need to completely characterize the global

consensus of a network of agents with strong connectivity.

When the system of autonomous agents G = (V ,E ,A) has a fixed topol-

ogy, but no strong connectivity, the solution of equation (3.12), with Fit = F

for every t ≥ 0, converges in the limit to XY T θ(0), where θ(0) is the initial

state of the system, X and Y are n×m–matrices whose columns are m linearly

independent right and left 1–eigenvectors of F , respectively. The product

XY T , continuing the parallelism with the Google model, can be identified

with the ergodic projector of F

XY T = NT = I− (I−F)(I−F)D,

which appears in the context of the PageRank model in equations (1.14)

and (2.15). In fact, as we will detail in the next Section, if there is no strong

connectivity we can identify m minimal stable subsets of V which correspond,

by Lemma 3.1.4, to m strongly connected components of G . Therefore, by

Corollary 3.3.2, the eigenvalue 1 of F is semisimple and has multiplicity m.

So, for a fixed topology network, the study of the connectivity of the

evolution matrix F and the evaluation of its PageRank prove to be all we

need to understand the behavior of the system.

What about the dynamical case? As explained in the previous Section, if

we deal with a time–varying network G (t) = (V ,E (t),A(t)), it is sufficient to

check that the second joint spectral radius of the associated set of evolution
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matrices F =
{

Fj
}

j∈I is strictly less than 1 to ensure the unconditional

convergence of θ(t), solution at time t of equation (3.12), to a global con-

sensus as t→ ∞. About the PageRank analysis, in this context the effective

PageRank will depend on the specific dynamic of the connections. Never-

theless, the evaluation of the PageRank of each evolution matrix in F and

the estimation of the second joint spectral radius of this set allow us to have

interesting information on the system, as detailed in the following.

3.2.3 Experimental results

Using Matlab function rand, we have generated sets of random evolution

matrices F =
{

Fj
}k

j=1 and we have studied their second joint spectral radius

by means of the algorithm proposed by Gripenberg in [74], which allows to

compute lower and upper bounds of ρ(F ) and provides candidate spectrum–

maximizing products of progressively higher length (ref Chapter 5).

We have studied sets F with cardinality k and matrix dimension n

given by

k ∈ {5,10,15,20,25,30,35}

n ∈ {5,10,15,20,25,30,75,100,125}.

In particular, considering the number of neighbors of an agent in terms of

density (fixing a value of density ρ we have generated k evolution matrices

corresponding to networks in which every agent i has a neighborhood Ni

whose cardinality is such that (|Ni|−1)/(n−1) ≈ ρ, we subtract 1 because

we do not consider the agent i), for every k and n we have generated around

200 families with mean value of density in the interval [0.05,0.9]. As an

example in Figures 3.1 and 3.2 the results for sets of 25 evolution matrices

of dimension 25×25 are presented.

In Figure 3.1 we observe that, as the mean density of the set increases,

the number of matrices with second spectral radius equal 1 reduces and, for

density greater or equal 0.2, almost all families have a second joint spectral

radius strictly less than 1, which implies that in the corresponding dynam-

ical system the agents always reach a consensus. This is more evident in

Figure 3.2, in which the arithmetic means of the values of the second joint

spectral radius are plotted in function of the mean density of the family.
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(a) (b)

Figure 3.1: Families of 25 evolution matrices of dimension 25×25, where *

plots the number of matrices with second spectral radius equal 1 and * plots

the values of the second joint spectral radius of a specific family.

Figure 3.2: Average values of the second joint spectral radius for families of

25 matrices 25×25.
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Figure 3.3: Density of the phase transition in function of the cardinality of

F and the dimension of the matrices.

Consequently we are tempted to conclude that ρ ≈ 0.2 is the value of

density to which it corresponds a phase transition, from no net–transport

to finite net–transport, in systems of 25 agents. However, if we repeat this

study changing the cardinality k of the families, we discover that, as k in-

creases, the phase transition tends to happen for increasing values of density.

The same phenomenon occurs for every dimension n we have studied, as

shown in Figure 3.3 (for n = {75,100} the curves have still a positive slope,

even though almost imperceptible).

This is due to the fact that, as k increases, the probability that one of the

matrices in the set presents two eigenvalues equal 1 in its spectrum rises.

Consider, in fact, that the random matrices we are generating, matrices

in which all the agents are supposed to have almost the same number of

neighbors, has an effective mean density that is not exactly the one desired.

Therefore the more we increase the cardinality of F the more it rises the

probability that we pick a matrix with a mean density lower than the one

desired and, thus, such that it has two eigenvalues equal 1 (low density

implies high probability to have two or more disconnected subsets of agents).

The same reasoning explains also the fact that the more we increase the

dimension n of the matrices the slower the density of the phase transition

rises (the bigger is n the more the effective mean value of the density is



3.2 Vicsek model and the consensus problem 87

close to the desired value and, so, the probability that at least one matrix

in F has two or more disconnected subsets of agents does not increases

substantially with k).

In this last Figure we observe also that, increasing the dimension n, we

have a reduction in the values of the density of the phase transition. The

phenomenon might be related to the fact that, even though the indices of the

agents belonging to every neighborhood should be uniformly distributed1, in

practice, for matrices of small dimension, this distribution is not uniform.

The bigger the dimension is the more the distribution tends to be uniform

and less biased.

In summary we can say that in a system of autonomous agents, which

can be modeled by the Vicsek protocol, the density associated with the phase

transition should be the one measured for sets of evolution matrices with a

large cardinality k and big dimension n.

In Appendix B we present the analysis of the second joint spectral radius

of a family made up of 35 matrices of dimension 20 and with mean density

around 0.249. We compute upper and lower bounds for the second joint

spectral radius by means of the Gripenberg’s algorithm and we use another

algorithm, proposed by Protasov et al. [57], to evaluate an approximated

extremal ellipsoidal norm for the family. In this way we can give good

estimates of the convergence of the system to a global consensus in the worst

possible configuration. We also compare these theoretical results with the

outcome of a few experimentations obtained considering a particular initial

configuration of the system θ(0) and random products of evolution matrices.

The effective rate of convergence of the system to a global consensus proves

to be well estimated by the second joint spectral radius.

About the PageRank analysis in Appendix B we report also an exam-

ple of a family F of 10 evolution matrices of dimension 125 and mean

density around 0.074. In this case we discover that the candidate spectrum–

maximizing product P is, indeed, just one of the matrix in the set (it is

known that the length of the s.m.p. tends to be short for random families).

This matrix P has a second eigenvalue that is close to 1 and a correspond-

1http://www.mathworks.com/help/techdoc/ref/rand.html
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ing PageRank with a very particular feature: one agent is the leader of

all the network (this happen when the agent is by itself a minimal stable

set and all the other agents are connected to it by a directed path). As

long as the evolution of the system is represented just by the matrix P, we

witness a very slow convergence of θ(t), solution of equation (3.12), to the

vector eθcons, where θcons is a scalar equal to the initial heading θl(0) of the

leader (being l his corresponding index); slow convergence explained by the

presence of a second spectral radius almost equal 1 in the spectrum of P.

Nevertheless, since using the Gripenberg’s algorithm we are able to find an

upper bound of the second joint spectral radius which is strictly less then

1, we are guaranteed that the system will tend for t→ ∞ always to a global

consensus. Furthermore, since a generic product of evolution matrices in

the set R = Fjm · . . . ·Fj2 ·Fj1 , with indices ji ∈ {1, . . . ,k}, has usually a small

second spectral radius, after a few iterations the system reach approximately

a global consensus eθ̂cons, with θ̂cons given by the inner product between the

PageRank of the matrix R and the vector of the initial configuration θ(0).

Choosing a particular initial configuration θ(0) and analyzing how the

system evolves for different choices of products of evolution matrices, we can

observe a classical butterfly effect : small changes in the first steps, either in

the initial configuration θ(0) or in the chosen sequence of evolution matrices,

can determine substantial differences in the final configuration of the system.

3.3 Global consensus in networks with broken

links

In this section we give alternative proofs to a few Theorems, presented by

Di Cairano et al. in [44], valid for componentwise weakly connected digraph

with fixed topology.

We start recalling the evolution equation of the Vicsek model

θ(t + 1) = Fi t θ(t)

where θ(t) = [θ1(t), . . . ,θn(t)]T , Fi t = (D(t)+ I )−1 (A(t)+ I ), I the identity ma-

trix and D(t) the degree matrix associated with the dynamic weighted di-

graph G (t) = (V ,E (t),A(t)).
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This equation, obtained considering a discrete time step of size ∆ t = 1,

can be interpreted, in the case of fixed topology G = (V ,E ,A), as a dis-

cretization of a continuous–time relation.

Recalling from Definition 3.1.7 that the graph Laplacian L is given by

L = D−A, we can rewrite

F = (D + I )−1 (A−D + D + I ) =

(D + I )−1 (A−D)+ I = I− (D + I )−1 L (3.21)

therefore

θ(t + 1) = Fθ(t) =
[
I−K−1L

]
θ(t) =

[
I− L̃

]
θ(t) (3.22)

where K = D + I is a diagonal matrix and L̃ = K−1L is what we call the

generalized graph Laplacian. Following Definition 3.1.8, we can associate

with the generalized graph Laplacian L̃ a generalized Perron matrix given

by P̃ = I−∆ tL̃. We observe that the evolution matrix F is nothing more that

the generalized Perron matrix associated with the digraph G when ∆ t = 1

θ(t + 1) = Fθ(t) = P̃θ(t). (3.23)

In addition, considering a generic time step ∆ t, the discrete–time collec-

tive dynamics (3.23) of a network with fixed topology becomes

θ(t + 1)−θ(t) =−∆ tL̃θ(t) (3.24)

which can be reformulated in continuous–time as

θ̇ =−L̃θ . (3.25)

The model associated with this generalized graph Laplacian, for any

diagonal matrix K with positive diagonal elements, is said to be a weighted-

average consensus model [46, Section II.F] to distinguish it from the average

consensus model given by

θ̇ =−Lθ . (3.26)

This latter equation can be interpreted as a continuous–time version of

the discrete–time relation

θ(t + 1) = (I−L)θ(t) = Pθ(t) (3.27)
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where P = I−L is the Perron matrix of G for a time–step ∆ t = 1 (ref Olfati–

Saber et al. [46]).

Di Cairano et al. in [44] studied the case of average consensus models,

therefore they considered continuous and discrete time models containing

only matrix L and P = I−∆ tL, but their results extend naturally to the

case of generalized graph Laplacian L̃ = K−1L and the associated generalized

Perron matrix P̃ = I−∆ tL̃ for every diagonal matrix K with positive diagonal

elements, included the case previously studied of K = D + I.

We recall also the following Lemma which establishes a direct relation

between the strong connectivity of a weighted simple digraph and the rank

of its graph Laplacian.

3.3.1 Lemma ([46, Lemma 2]). Let G = (V ,E ,A) be a weighted simple

digraph with graph Laplacian L defined in (3.5).

If G is strongly connected, then

rank(L) = n−1 and all nontrivial eigenvalues of L have positive real parts.

If, instead G has c > 1 strongly connected components, then

rank(L) = n− c.

According to this Lemma the Laplacian of a strongly connected weighted

digraph has an isolated eigenvalue at zero, while a digraph with c > 1

strongly connected components has c eigenvalues at zero.

For strongly connected digraph the opposite implication does not hold

in general. A counterexample is given by the weighted simple digraph with

the following adjacency matrix A and graph Laplacian L

A =

(
0 1

0 0

)
, L =

(
1 −1

0 0

)
(3.28)

Clearly rank(L) = n−1 = 1, but the digraph is not strongly connected since

there is no path connecting v2 to v1.

As a Corollary of the previous Lemma we have that

3.3.2 Corollary. Let G = (V ,E ,A) be a weighted simple digraph with graph

Laplacian L and evolution matrix F defined by (3.5) and (3.21), respectively.

If G has c > 1 strongly connected components, then 1 is a semisimple eigen-

value of F and it has multiplicity c.
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Proof. First we observe that rank(L) = n−c if and only if 0 is in the spectrum

of L with multiplicity c. So, since F has exactly the same eigenvalues of

−(D + I )−1 L translated by 1 on the right and forasmuch as (D + I )−1 L has

in its spectrum exactly as many 0 eigenvalues as L, F has 1 as eigenvalue

with multiplicity exactly c. Since F is row–stochastic, the semisimplicity of

the eigenvalue 1 follows from Lemma 2.3.1(v).

Given a weighted simple digraph G = (V ,E ,A) we assume that there are

m minimal stable sets Xi which we call authorities, for every i = 1, . . . ,m,

and that correspond to m strongly connected components of G , Lemma

3.1.4. We indicate by Sa = ∪m
i=1Xi the set containing all the authorities of

G , while by S0 we identify the remaining nodes i.e. S0 = V \Sa. We assume

the cardinality of S0 and Sa to be n0 and na, respectively.

It is easy to prove that

3.3.3 Lemma. Given G = (V ,E ,A) and defined the set of vertices which do

not belong to any authorities S0 = V \Sa, S0 does not contain any stable set.

From any node vi ∈ S0 there exists a path to Sa.

Let us call Li the graph Laplacian associated with the subdigraph induced

by each minimal stable set Xi ⊆ V on G , which we suppose to be m. The

graph Laplacian of G , after a suitable reordering of the vertices in V , can be

written as

L =

[
La 0

R F

]
, where La =


L1 0 · · · 0

0 L2
. . .

...
...

. . .
. . . 0

0 · · · 0 Lm

 (3.29)

The matrix R = [ri j]n0×na contains the edges from nodes in S0 to nodes in

Sa, while

F = LΨ + H,

where LΨ is the Laplacian of the subdigraph Ψ induced by S0 on G and H

is a diagonal matrix that compensate for the rows of R in the Laplacian L,

i.e. hii =−∑
na
j=1 ri j ≥ 0.
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3.3.4 Lemma ([44, Lemma 4]). Consider a weighted simple digraph Ψ on

k vertices with graph Laplacian LΨ and a nonnegative diagonal matrix H ∈
Rk×k, if we define M = LΨ + H, then detM ≥ 0.

Proof. Since M ∈Rk×k its eigenvalues can be only real or complex conjugate

numbers so that detM ∈ R. Given the definition of graph Laplacian, the

center of every Geršgorin circle associated with LΨ lies on R+ and all these

circles pass through the origin [24, Geršgorin discs 6.1]. The i–th Geršgorin

circle of M = LΨ + H is the same of LΨ, but with the center shifted on the

right of hii ≥ 0. Then, every eigenvalue of M has a nonnegative real part,

hence, detM ≥ 0.

For the proof of the following Lemma we need a Corollary of the Gerš-

gorin Theorem

3.3.5 Proposition ([24, Corollary 6.2.27]). If F = [ fi j]
k
i, j=1 is irreducible,

diagonally dominant, i.e. | fii| ≥ ∑ j 6=i | fi j| for all i = 1, . . . ,k, and for at least

one value i = 1, . . . ,k we have | fii|> ∑ j 6=i | fi j|, then

F is invertible, i.e. 0 is not an eigenvalue of F.

3.3.6 Lemma ([44, Lemma 5]). Consider the assumptions of Lemma 3.3.4

and assume that for every minimal stable set Yi on Ψ there exists at least

one node v j ∈ Yi such that h j j > 0. Then detM > 0.

Proof. It is known that for every matrix M ∈Rk×k there exists a permutation

matrix P ∈ Rk×k such that

N = PMPT =


M11 0 · · · 0

M21 M22
. . .

...
...

...
. . . 0

Mr1 Mr2 · · · Mrr

 (3.30)

where each block Mii, for i = 1, . . . ,r, is either an irreducible square matrix

or a 1×1 null matrix. If r = 1 the original matrix M is irreducible [35].

Since M ∈ Rk×k satisfies all the hypotheses of the previous Lemma, it

follows that detM = detN = ∏
r
i=1 detMii ≥ 0. Each matrix Mii is irreducible

and, in the case in analysis, diagonally dominant, so, it corresponds to a
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subset of vertices Yi of the digraph Ψ which are strongly connected each

other. Yi, in general, is not a minimal stable set on Ψ, but only a minimal

stable set on the subdigraph induced by Yi on Ψ. This implies that, for each

i = 1, . . . ,r, we can write Mii = LYi +Hi +Di where LYi is the Laplacian of the

strongly connected weighted subdigraph induced by the subset of vertices

Yi on Ψ, Di is a diagonal matrix whose entry Di[h,h] is equal to the sum of

the sign changed elements in the h–row of all the matrices Mi j, with j < i,

and Hi is the diagonal matrix given by the elements of H corresponding to

the vertices in Yi. If for a certain i ∈ {1, . . . ,r} all the matrices Mi j = 0, with

j < i, then the corresponding Yi is a minimal stable set also on Ψ and Mii is

just Mii = LYi + Hi. In this last case, by hypothesis, there exists at least one

node v j ∈ Yi such that Hi[ j, j] > 0. So for every Mii, i = 1, . . . ,r, at least one

matrix among Hi and Di is not zero, therefore the hypotheses of Proposition

3.3.5 hold and detMii > 0, for every i = 1, . . . ,r. For this reason detM > 0.

We observe that Lemmas 3.3.4 and 3.3.6 hold true also if we consider a

generalized graph Laplacian L̃Ψ = K−1LΨ instead of the graph Laplacian LΨ,

with K any possible diagonal matrix with positive diagonal elements.

3.3.7 Theorem ([44, Theorem 1]). For any componentwise

weakly connected digraph G = (V ,E ,A), with graph Laplacian

L, and for fixed agreement values µ1, . . . ,µm of the authorities

X1, . . . ,Xm of G , there always exists a single equilibrium point

θ = [µ1, . . . ,µ1,µ2, . . . ,µ2, . . . ,µm, . . . ,µm,θna+1, . . . ,θna+n0 ]
T such that Lθ = 0,

where S0 = V \Sa is the set of agents which do not belong to any authorities

and n0, na are the cardinality of S0 and Sa, respectively.

Proof. We look for the solutions θ of Lθ = 0. If we consider the general form

of the graph Laplacian given in (3.29), where L1, . . . ,Lm are the graph Lapla-

cians of the strongly connected subdigraphs induced by the m authorities

Xi on G , we can rewrite Lθ = 0 as

Lθ =

[
La 0

R F

][
w

z

]
= 0 (3.31)

where w = [θ1, . . . ,θna ] and z = [θna+1, . . . ,θna+n0 ].
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Since we know that each Li has an isolated eigenvalue at zero with a

corresponding eigenvector of all equal entries (ref Lemma 3.3.1), we have

that, for every i = 1, . . . ,m, the unique solution of Li wi = 0 is given by wi = µi e

with µi which depends only on the initial state of the vertices in Xi (ref [46,

Theorem 1]). The first na rows of the system (3.31) have, thus, the unique

solution

Law =


L1 0 · · · 0

0 L2
. . .

...
...

. . .
. . . 0

0 · · · 0 Lm




µ1e(1)

µ2e(2)

...

µme(m)

= 0 (3.32)

with e(i), i = 1, . . . ,m, column vector of all ones with a suitable length. The

last n0 rows in (3.31) can be rewritten in function of the unique solution w

of (3.32)

Fz =−Rw. (3.33)

This equation admits a unique solution if and only if F is nonsingular (in-

vertible).

For the nonsingularity of F we can use Lemma 3.3.6. Let Ψ be the

digraph induced by S0 on G , then we can write F = LΨ + H as explained on

page 91. There exists always a permutation matrix P such that

B =
[

I P
][ La 0

R F

][
I

PT

]
=

[
La 0

R̂ F̂

]
(3.34)

F̂ = PFPT =


F̂11 0 · · · 0

F̂21 F̂22
. . .

...
...

...
. . . 0

F̂r1 F̂r2 · · · F̂rr

 , R̂ = PR =


R̂1
...

R̂r

 (3.35)

with F̂ii irreducible and diagonally dominant by construction, for every

i = 1, . . . ,r. We can write F̂ii = LYi +Hi +Di where LYi is the Laplacian of the

strongly connected weighted subdigraph induced by the subset of vertices

Yi on Ψ, Di is a diagonal matrix whose entry Di[h,h] is equal to the sum of

the sign changed elements in the h–row of all the matrices F̂i j, with j < i,
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and Hi is the diagonal matrix given by the elements of H corresponding to

the vertices in Yi. Since for every Yi corresponding to a minimal stable set

on Ψ, but not on G , there exists at least one vertex v j ∈Yi that has an edge

with a vertex in Sa, i.e. Hi[ j j] = −∑
na
k=1 R̂i[ j,k] > 0, then the hypotheses of

Lemma 3.3.6 hold, so det F̂ = detF > 0 and the matrix F is invertible.

In conclusion, the unique solution of (3.31) is given by

z =−F−1Rw. (3.36)

where w is the unique solution of (3.32).

3.3.8 Corollary ([44, Corollary 1]). If the assumptions of Theorem 3.3.7

hold and µ1 = . . . = µm = µ, the unique solution of Lθ = 0 is the global con-

sensus θ = µe.

Proof. If we consider the last n0 rows of matrix L in equation (3.31) we have

the submatrix [R F ] which is such that [R F ] µe = 0, since every row of the

graph Laplacian adds up to zero. By hypothesis w = µe, so we have that

[w z]T = µeT is a solution of the system and it is also the unique one by

Theorem 3.3.7.

The solution of Lθ = 0, given by the previous Theorem, is also the limit

solution of both equation (3.26) and (3.27). Furthermore Theorem 3.3.7 still

holds true if we consider, instead of the graph Laplacian L, the generalized

graph Laplacian L̃ = K−1L associated with the digraph G , where K is any

diagonal matrix with positive diagonal elements. So, even for L̃θ = 0, we

have a unique solution θ which is also the limit solution of both equation

(3.25) and (3.23).

Finally, making use of the following Lemma, we prove a Theorem which

guarantees a monotonicity on the consensus values reached by the nodes in S0

with respect to the consensus attained by the authorities: if the differences

in the consensuses values reached by the authorities are small, the values

chosen in the limit by the agents belonging to S0 are close to each other, and

bounded by the ones of the authorities.

3.3.9 Lemma ([44, Corollary 3]). Considering the digraph of Theorem

3.3.7, equation (3.36) written in the form z̄ = −F−1Rw̄ = Φ w̄ and given
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the two vectors w̄(1) and w̄(2), if w̄(1) ≥ w̄(2), then the corresponding solutions

satisfy z̄(1) ≥ z̄(2).

Furthermore, for every agent vi in S0, i = 1, . . . ,n0, θ̄i is the convex combi-

nation of µ1 ≤ ·· · ≤ µm, which are the consensus values of the authorities

X1, . . . ,Xm.

Proof. As stated in the proof of Corollary 3.3.8

Le =

[
La 0

R F

]
e = 0 (3.37)

and Φ =−F−1R is such that ∑
na
j=1 φi j = 1 for all i = 1, . . . ,n0.

We prove, in addition, that Φ≥ 0. This implies that every row of Φ can

be interpreted as a sequence of weights of a convex sum.

Φ = F−1 (−R) with −R ≥ 0 by construction. We define Λ as a diagonal

matrix such that λii = fii for all i = 1, . . . ,n0. This matrix is invertible since

for every node vi ∈ S0, i = 1, . . . ,n0, it results that fii > 0 (if the vertex vi is

a sink of Ψ, i.e. it has no edges with other vertices in S0, there must exist

at least one entry ri j < 0, for some j = 1, . . . ,na, such that fii =−ri j > 0).

F−1 = (Λ−N)−1 =
(
Λ
(
I−Λ

−1N
))−1

=
(
I−Λ

−1N
)−1

Λ
−1 (3.38)

Λ
−1 =


1/λ11 0

. . .

0 1/λn0n0

≥ 0 (3.39)

Given λii ≥ ∑ j 6=i |ni j| it follows that ∑ j 6=i
|ni j|
λii
≤ 1, so matrix I−Λ−1N is di-

agonally dominant and invertible. The invertibility can be proved following

the same reasoning as in the proof of Lemma 3.3.6.

Furthermore we can write(
I−Λ

−1N
)−1

=
∞

∑
j=0

(
Λ
−1N

) j
, with

(
Λ
−1N

) j ≥ 0 ∀ j = 0,1, . . . (3.40)

which implies that also the sum is nonnegative, then F−1 ≥ 0 and hence

Φ≥ 0.

Given that

z̄(r) = Φ w̄(r) for r = 1,2 (3.41)
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if w̄(1) ≥ w̄(2), by linearity of Φ and its nonnegative, we get the nondecrease-

ness, i.e. z̄(1) ≥ z̄(2).

Finally, supposed

z̄ =−F−1Rw̄ = Φ


µ1e(1)

µ2e(2)

...

µme(m)

 . (3.42)

For every i = 1, . . . ,n0, we have that

z̄i =
na

∑
j=1

φi jw̄ j =

na1

∑
j=1

φi jµ1 + · · ·+
nah

∑
j=nah−1 +1

φi jµh + · · ·+
nam

∑
j=nam−1 +1

φi jµm (3.43)

where nah is the cardinality of the authority Xh, for h = 1, . . . ,m. Thus z̄i is

equal to the convex sum of µ1 ≤ ·· · ≤ µm.

3.3.10 Theorem ([44, Theorem 3]). Assume µ1 ≤ ·· · ≤ µm be the con-

sensus values of the authorities X1, . . . ,Xm. Then µ1 ≤ z̄i ≤ µm, for every

i = 1, . . . ,n0.

Proof. It follows immediately from previous Lemma. In fact z̄i is equal to a

convex sum of the values µ1 ≤ ·· · ≤ µm, for every i = 1, . . . ,n0.

3.4 Conclusions

The joint spectral radius proves to be an useful tool for analysing the

convergence to a global consensus in a systems of agents and in particular

the robustness of this convergence with respect to changes over time in the

topology of the system. These changes can be related to the agents behavior

or to external events like a failure in communications or a malicious attack.

We presented experimental results, a detailed analysis of a case of study and

we discussed the connections with the Google model.

Inspired by this connection we plan to study in a future work the PageR-

ank from a dynamical point of view. In particular we are interested in

analysing the influence of an agent, or group of agents, in the final value θcons

in a dynamical context. This study may help to shed new light on complex
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processes such as decision making and information diffusion, which can be

found in many contexts like in the study of infectious diseases diffusion, in

viral advertising, in economics, in finance and in many social sciences.



Part III

Generic families





Chapter 4

Theory

This Chapter, and more in general this third part of the thesis, deals

with the study of spectral properties of families of square matrices.

Last two decades have been characterized by an increasing interest in the

analysis of the maximal growth rate of long products generated by matrices

belonging to a specific set/family. The maximal growth rate can be evaluated

considering a generalization of the spectral radius of a single matrix to the

case of a set of matrices.

This generalization can be formulated in many different ways, never-

theless in the commonly studied cases of bounded or finite families all the

possible generalizations coincide in a unique value that is usually called joint

spectral radius or simply spectral radius. The joint spectral radius, however,

can prove to be hard to compute and can lead even to undecidable problems.

We present in this Chapter all the possible generalizations of the spectral

radius, their properties and the associated theoretical challenges.

From an historical point of view the first two generalizations of spectral

radius, the so–called joint and common spectral radius, were introduced

by Rota and Strang in the three pages paper “A note on the joint spectral

radius” published in 1960 [110]. After that more than thirty years had to

pass before a second paper was issued on this topic: in 1992 Daubechies

and Lagarias [70] published “Sets of matrices all infinite products of which

converge” introducing the generalized spectral radius, conjecturing it was

equal to the joint spectral radius (this was proven immediately after by
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Berger and Wang [52]) and presenting examples of applications. From then

on there has been a rapidly increasing interest on this subject and the more

years pass the more the number of mathematical branches and applications

directly involved in the study of these quantities increases [53].

The study of infinite products convergence properties proves to be of

primary interest in a variety of contexts:

Nonhomogeneous Markov chains, deterministic construction of functions

and curves with self-similarities under changes in scale like the von Koch

snowflake and the de Rham curves, two-scale refinement equations that arise

in the construction of wavelets of compact support and in the dyadic inter-

polation schemes of Deslauriers and Dubuc [70, 109], the asymptotic behav-

ior of the solutions of linear difference equations with variable coefficients

[77, 78, 79], coordination of autonomous agents [89, 103, 73], hybrid systems

with applications that range from intelligent traffic systems to industrial pro-

cess control [61], the stability analysis of dynamical systems of autonomous

differential equations [65], computer–aided geometric design in constructing

parametrized curves and surfaces by subdivision or refinement algorithms

[101, 66], the stability of asynchronous processes in control theory [115], the

stability of desynchronised systems [93], the analysis of magnetic recording

systems and in particular the study of the capacity of codes submitted to

forbidden differences constraints [102, 56], probabilistic automata [105], the

distribution of random power series and the asymptotic behavior of the Eu-

ler partition function [109], the logarithm of the joint spectral radius appears

also in the context of discrete linear inclusions as the Lyapunov indicator

[51, 84]. For a more extensive and detailed list of applications we refer the

reader to the Gilbert Strang’s paper “The Joint Spectral Radius” [113] and

to the doctoral theses by Jungers and Theys [90, 114].

The Chapter develops as following: in Section 4.1 we add notation and

terminology to those presented in Section 1.1; Section 4.2 presents first a case

of study associated with the asymptotic behavior analysis of the solutions

of linear difference equations with variable coefficients, further, it contains

the definitions and properties of all the possible generalizations of spectral

radius for a set of matrices, in particular the irreducibility, nondefectivity

and finiteness properties are discussed.
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4.1 Terminology, notation and basic properties

In this Section we add notation, terminology, definitions and properties,

to those presented in Section 1.1, which are employed in this third part of

the thesis.

We use the expression N0 meaning the set of natural numbers, included

zero.

A matrix B is said to be normal if BB∗ = B∗B, unitary if BB∗ = B∗B = I,

Hermitian if B = B∗. Hermitian and unitary matrices are, by definition,

normal matrices.

A proper subset of a set A is a set B that is strictly contained in A .

This is written as B  A .

In Section 1.1 we presented the Jordan canonical form, now we introduce

an additional matrix factorization, the so–called singular value decomposi-

tion (in short svd): Given a square matrix A ∈ Cn×n with rank k ≤ n, there

always exists a diagonal matrix Λ ∈ Rn×n with nonnegative diagonal entries

σ1 ≥ σ2 ≥ ·· · ≥ σk > σk+1 = · · ·= σn = 0 and two unitary matrices U,V ∈Cn×n

such that A = UΛV ∗, which is defined as the singular value decomposition

of A. The matrix Λ = diag(σ1, . . . ,σn) is always uniquely determined and

σ2
1 ≥ ·· · ≥ σ2

n correspond to the eigenvalues of the Hermitian matrix AA∗.

Values σ1, . . . ,σn are the so–called singular values of A.

The trace of an n×n–matrix A, denoted by tr(A), is given by the sum of

the diagonal elements of A, tr(A) = ∑
n
i=0 aii, and it is also equal to the sum

of all the eigenvalues in the spectrum of A, tr(A) = ∑
λ∈σ(A)

λ .

The spectral radius of a square matrix A ∈ Cn×n is defined as

ρ(A) = max{|λ | : λ ∈ σ(A)} (4.1)

It is easy to prove that ρ(Ak) = (ρ(A))k for every k ∈ N and, thus, given a

generic power k of the matrix A, the value (ρ(Ak))1/k is just equal to the

spectral radius of the matrix.

It is possible to characterize the spectral radius using the trace of the

matrix. Since λ k ∈ σ(Ak) for every eigenvalue λ ∈ σ(A) and for every k ∈N,
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it follows that

|tr(Ak)|1/k = ρ(A)

∣∣∣∣∣ ∑
λ∈σ(A)

λ
k/(ρ(A))k

∣∣∣∣∣
1/k

(4.2)

which converges to ρ(A) as k→ ∞

ρ(A) = lim
k→∞

∣∣tr(Ak)
∣∣1/k
. (4.3)

For a square matrix A and for p ∈ [1,∞], ‖A‖p is the matrix norm in-

duced by the corresponding p–vector norm (ref Section 1.1). The induced

matrix norms are sometimes defined as operator norms [24, Definition 5.6.3].

Among the induced matrix norms we will make use of the following

The maximum column–sum matrix norm – p = 1

‖A‖1 = max
‖x‖1=1

‖Ax‖1 = max
j

∑
i
|ai, j|

The spectral norm – p = 2

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = σ1(A) =
√

ρ(AA∗)

The maximum row–sum matrix norm – p = ∞

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
i

∑
j
|ai, j|

Every induced matrix norm ‖ ·‖∗ is submultiplicative i.e. ‖AB‖∗ ≤ ‖A‖∗‖B‖∗
for every square matrix A and B.

Another family of induced matrix norms are the ellipsoidal norms. Let us

consider an Hermitian positive definite matrix P� 0 (i.e. P is a nonsingular

Hermitian matrix such that x∗Px > 0 for all nonzero x ∈ Cn or, equivalently,

P is a Hermitian matrix such that all its eigenvalues are strictly positive).

The vector ellipsoidal norm is defined as

‖x‖P =
√

x∗Px. (4.4)

The corresponding induced matrix norm is given by

‖A‖P = max
‖x‖P=1

‖Ax‖P = max√
x∗Px=1

√
x∗A∗PAx (4.5)
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Recalling that [24, Corollary 7.2.9] P is positive definite if and only if

there exists a nonsingular upper triangular matrix T ∈ Cn×n , with strictly

positive diagonal entries, such that P = T ∗T , which is defined as the Cholesky

decomposition of P, we can rewrite

‖A‖P = max√
x∗T ∗T x=1

√
x∗A∗T ∗TAx = max

‖T x‖2=1
‖TAx‖2

and if we rename y = T x, T by construction is nonsingular so x = T−1y, we

get

‖A‖P = max
‖y‖2=1

‖TAT−1y‖2 = ‖TAT−1‖2 =
√

ρ(TAT−1(TAT−1)∗) (4.6)

Since T is nonsingular and remembering that the spectrum of a matrix is

invariant under similarity transformation, two matrices M and T−1MT have

the same eigenvalues, counting multiplicity. So from (4.6) we obtain that

‖A‖P =
√

ρ(TAP−1A∗T ∗) =
√

ρ(AP−1A∗P) (4.7)

Given a generic power k of the matrix A, the value ‖Ak‖1/k is defined

as the normalized norm of the matrix, in the sense that is normalized with

respect to the length of the product.

Given the family F = {Ai}i∈I of complex square n×n–matrices, with I

a set of indices, F is defined bounded if it does exist a constant C < +∞

such that sup
i∈I
‖Ai‖ ≤C. While we define the set finite if it is constituted by

a finite number of matrices. Trivially a finite set is always bounded.

A matrix A is said to be nondefective if and only if its Jordan canonical

form is diagonal i.e. each eigenvalue of A is semisimple or, equivalently,

it has geometric multiplicity equal to algebraic multiplicity, otherwise A is

defined defective. In this part of the thesis we deal with a weaker condition

of nondefectivity: a matrix A is said to be weakly nondefective if and only

if the eigenvalues of A with modulus equal to the spectral radius, i.e. with

maximal modulus, are semisimple, if it is not the case the matrix is defined

weakly defective. Using the Jordan canonical form of A it is easy to prove

that, whenever ρ(A) > 0, defined A∗ = A/ρ(A), A is weakly nondefective if

and only if powers (A∗)k are bounded for every k ≥ 1.

From now on, for the sake of simplicity and to be coherent with the

literature on the spectral radius of sets, we use the expressions strongly
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nondefective and strongly defective in place of nondefective and defective,

whereas we make use of the words nondefective and defective meaning weakly

nondefective and weakly defective.

Let us now recall basic relations between spectral radius and matrix

norms:

4.1.1 Theorem ([24, Theorem 5.6.9]). If ‖ · ‖ is any matrix norm on Cn×n

and if A ∈ Cn×n , then

ρ(A)≤ ‖A‖.

Furthermore

4.1.2 Lemma ([24, Lemma 5.6.10]). Let A ∈ Cn×n , for every ε > 0 there is

a matrix norm ‖ · ‖ε such that

ρ(A)≤ ‖A‖ε ≤ ρ(A)+ ε (4.8)

The spectral radius of A is not itself a matrix or vector norm, but if we

let ε → 0 in (4.8) we have that ρ(A) is the greatest lower bound for the

values of all matrix norms of A

ρ(A) = inf
‖·‖∈N

‖A‖ (4.9)

where N denotes the set of all possible induced matrix norms (the so–called

operator norms).

Spectral radius allows to characterize convergent matrices, i.e. those

matrices whose successive powers tends to zero:

4.1.3 Theorem ([24, Theorem 5.6.12]). Let A ∈ Cn×n , then

lim
k→∞

Ak = 0 ⇔ ρ(A) < 1

As a Corollary of the previous Theorem we have the so–called Gelfand’s

formula:

4.1.4 Corollary ([24, Corollary 5.6.14]). Let ‖ · ‖ be any matrix norm on

Cn×n , then

ρ(A) = lim
k→∞

‖Ak‖1/k for all A ∈ Cn×n (4.10)
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The Gelfand’s formula gives us two information:

• the spectral radius of A represent the asymptotic growth rate of the

normalized norm of Ak: ‖Ak‖1/k ∼ ρ(A) as k→ ∞

• the normalized norm ‖Ak‖1/k can be used to approximate the spectral

radius and in the limit for k→ ∞ the two quantities coincide.

Given a row–stochastic matrix A its maximum row–sum matrix norm is

equal 1 by definition of row–stochasticity (ref pages 5 and 73). By Theorem

4.1.1, choosing as matrix norm the maximum row–sum, we have that for

every stochastic matrix A

ρ(A)≤ ‖A‖∞ = 1 (4.11)

The row–stochasticity of A can be formulated also as

Ae = e (4.12)

with e the all–ones vector and λ = 1 the eigenvalue of A associated with

the right eigenvector x = e. So we have that ρ(A) = 1 (ref Lemma 2.3.1).

Remembering that the set of stochastic matrices is closed under matrix

multiplication, we observe that the very same result can be proved also using

the Gelfand formula: choosing as matrix norm the maximum row–sum we

have that ‖Ak‖1/k
∞ = 1 for every integer k ≥ 1.

In the following we generalize all these notions to the case of a family of

matrices.

4.2 Framework

4.2.1 A case of study

Given a stable discrete time system we want to analyze its robustness

with respect to perturbations not a priori quantifiable.

Let us consider the system

x(k + 1) = A0 x(k), k ∈ N0. (4.13)
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with x(0) ∈Cn and A0 ∈Cn×n such that the system is asymptotically stable,

i.e. ρ(A0) < 1 (ref Theorem 4.1.3). We consider the perturbed system given

by time–varying perturbations

x(k + 1) =

(
A0 +

p

∑
i=1

δi(k)Ai

)
x(k), k ∈ N0. (4.14)

The matrices {Ai}p
i=1 are known, but the perturbations {δi(k)}p

i=1 are not.

The perturbations may depend on incomplete modeling, neglect of dynamics

or measurement uncertainty. We are interested to know if a stability result

for the theoretical model (4.13) holds also for the real system (4.14).

The perturbed system (4.14) can be regarded as a first order system of

difference equations with variable coefficients

x(k + 1) = Yik x(k), k ∈ N0. (4.15)

where x(0) ∈ Cn and Yik ∈ Cn×n is an element of the following family

Fα =

{
A0 +

p

∑
i=1

δi Ai

∣∣∣∣ ‖δ‖ ≤ α

}
(4.16)

where δ = (δ1 δ2 · · · δp)T and the bound on the uncertainties is known. This

kind of problems arise in several contexts such as when applying numerical

methods to non–autonomous systems of differential equations.

From a point of view of robustness or worst case analysis the goal is to

determine the largest uncertainty level α∗ such that for every α < α∗ the

system remains stable (see e.g. [118]).

If the sequence of matrices Yik is known, for k ≥ 0, then the solution of

(4.15) is given by

x(k + 1) = Pk x(0), with Pk =
k

∏
j=1

Yi j , k ≥ 1 (4.17)

where asymptotic stability may be studied directly (although this is not an

easy task in general). Nevertheless we want to study the case where the

sequence {Yik}k≥1 is not known a priori and may be whatever.

4.2.1 Definition (Uniform asymptotic stability – u.a.s.). We say that (4.15)

is uniformly asymptotically stable if

lim
k→∞

x(k) = 0 (4.18)
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for any initial x(0) and any sequence {Yik}k≥1 of elements in Fα .

It is easy to prove that Definition 4.2.1 is equivalent of requiring that

any possible left product Yik ·Yik−1· . . . ·Yi1 of matrices from Fα vanishes as

k→ ∞.

We observe that in the context of the discrete linear inclusions some

authors refer to the uniform asymptotic stability as absolute asymptotic sta-

bility [84, 114].

For the single matrix case we have that u.a.s. holds if and only if the

spectral radius of the matrix is strictly less than one, while for the general

case of a family of matrices F we are driven to the problem of computing the

joint spectral radius of F . The intrinsic difficulty in exploiting this quantity

is due to the non–commutativity of matrix multiplication.

4.2.2 Definitions and properties

Definitions

From now on we consider always complex square n×n–matrices and sub-

multiplicative norms if not differently specified. Let F = {Ai}i∈I be a family

of matrices, I being a set of indices.

For each k = 1,2, . . ., consider the set Pk(F ) of all possible products of

length k whose factors are elements of F , that is

Pk(F ) = {Ai1 · . . . ·Aik | i1, . . . , ik ∈I }

and set

P(F ) =
⋃
k≥1

Pk(F ) (4.19)

to be the multiplicative semigroup associated with F . While, defined

P0(F ) := I, we have

P∗(F ) =
⋃
k≥0

Pk(F ) (4.20)

the multiplicative monoid associated with F .

We present four different generalizations of the concept of spectral radius

of a single matrix to the case of a family of matrices F .
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The first generalization is due to Rota and Strang, in the seminal paper

[110] published in 1960 they presented the generalization of the notion of

spectral radius as limit of the normalized norm of a single matrix:

4.2.2 Definition (Joint Spectral Radius – jsr). If ‖ · ‖ is any matrix norm

on Cn×n , consider

ρ̂k(F ) := sup
P∈Pk(F )

‖P‖1/k, k ∈ N

i.e. the supremum among the normalized norms of all products in Pk(F ),

and define the joint spectral radius of F as

jsr(F ) = ρ̂(F ) = lim
k→∞

ρ̂k(F ) (4.21)

The joint spectral radius does not depend on the matrix norm chosen

thanks to the equivalence between matrix norms in finite dimensional spaces.

We observe that in the discrete linear inclusions literature the logarithm

of the joint spectral radius is sometimes called Lyapunov indicator [51].

In 1992 Daubechies and Lagarias [70] introduced the generalized spectral

radius as a generalization of the limsup over all the spectral radii ρ(Ak)1/k,

k ≥ 1, which are, trivially, always equal to ρ(A).

4.2.3 Definition (Generalized Spectral Radius – gsr). Let ρ(·) denote the

spectral radius of an n×n–matrix, consider

ρk(F ) := sup
P∈Pk(F )

ρ(P)1/k, k ∈ N

i.e. the supremum among the spectral radii of all products in Pk(F ) nor-

malized taking their k–th root, and define the generalized spectral radius of

F as

gsr(F ) = ρ(F ) = limsup
k→∞

ρk(F ) (4.22)

For this two definitions it has been proved by Daubechies and Lagarias

[70, 71] the following

4.2.4 Proposition (Four members inequality). For any set of matrices F

and any k ≥ 1

ρk(F )≤ ρ(F ) = gsr(F )≤ jsr(F ) = ρ̂(F )≤ ρ̂k(F ) (4.23)

independently of the submultiplicative norm used to define ρ̂k(F ).
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As a consequence of this we have that:

ρ̂(F ) = inf
k≥1

ρ̂k(F ) (4.24)

ρ(F ) = sup
k≥1

ρk(F ) (4.25)

For the first equality see also [90, Lemma 1.2]; for the second one, since

ρ(Mk) = ρ(M)k for every k ∈ N and considering that by definition of limsup

limsup
k→∞

ρk(F ) = inf
k≥1

sup
n≥k

ρn(F ),

if it does exist a finite product P ∈Pr(F ), r ∈N, such that ρ(P)1/r = ρ(F ),

then, for every m ∈ N, ρ(Pm)1/mr = ρ(F ) and, thus, supn≥k ρn(F ) = ρ(F )

for every k ∈ N. This last equality is valid also if it does not exists such a

finite product, in fact in this case the sup is achieved only for n→ ∞. So

in both cases it results infk≥1 supn≥k ρn(F ) = supk≥1 ρk(F ), i.e. equation

(4.25) holds true.

A third definition has been introduced by Chen and Zhou in 2000 [67]

and is based on a generalization of the formula associating the spectral radius

of a matrix with its trace:

4.2.5 Definition (Mutual Spectral Radius – msr). Let tr(P) be the trace

of the product P ∈Pk(F ) then sup
P∈Pk(F )

|tr(P)| is the maximal absolute value

among all the traces of the products of length k. Define the mutual spectral

radius of F as

msr(F ) = limsup
k→∞

sup
P∈Pk(F )

|tr(P)|1/k (4.26)

We present now the last characterization of the spectral radius of a family

of matrices. For bounded sets (ref Section 4.1) it is possible to generalize

the concept, express in equation (4.9), of spectral radius as the inf over the

set of all possible induced matrix norms of A.

4.2.6 Definition (Common Spectral Radius – csr). Given a norm ‖ · ‖ on

the vector space Cn and the corresponding induced matrix norm, we define

‖F‖ := sup
i∈I
‖Ai‖ (4.27)
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where we assume that the family F is bounded. We define the common

spectral radius of F (see [110] and [72]) as

csr(F ) = ρ̃(F ) = inf
‖·‖∈N

‖F‖ (4.28)

where N denotes the set of all possible induced matrix norms.

This definition was first introduced by Rota and Strang in 1960 [110]

and re–introduced 35 years later by Elsner [72].

In the case of bounded sets, it is possible to prove that the four charac-

terizations we presented coincide.

4.2.7 Theorem (The Complete Spectral Radius Theorem). For a bounded

family F the following equalities hold true

gsr(F ) = jsr(F ) = csr(F ) = msr(F ) (4.29)

The equality of gsr and jsr was conjectured by Daubechies and Lagarias

and it was proven by Berger and Wang [52], Elsner [72], Chen and Zhou

[67], Shih et al. [112]. For the equality of csr and jsr we refer the reader to

the seminal work of Rota and Strang [110] or again [72]. Chen and Zhou

[67] proved the last equality.

We observe that the first equality is the generalization of the Gelfand’s

formula (Corollary 4.1.4) to the case of a family of matrices.

Another observation is that even though the joint and generalized spec-

tral radius can be defined also for unbounded families the first equality does

not hold in general. Consider for example the unbounded family:

F =

{(
1 1

0 1

)
, . . . ,

(
1 n

0 1

)
, . . .

}

For this family since every product of the two matrices is upper triangular

with ones in the main diagonal it is evident that ρ(F ) = 1 and obviously

ρ̂(F ) = +∞ since the family is unbounded (see [114] for details and [70] for

another example).

We observe also that Gurvits in [84] give a counterexample to the first

equality in the case of two operators in an infinite dimensional Hilbert space.
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From now on and if not differently specified we will always consider

bounded sets of matrices. Theorem 4.2.7 implies that we can simply refer

to the spectral radius ρ(F ) of the family of matrices F .

4.2.8 Definition (Trajectory). Given a family F = {Ai}i∈I , we define, for

an arbitrary nonzero vector x ∈ Cn, the trajectory

T [F ,x] = {Px | P ∈P(F )} (4.30)

as the set of vectors obtained by applying all the products P in the multi-

plicative semigroup P(F ) to the vector x.

4.2.9 Definition (Discrete linear inclusion). The discrete linear inclusion

is the set of all the trajectories associated with all the possible vectors in Cn.

This set is denoted by DLI(F ).

Properties

We resume now properties valid for the spectral radius of a bounded set

of matrices F = {Ai}i∈I

1. Multiplication by a scalar: For any set F and for any number α ∈C

ρ(αF ) = |α|ρ(F ) (4.31)

2. Continuity: The joint spectral radius is continuous in its entries as

established by Heil and Strang [87]. Wirth has proved [118] that the

joint spectral radius is even locally Lipschitz continuous on the space

of compact irreducible sets of matrices (an explicit formula for the

related Lipschitz constant has been evaluated by Kozyakin [95]).

3. Powers of the family: For any set F and for any k ≥ 1

ρ(F k)≤ ρ
k(F )

4. Invariance under similarity: The spectral radius of the family is in-

variant under similarity transformation, so for any set of matrices F ,

and any invertible matrix T

ρ(F ) = ρ(TFT−1) (4.32)
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This because to any product A1 · . . . ·Ak ∈Pk(F ) corresponds a prod-

uct T ·A1 · . . . ·Ak ·T−1 ∈Pk(TFT−1) with equal spectral radius.

5. Conjugate or transposed family: The conjugate or transposed fam-

ily (family obtained taking the conjugate/transpose of every matrix in

the original set) has the same spectral radius as the original one [76,

Lemma 5.1]

ρ(F ∗) = ρ(F ) ρ(F T ) = ρ(F ) (4.33)

6. Block triangular matrices: Given a family of block upper triangular

matrices

F =

{(
Ai Bi

0 Ci

)}
i∈I

we have that

ρ(F ) = max
{

ρ({Ai}i∈I ),ρ({Ci}i∈I )
}
. (4.34)

This is due to the closure, with respect to the multiplication, of block

upper triangularity [52, Lemma II (c)]. Clearly the same holds for

lower triangular matrices. This result generalizes to the case of more

than two blocks on the diagonal.

7. Closure and convex hull: The closure and the convex hull of a set

have the same spectral radius of the original set

ρ(convF ) = ρ(clF ) = ρ(F ) (4.35)

This result was first obtained by Barabanov in 1988 [51]. An alterna-

tive proof, given by Theys in [114, page 17], is based on the common

spectral radius definition (4.28) and the property

sup
Ai∈F
‖Ai‖= sup

Ai∈convF
‖Ai‖= sup

Ai∈clF
‖Ai‖. (4.36)

8. Uniform asymptotic stability characterization [52, Theorem I (b)]:

For any bounded set of matrices F and for any k ≥ 1, all matrix

products P ∈ Pk(F ) converge to the zero matrix as k → ∞, i.e.
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F is uniformly asymptotically stable (ref page 108), if and only if

ρ(F ) < 1.

In other words the spectral radius of the family of matrices F gives

information about the uniform asymptotic stability of the associated

dynamical system DLI(F ), defined on page 113.

9. Product boundedness [52, Theorem I (a)]: Given a bounded set of

matrices F , if products P ∈Pk(F ), k ∈ N, converge as k→ ∞. Then,

the multiplicative monoid P∗(F ) defined in (4.20) is bounded and

ρ(F )≤ 1.

The opposite implication is not true in general:

Given a defective family with ρ(F ) = 1, products P ∈Pk(F ), k ∈ N,

explode for k→ ∞ by Definition 4.2.11.

We return on this aspect in the following Chapter on page 138.

10. Special cases:

1. Recalling that the set of stochastic matrices is closed under ma-

trix multiplication and that every stochastic matrix has spec-

tral radius equal 1 (ref Section 4.1), if the matrices in F are all

stochastic then the spectral radius of the family is exactly 1.

2. If the matrices in F are all upper–triangular, if they can be si-

multaneously upper–triangularized, if all the matrices in F com-

mutes or, more in general, if the Lie algebra associated with the

set of matrices is solvable (commutative families are Abelian Lie

algebras which are always solvable), if they are all symmetric or,

more in general, if they are all normal or, finally, if they can be

simultaneously normalized, then

ρ(F ) = max
Ai∈F
{ρ(Ai)} (4.37)

For more details see [84, 74, 69, 114, 90].

3. If F = {A,A∗} then ρ(F ) = ρ(AA∗)1/2 = σ1(A) i.e. the largest

singular value of A. In fact [114, Proposition 6.20] using the four
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members inequality (4.23) for k = 2 we have

ρ(AA∗)1/2 = σ1(A) = ‖AA∗‖1/2
2 (4.38)

4. ([104] and [75, Theorem 4]). Consider the family F = {A,B} with

A :=

(
a b

c d

)
, B :=

(
a −b

−c d

)
a,b,c,d ∈ R

The joint spectral radius of the family F is given by

ρ(F ) =

{
ρ(A) = ρ(B) if bc≥ 0√

ρ(AB) if bc < 0

5. ([104] and [75, Theorem 5]). Consider the family F = {A,B} with

A :=

(
a b

c d

)
, B :=

(
d c

b a

)
a,b,c,d ∈ R

The joint spectral radius of the family F is given by

ρ(F ) =

{
ρ(A) = ρ(B) if |a−d| ≥ |b− c|√

ρ(AB) if |a−d|< |b− c|

6. Let |F | be the family of matrices obtained from F as follows:

A = [ai j] ∈F −→ |A|= [|ai j|] ∈ |F |.

Then

ρ(|F |)≥ ρ(F ) (4.39)

From the previous result and the four members inequality (4.23)

we have that

ρk(F )≤ ρ(F )≤ ρ(|F |)

So if P ∈Pk(F ), k ∈ N, is such that ρ(P)1/k = ρ (|F |), then

ρ (F ) = ρ(P)1/k.
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11. Non–algebraicity: Any set composed of k real n×n–matrices can be

seen as a point in the space Rkn2
. Therefore, a subset of Rkn2

is a set

of k–tuples of n×n–matrices. Given a subset of Rkn2
this is defined

semi–algebraic if it is a finite union of sets that can be expressed by a

finite list of polynomial equalities and inequalities. Kozyakin [93] has

shown that, for all k,n≥ 2, the set of points x∈Rkn2
such that ρ(x)< 1

is not semi–algebraic and, for all k,n≥ 2, the set of points x∈Rkn2
cor-

responding to a bounded semigroup P(x) is not semi–algebraic (the

original paper by Kozyakin contains a flaw and the correction has been

published by the same author only in Russian. For a corrected version

in English we refer the reader to the Doctoral work of Theys [114,

Section 4.2]). In practice in the general case, given a discrete linear

inclusion DLI(F ), there is no procedure involving a finite number of

operations that allows to decide whether DLI(F ) is uniformly asymp-

totically stable or not i.e. the uniform asymptotic stability of DLI(F )

is in general hard to determine.

12. NP–hardness: In [116] Tsitsiklis and Blondel proved that, given a set

of two matrices F and unless P = NP, the spectral radius ρ(F ) is not

polynomial–time approximable. This holds true even if all nonzero

entries of the two matrices are constrained to be equal. Let us recall

that the function ρ(F ) is polynomial–time approximable if there exists

an algorithm ρ∗(F ,ε), which, for every rational number ε > 0 and

every set of matrices F with ρ(F ) > 0, returns an approximation of

ρ(F ) with a relative error of at most ε (i.e. such that |ρ∗−ρ| ≤ ερ)

in time polynomial in the bit size of F and ε (if ε = p/q, with p and

q relatively prime numbers, its bit size is equal to log(pq)); however

there are algorithms which are polynomial either in the bit size of F

or in ε. We conclude that the computation of the spectral radius of a

set of matrices is in general NP–hard and, consequently, it is NP–hard

to decide the stability of all products of a set of matrices (for a survey

of NP–hardness and undecidability we refer the reader to [62]). We

observe here that Gurvits in [85] provides a polynomial–time algorithm

for the case of binary matrices.
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13. Undecidability: A decision problem is a problem which output is bi-

nary and can be interpreted as“yes”or“not”. For instance the problem

of deciding whether an integer matrix is nonsingular is a decision prob-

lem. Since the nonsingularity can be checked, for example, by com-

puting the determinant of the matrix and comparing it to zero it is a

decidable problem, i.e. a problem for which there exists an algorithm

that always halts with the right answer. But there are also problems

for which this kind of algorithm does not exist, these are undecidable

problems.

Given a set of matrices F :

• The problem of determining if the semigroup P(F ) is bounded

is undecidable

• The problem of determining if ρ(F )≤ 1 is undecidable

These two results, which remain true even if F contains only rational

entries [63, 54], teach us that does not exist any algorithm allowing to

compute the spectral radius of a generic set F in finite time.

It is still unknown if it does exist in the generic case an algorithm that,

given a finite set of matrices F , decides whether ρ(F ) < 1. Such an

algorithm would allow to check the uniform asymptotic stability of

the dynamical system ruled by the generic set F . In the following we

discuss the relation between this kind of algorithm and the so–called

finiteness property.

The actual computation of ρ(F ) is an important problem in several

applications, as we mentioned in the introduction of the present Chapter.

According to the previous properties of non–algebraicity, NP–hardness and

undecidability the problem appears quite difficult in general.

However, this is not reason enough for declaring the problem intractable

and refraining from further research. As we discover in the next subsection

the existence of an s.m.p. for the family (i.e. a product in the semigroup

P(F ) with particular properties) allows in the general case to evaluate

exactly the spectral radius of a family making use of the Definition 4.2.6 as
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an actual computational tool. In order to do this we need the inf in equation

(4.28) to be a min, but this is always true for irreducible families.

4.2.3 Irreducibility, nondefectivity and finiteness property

When the inf in (4.28) is a min we say that the family F = {Ai}i∈I

admits an extremal norm.

4.2.10 Definition (Extremal norm). A norm ‖ ·‖∗ satisfying the condition

ρ(F ) = ‖F‖∗ := sup
i∈I
‖Ai‖∗

is said to be extremal for the family F (for an extended discussion see [119]).

Equivalently a norm ‖ ·‖∗ is called extremal for a given set F = {Ai}i∈I

if it satisfies ‖Ai‖∗ ≤ ρ(F ) for every i ∈I .

From Proposition 4.2.4 it is clear that, for a given norm, this inequality

cannot be strict simultaneously for all the matrices in the set.

Given a bounded family F = {Ai}i∈I of n×n–matrices with ρ(F ) > 0,

the normalized family is given by

F ∗ = {Ai/ρ(F )}i∈I (4.40)

with spectral radius ρ(F ∗) = 1 and P (F ∗) is the associated multiplicative

semigroup (ref equation (4.19) on page 109).

The definition of (weakly) defective matrix, given in section 4.1, extends

to bounded families of matrices as follows:

4.2.11 Definition (Defective and Nondefective Families). A bounded family

F of n×n–matrices is said to be defective if the corresponding normalized

family F ∗ is such that the associated semigroup P(F ∗) is an unbounded

set of matrices. Otherwise, if either ρ(F ) = 0 or ρ(F ) > 0 with P (F ∗)

bounded, then the family F is said to be nondefective.

The following result can be found, for example, in [110] and [52]:

4.2.12 Proposition. A bounded family F of n×n–matrices admits an ex-

tremal norm ‖ · ‖∗ if and only if it is nondefective.
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As previously mentioned we want to make use of Definition 4.2.6 as an

actual computational tool for the spectral radius ρ(F ). To do this we need

to ensure that the family admits an extremal norm i.e. we have to check the

defectivity or nondefectivity of the set F .

Strictly connected to defectivity of a family there is the concept of re-

ducibility.

4.2.13 Definition (Reducible and Irreducible families). A bounded family

F = {Ai}i∈I of n×n–matrices is said to be reducible if there exist a nonsin-

gular n×n–matrix M and two integers n1,n2 ≥ 1, n1 + n2 = n, such that

M−1AiM =

(
A(11)

i A(12)
i

O A(22)
i

)
for all i ∈I (4.41)

where the blocks A(11)
i , A(12)

i , A(22)
i are n1×n1–, n1×n2– and n2×n2–matrices,

respectively. On the contrary, if a family F is not reducible, then it is said

to be irreducible.

Irreducibility means that only the trivial subspaces 0 and Cn are invari-

ant under all the matrices of the family F . Otherwise F is called reducible.

The concept of irreducibility was introduced in the joint spectral radius the-

ory by Barabanov in [51], where he named irreducible families nonsingular

sets.

We observe that some authors refer to reducibility as decomposability

(irreducibility as non–decomposability) in order to avoid confusion with the

notion of reducibility commonly used in linear algebra and utilized in the

previous Chapters [24, Definition 6.2.21].

An immediate consequence of irreducibility of F is that ρ(F ) > 0, in

fact, in this case the semigroup P(F ) is irreducible and, therefore, does

not consist of nilpotent elements, by the Levitzky Theorem [97]. So we can

always normalize an irreducible set of matrices F by ρ(F ) obtaining a set

with generalized spectral radius equal to 1.

Another consequence of irreducibility of a family is stated in the next

Theorem and its Corollary, which follow easily from the Barabanov’s con-

struction of extremal norms for irreducible families of matrices [51].
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4.2.14 Theorem ([72, Lemma 4]). If a bounded family F of n×n–matrices

is defective, then is reducible.

and, therefore,

4.2.15 Corollary ([51, 72, 107]). If a bounded family of matrices is irre-

ducible then it is nondefective, i.e. it does exist an extremal norm for the

family.

In Figure 4.1 it is represented the space B of bounded families of matrices

in Cn×n . This space can be split into the set of the reducible families R and

its complement IR , the set of the irreducible ones. Families of matrices can

be nondefective or defective: the set D of the defective families is a proper

subset of R i.e. D  R. In fact Theorem 4.2.14 implies that a defective

family is always reducible, but the opposite implication is not necessarily

true. For example, for n≥ 2 all single families F = {A} are clearly reducible

as the Jordan canonical form proves, but not necessarily defective. The set

of nondefective families ND , the complement of D in B, is denoted by grey

dots.

About the dimension of set D and R Maesumi [100] proposed the fol-

lowing conjecture

4.2.16 Conjecture. Reducible (decomposable) matrix sets form a set of

measure zero in the corresponding space of matrices. Defective matrix sets

form a set of measure zero within the set of reducible matrices.

In the next Chapter, on page 137, we delve further this analysis especially

explaining how reducible families can be handled.

We add just that Brayton and Tong in [65] give an alternative sufficient–

condition for nondefectiveness. They prove that, considered each matrix

P in the semigroup P(F ) and the associated similarity matrix SP that

reduce P into its Jordan form, if every SP has columns linearly indepen-

dent uniformly on all P ∈P(F ), then F is nondefective. This alternative

sufficient–condition represents the generalization of the concept of strongly

nondefectiveness to the case of sets of matrices, in fact for a single matrix A

strongly nondefectiveness is equivalent to semisimplicity of all the eigenval-

ues in the spectrum of A or equivalently to diagonalizability of A (ref pages
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Figure 4.1: Space of bounded families of matrices B: the set of defective

families is denoted by D , while its complement, highlighted by dots, is the

set of nondefective families ND .

5 and 105). Clearly strongly nondefectiveness implies nondefectiveness, but

checking this sufficient–condition is not feasible in practice.

As previously mentioned there are not known algorithms for deciding

uniform asymptotic stability of a generic set of matrices and it is unknown

if this problem is algorithmically decidable in general. We have also seen

that uniform asymptotic stability of the set F is equivalent to ρ(F ) < 1.

In order to check if ρ(F ) < 1 for finite families we may think of using the

four members inequality (4.23)

ρk(F )≤ ρ(F )≤ ρ̂k(F ) for all k ≥ 1

The procedure could be the following [70]:

(1) We evaluate

ρk(F ) := max
P∈Pk(F )

ρ(P)1/k and ρ̂k(F ) := max
P∈Pk(F )

‖P‖1/k

for increasing values of k ≥ 1.

(2) As soon as ρ̂k < 1 or ρk ≥ 1 we stop and declare the set uniform asymp-

totic stable or unstable respectively.
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We observe that this procedure always stops after finitely many steps

unless ρ = 1 and ρk < 1 for all k≥ 1, but this never occurs for families that,

satisfying the finiteness property, have an s.m.p.

4.2.17 Definition (Finiteness property and s.m.p.). A finite family F of

n×n–matrices has the finiteness property if there exists, for some k ≥ 1, a

product P ∈Pk (F ) such that

ρ
(
P
)

= ρ (F )k .

The product P is said to be a spectrum–maximizing product or s.m.p.

for F . Some authors refer to optimal product instead of s.m.p., see for

instance [91, 100].

An s.m.p. is said minimal if it is not a power of another s.m.p. of F .

Any eigenvector x 6= 0 of P related to an eigenvalue λ with |λ |= ρ(P) is

said to be a leading eigenvector of F .

From the previous definition is evident that uniform asymptotic stability

is algorithmically decidable for finite sets of matrices that have the finiteness

property.

Lagarias and Wang in 1995 [96] conjectured that the finiteness prop-

erty was valid for all finite families of real matrices (the so–called finiteness

conjecture). Unfortunately this conjecture does not hold true: Bousch and

Mairesse [64] and later other authors [60, 94] presented non–constructive

counterproofs. In particular in [60] Blondel et al. proved that for the para-

metric family

Fα = {A, αB}=

{[
1 1

0 1

]
, α

[
1 0

1 1

]}
with α ∈ [0,1]

there exist uncountably many values of the parameter α for which Fα does

not satisfy the finiteness conjecture. They were unable to find a single

explicit value of α and they conjectured that the set of values α ∈ [0,1] for

which the finiteness conjecture is not satisfied is of measure zero. Recently

Hare et al. [86], using combinatorial ideas and ergodic theory, have been

able to approximate, up to a desired precision, an explicit value α such

that Fα does not satisfy the finiteness conjecture. The question if there
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exist families of matrices with rational entries that violate the conjecture

remains still open. Based on all the numerical experiments developed in the

last years and the results previously mentioned a new conjecture has been

introduced:

4.2.18 Conjecture ([60, 100, Blondel et al. and Maesumi]). The finiteness

property is true a.e. in the space of finite families of complex square matrices,

i.e. the set of families of matrices for which the finiteness property is not

true has measure zero in the space of finite families.

If this conjecture is true then it suggests us to track s.m.p.’s candidates

out and validate them with some procedure in order to find the spectral

radius of the family. In the next Chapter we explain how to perform the

validation step using particular extremal norms for the given set.

The idea behind this last conjecture is that the NP–hardness, non–

algebraicity and undecidability results are due to certain rare and extreme

cases and that in the generic case the evaluation of the spectral radius, while

could be computationally intensive, is possible. About the computational

complexity we remind an example, given by Berger and Wang [52, Example

2.1], of a set of two 2×2–matrices with minimal s.m.p. of length k ≥ 1 with

k arbitrarily large:

F =

{
α

k

(
0 0

1 0

)
,α−1

(
cos π

2k sin π

2k

−sin π

2k cos π

2k

)}
with 1<α <

(
cos

π

2k

)−1

They prove that ρ(F ) = 1, ρ j(F ) < 1 for j ≤ k and ρk+1(F ) = 1.

We recall that Blondel and Tsitsiklis in [63] proved also that the effective

finiteness conjecture is false:

4.2.19 Conjecture (Effective finiteness conjecture). For any finite set F

of square matrices with rational entries there exists an effectively computable

natural number t(F ) such that ρ t(F )(F ) = ρ(F )

The falseness of this conjecture implies that, given a family of matri-

ces with rational entries which admits a spectrum–maximizing product, the

length of the s.m.p. can be arbitrary long and consequently the computation
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of the spectral radius can become a tough problem. Nevertheless for random

families this product appears to be, luckily, quite short in general.

The finiteness property is known to hold in many cases:

• when the matrices in F are all simultaneously upper–triangularizable,

or they can be simultaneously normalized, or the Lie algebra associated

with the set F is solvable. In these cases, in fact, the spectral radius

is simply equal to the maximum of the spectral radii of the matrices

(Property 10, special case 2 on page 115);

• when a finite set of real matrices admits an extremal piecewise analytic

norm in Rn. A piecewise analytic norm is any norm on Rn whose

unit ball B has a boundary which is contained in the zero set of a

holomorphic function f (z), i.e. complex differentiable at every point

in its domain, defined on a connected open set Ω ∈ Cn containing 0,

which has f (0) 6= 0 (Lagarias and Wang [96]);

• when a finite set of real matrices admits an extremal piecewise algebraic

norm in Rn. A piecewise algebraic norm is one whose boundary is

contained in the zero set of a polynomial p(z) ∈R[zl, . . . ,zn], which has

p(0) 6= 0. This is the case when the unit ball of a norm is a polytope

(see the next Chapter), or an ellipsoid (ref page 104), or the lp norm

for rational p, with 1 ≤ p ≤ ∞ (Lagarias and Wang in [96] extended

the result proved by Gurvits in [84] for real polytope extremal norms

to the general case of piecewise algebraic norms in Rn);

• when a finite set of matrices admits a complex polytope extremal norm.

This it has been proved by Guglielmi, Wirth and Zennaro in [76, The-

orem 5.1] extending to the complex case the results by Gurvits [84]

and Lagarias and Wang [96]. We come back to polytope norms in the

next Chapter.

For other classes of sets of matrices the finiteness property has been

only conjectured to be true, an example is the class of sets of matrices

with rational entries. Indeed the proof of the finiteness property for sets

of rational matrices would be satisfactory for practical applications: the

matrices that one handles or enters in a computer are rational–valued.
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Recently Blondel and Jungers [91] have proved the following Theorem:

4.2.20 Theorem ([91, Theorem 4]).

1. The finiteness property holds for all sets of nonnegative rational ma-

trices if and only if it holds for all pairs of binary matrices.

2. The finiteness property holds for all sets of rational matrices if and

only if it holds for all pairs of matrices with entries in {−1,0,+1}.

They proposed, consequently, the following conjecture

4.2.21 Conjecture ([56, 91, Blondel, Jungers and Protasov]). Pairs of

binary matrices have the finiteness property.

If this conjecture is correct then, by Theorem 4.2.20, nonnegative ra-

tional matrices also satisfy the finiteness property and, thus, the question

ρ(F ) < 1 becomes decidable for sets of matrices with nonnegative rational

entries. From a decidability point of view this last result would be some-

what surprising since it is known that the closely related question ρ(F )≤ 1

is known to be no algorithmically decidable for such sets of matrices (ref

Property 13 on page 117). Blondel and Jungers [91] proved that pairs of

2×2 binary–matrices satisfy the finiteness property and observed that the

length of the s.m.p.’s is always very short. This result is promising even

though a generalization to the case of n×n–matrices seems quite difficult

due to the falseness of the effective finiteness conjecture 4.2.19, which im-

plies that the length of the s.m.p.’s for families of n×n–matrices can become

extremely long.

A more general version of the previous Conjecture is the following

4.2.22 Conjecture ([56, 91, Blondel, Jungers and Protasov]). The finite-

ness property holds for pairs of matrices with entries in {−1,0,+1} (the

so–called sign–matrices).

This last would imply, by Theorem 4.2.20, that the finiteness property

holds for all sets of rational matrices. In the following Chapter we prove ana-

lytically the finiteness property for pairs of 2×2 sign–matrices, i.e. matrices

with entries in {−1,0,+1}.



Chapter 5

An algorithm for the

Spectral Radius exact

computation

An algorithm for efficiently computing lower and upper bounds for the

spectral radius ρ(F ) was proposed by Gripenberg in [74] and is based on

the four members inequality (4.23) applied to bounded families

ρk(F )≤ ρ(F )≤ ρ̂k(F ) for all k ≥ 1 (5.1)

plus a branch and bound technique. Some other approaches for the ap-

proximation of this quantity have been recently considered for example in

[108, 58, 59] and [57]. For an overview of several recent algorithms and

methods that use the extremal norm approach for the approximation of the

joint spectral radius we refer the reader to the recent paper [55] by Chang

and Blondel and to the theses of Theys [114] and Jungers [90]. The problem

we handle here, however, is that of an exact computation.

A way to compute exactly the joint spectral radius is based on the fol-

lowing property. If α > 0 then by (4.31) we have that

ρ(F ) = αρ

(
1
α

F

)
.

So, if Q∈Pk(F ), k≥ 1, is a certain product such that α = ρ(Q)1/k > 0, then

we have ρ
( 1

α
F
)
≥ 1. If we are able to find a norm such that ‖ 1

α
F‖ = 1,
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then

α ≤ ρ(F )≤ α =⇒ ρ(F ) = α = ρ(Q)1/k.

This would mean that the finiteness property holds and the product Q is an

s.m.p. for the family F . The key point is the individuation of an extremal

norm.

In this Chapter we present an algorithm, based on the previous idea, for

the exact computation of the spectral radius for finite sets of matrices via

the construction of the unit ball of an extremal polytope norm.

As an application we address the problem of establishing the finiteness

property of pairs of 2×2 sign–matrices. This problem is related to the

conjecture that pairs of sign–matrices fulfil the finiteness property for any

dimension (ref conjecture 4.2.22). The truthfulness of this conjecture would

imply, as we mentioned in the previous Chapter, that finite sets of rational

matrices fulfil the finiteness property, which would be very important in

terms of the computation of the joint spectral radius. The technique used in

this Chapter could suggest an extension of the analysis to n×n sign–matrices,

which still remains an open problem.

The summary of the Chapter is the following. In Section 5.1, after

recalling some definitions and results on polytope norms, we introduce the

main ideas of a procedure able to find an extremal norm in this class. We

provide a set of assumptions which guarantees the existence of an extremal

norm of polytope type that is finitely generated(see also [76]) and we present

the algorithm. Then, in Section 5.2, we prove the finiteness property for

pairs of 2×2 sign–matrices on a case–by–case basis. Last Section is devoted

to outline some conclusions, while Appendix A contains the details of the

analysis presented in Section 5.2.

5.1 Extremal polytope norms

In this section we focus our attention on a special class of norms, in

particular we are concerned with the possible construction of the unit ball

of an extremal norm for a finite family.
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We start recalling basic definitions and properties for real polytope norms

(see for instance [120]).

5.1.1 Definition (Balanced real polytope (b.r.p.)). A bounded set P ⊂Rn

is a balanced real polytope (b.r.p.) if there exists a finite set of vectors X =

{xi}m
i=1 (with m ≥ n) such that span(X ) = Rn, i.e. the set X is absorbing,

and

P = co(X ,−X ), (5.2)

where co denotes the convex hull. Therefore

P =

{
x =

m

∑
i=1

λi xi + µi (−xi) : λi,µi ≥ 0 and
m

∑
i=1

(λi + µi)≤ 1

}
(5.3)

Moreover, if co(X ′,−X ′) co(X ,−X ) ∀ X ′  X , then the set X is

called an essential system of vertices for P and any vector xi ∈X is called

a vertex of P.

Since the set P is absorbing, convex and bounded, clearly, it is the unit

ball of a norm ‖ · ‖P on Rn.

5.1.2 Definition (Real polytope norm). We call real polytope norm any

norm ‖ · ‖P whose unit ball is a b.r.p. P.

The real polytope norms are characterized as follows.

5.1.3 Lemma. Let X = {xi}m
i=1 be a set of vectors spanning Rn and P =

co(X ,−X ). Set ‖·‖P the corresponding real polytope norm. Then, ∀z∈Rn,

we have

‖z‖P = min
λi≥0,µi≥0

{
m

∑
i=1

(λi + µi) : z =
m

∑
i=1

λi xi + µi (−xi)

}
. (5.4)

Proof. The equality (5.4) is just the Minkowski functional (see [88]) associ-

ated with the set P defined in (5.3).

Note that (5.4) is a linear programming problem, which can be solved

efficiently (see e.g. [117]).

We consider now the complex case. Following [82] we define
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5.1.4 Definition (Absolutely convex set). Given a set X ⊂Cn, it is defined

absolutely convex if, for all x1,x2 ∈X and λ1,λ2 ∈ C s.t. |λ1|+ |λ2| ≤ 1, it

holds that λ1x1 + λ2x2 ∈X .

5.1.5 Definition (Absolute convex hull (absco)). Let X ⊂ Cn. Then the

intersection of all absolutely convex sets containing X it is called the abso-

lutely convex hull of X and denoted by absco(X ).

It is well known that absco(X ) is the set of all the finite absolutely

convex linear combinations of vectors of X , i.e. x ∈ absco(X ) if and only if

there exist x1, . . . ,xk ∈X with k ≥ 1 such that

x =
k

∑
i=1

λi xi with λi
′s ∈ C and

k

∑
i=1
|λi| ≤ 1. (5.5)

So if X = {x1, . . . ,xm}m∈N is a finite set of vectors in Cn, then

absco(X ) =

{
x ∈ Cn

∣∣∣ x =
m

∑
i=1

λi xi with λi
′s ∈ C and

m

∑
i=1
|λi| ≤ 1

}
(5.6)

and, in this case, it is a closed subset of Cn.

We can now generalize the usual concept of real balanced polytope to

the complex case.

5.1.6 Definition (Balanced complex polytope (b.c.p.)). We say that a

bounded set P ⊂ Cn is a balanced complex polytope (b.c.p.) if there ex-

ists a finite set of vectors X = {xi}m
i=1 such that span(X ) = Cn and

P = absco(X ). (5.7)

Moreover, if absco(X ′) absco(X ) for all X ′  X , then X will be called

an essential system of vertices for P, whereas any vector uxi with u ∈ C,

xi ∈X , and |u|= 1, will be called a vertex of P.

We observe that, geometrically speaking, a b.c.p. P is not a classical

polytope. In fact, if we identify the complex space Cn with the real space

R2n, we see that P is not bounded by hyperplanes. In general even the inter-

section P
⋂
Rn is not a classical polytope. However, if the b.c.p. P admits

an essential system of real vertices, then P
⋂
Rn is a classical polytope.
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Furthermore given a b.c.p. P the essential system of vertices X is

uniquely determined modulo scalar factors of modulus 1 as stated in the

following Proposition

5.1.7 Proposition. Assume that X = {xi}m
i=1 and X = {xi}k

i=1 are two

essential systems of vertices for a b.c.p. P. Then

k = m and, for every i = 1, . . . ,m, there exist ji ∈ [1,m] and ui ∈C with |ui|= 1

s.t. xi = ui · x ji.

Now we extend the concept of real polytope norm to the complex case in

a straightforward way.

5.1.8 Lemma. Any b.c.p. P is the unit ball of a norm ‖ · ‖P on Cn.

Proof. Suppose that P = absco(X ), since span(X ) = Cn, the set P is ab-

sorbing. Thus, since it is also absolutely convex and bounded, for every

z ∈ Cn the Minkowski functional associated with P (see [88])

‖z‖P = inf{λ > 0 | z ∈ λP}. (5.8)

is a vector norm on Cn.

5.1.9 Definition (Complex polytope norm). We shall call complex poly-

tope norm any norm ‖ · ‖P whose unit ball is a b.c.p. P.

Let P be a b.c.p. with X = {xi}m
i=1 an essential system of vertices and

let ‖·‖P be the corresponding complex polytope norm. Then, for any z∈Cn,

the complex polytope vector norm associated with P is given by

‖z‖P = min

{
m

∑
i=1
|λi|

∣∣∣ z =
m

∑
i=1

λi xi

}
, (5.9)

This equality is obtained by rewriting (5.8) taking into account equations

(5.6) and (5.7).

The next Theorem shows that the set of the complex polytope norms

is dense in the set of all norms defined on Cn and that, consequently, the

corresponding set of induced matrix complex polytope norms is dense in the

set of all induced n×n-matrix norms.
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5.1.10 Theorem ([82]). Let ‖ · ‖ be a norm on Cn. Then, for any ε > 0,

there exists a b.c.p. Pε whose corresponding complex polytope norm ‖ · ‖ε

satisfies the inequalities

‖x‖ ≤ ‖x‖ε ≤ (1 + ε)‖x‖ for all x ∈ Cn. (5.10)

Moreover, denoting by ‖ · ‖ and ‖ · ‖ε also the corresponding induced matrix

norms, it holds that

(1 + ε)−1‖A‖ ≤ ‖A‖ε ≤ (1 + ε)‖A‖ for all A ∈ Cn×n . (5.11)

Due to such density property and recalling Definition 4.2.6 and Theorem

4.2.7 we have the following result

5.1.11 Theorem. The spectral radius of a bounded family F of real n×n–

matrices is characterized by the equality

ρ(F ) = inf
‖·‖∈Npol

‖F‖ (5.12)

where Npol denotes the set of all possible induced n×n–matrix complex poly-

tope norms.

We recall that nondefective families are, by Proposition 4.2.12, such that

the inf in (4.28) is a min. The natural question that now arises is when a

nondefective family admits an extremal complex polytope norm i.e. under

which conditions the extremal norm associated with a nondefective family

can be an extremal complex polytope norm (the inf in (5.12) becomes a

min).

In [76] Guglielmi, Wirth and Zennaro proposed the following conjecture

5.1.12 Conjecture (CPE Conjecture). Assume that a finite family of com-

plex n×n-matrices F = {Ai}m
i=1 is nondefective and has s.m.p. P. Then there

exists an extremal complex polytope norm for F .

We recall that the opposite implication, a nondefective family has an

s.m.p. if it admits an extremal complex polytope norm, it has been proved

by the same authors (ref page 125) generalizing the results by Gurvits [84]

and Lagarias and Wang [96].



5.1 Extremal polytope norms 133

Although counterexamples to this conjecture have been found (see [92]),

such implication it has been proved to hold true under some conditions: this

is the so–called Small CPE Theorem [76]. In order to present this result we

need to introduce additional theoretical properties and definitions.

As already noticed, after choosing Q ∈Pk(F ), with k ≥ 1, such that

α = ρ(Q)1/k > 0, it is convenient to consider a scaling of the original family

F = {Ai}i∈I by the scalar α

F ∗ =
{

α
−1 Ai

}
i∈I . (5.13)

In such a way, in fact, we automatically have ρ(F ∗) ≥ 1. We remark

that a suitable product Q can be selected using, for instance, the above

mentioned Gripenberg’s algorithm [74], a choice for Q is that of the product

determining the lower bound ρk(F ) with k sufficiently large (as mentioned

in the previous Chapter luckily the length of s.m.p.’s of random families

is quite short in general). Then, considering the associated multiplicative

semigroup P (F ∗) as defined in equation (4.19), we have that

5.1.13 Theorem (Barabanov [51]). If P (F ∗) is bounded, then

F ∗ has an extremal norm and ρ (F ∗) = 1

This implies that F is nondefective, it satisfies the finiteness property

and Q is an s.m.p. for the family.

The following Theorem, that is a slight variant of a result proved by Pro-

tasov [106], illustrates the possible use of trajectories (ref Definition 4.2.8)

to construct an extremal norm, the existence of which is guaranteed by

Barabanov’s Theorem.

5.1.14 Theorem (Guglielmi and Zennaro [83, Theorem 2.1]). Consider a

family F ∗ of n× n–matrices, a vector x ∈ Cn and the associated trajectory

T [F ∗,x] be such that:

(i) ρ(F ∗)≥ 1

(ii) span(T [F ∗,x]) = Cn;

(iii) T [F ∗,x] is a bounded subset of Cn.
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Then

F ∗ is nondefective, ρ(F ∗) = 1 and S [F ∗,x] = absco(T [F ∗,x]) is the unit

ball of an extremal norm ‖ · ‖ for F ∗ (that is, ‖F ∗‖= 1).

Proof. By (ii) and (iii) the absolutely convex set

S = S [F ∗,x] = absco(T [F ∗,x])

is bounded and absorbing. This means that we can define a vector norm by

means of the Minkowski functional associated with S (see [88]),

‖z‖S = inf{λ > 0 | z ∈ λS }. (5.14)

Now, by definition of S ,

A∗i S ⊆S ∀ A∗i ∈F ∗

which means that the family F ∗ maps the set S into itself. Therefore by

submultiplicativity of the norms and by Theorem 5.1.13

‖F ∗‖S ≤ 1 =⇒ P (F ∗) is bounded =⇒ ρ(F ∗) = 1

When ρ(F ∗) = 1, i.e. when the candidate s.m.p. Q ∈Pk(F ) that we

use to scale the family is actually an s.m.p. for F , building the trajectory

provides a tool for the construction of the unit ball of an extremal norm

and, hence, for the computation of the spectral radius.

Assume that the hypotheses of Theorem 5.1.14 hold. The possibility

of actually determining an extremal polytope norm, if any, is based on the

search for a suitable initial vector x to which it corresponds a trajectory such

that the set S [F ∗,x] is a balanced complex polytope: this is the aim of the

Small CPE Theorem.

5.1.15 Definition. Let F be a family of complex n×n-matrices and F ∗ =

(1/ρ(F ))F be the corresponding normalized family. A set X ⊂ Cn is said

to be F -cyclic if for any pair (x,y) ∈ X ×X , there exist α,β ∈ C with

|α| · |β |= 1 and two normalized products P∗,Q∗ ∈P (F ∗) such that

y = α P∗ x and x = β Q∗ y.
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5.1.16 Definition. A nondefective bounded family F of complex n× n-

matrices is said to be asymptotically simple if the set E of its leading eigen-

vectors (see Definition 4.2.17) is finite (modulo scalar nonzero factors) and

F -cyclic.

5.1.17 Theorem (Small CPE Theorem [76, Theorem 5.2]). Assume that a

finite family F ∗ of complex n×n-matrices fulfils the assumptions of Theorem

5.1.14. Furthermore, assume that

(iv) F ∗ is asymptotically simple;

(v) x is a leading eigenvector of F ∗.

Then the set

∂S [F ∗,x]
⋂

T [F ∗,x] (5.15)

is finite modulo scalar factors of unitary modulus. Consequently, there exist

a finite number of products P∗(1), . . . ,P
∗
(s) ∈P (F ∗) such that

S [F ∗,x] = absco
(
{x,P∗(1)x, . . . ,P

∗
(s)x}

)
, (5.16)

so that S [F ∗,x] is a b.c.p.

The authors prove also the following refinement of Theorem 5.1.17.

5.1.18 Theorem. Let the hypotheses of Theorem 5.1.17 hold and let F ∗

have a unique minimal s.m.p. (see Definition 4.2.17). Then all the leading

eigenvectors of F ∗ (in the set Ξ = E
⋂

∂S [F ∗,x]) are vertices of the b.c.p.

S [F ∗,x].

We observe that the knowledge (or the guess) of a spectrum–maximizing

product is essential in order to make use of these last Theorems, but, as

already mentioned, a suitable product Q can be selected using, for instance,

the Gripenberg’s algorithm [74], which provides candidate s.m.p.’s of pro-

gressively higher length.

Guglielmi, Wirth and Zennaro have also shown in [76, Example 6.3]

that, for a different choice of the initial vector, the finite convergence may

not hold. Since we are interested in finiteness properties and hence in an
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exact determination of an extremal norm, such a choice of the initial vector

turns out to be of primary importance.

We remark that in many cases the family has a unique s.m.p. which has

a unique leading eigenvalue and consequently a unique leading eigenvector.

This implies that all the others leading eigenvectors, which are associated

with the finitely many periodic permutations of the unique s.m.p., are triv-

ially F -cyclic and consequently the family is asymptotically simple.

5.1.1 A procedure for finding an extremal polytope norm

We assume that F is finite and nondefective. The following procedure

is derived by a suitable development of previous algorithms (see[81, 83] and

[106]).

The idea is that of computing iteratively the trajectory T [F ∗,x] by

applying recursively the scaled family F ∗ to a suitable initial vector x. While

iterating, we have to check whether F ∗ maps the convex hull of the balanced

trajectory T [F ∗,x] into itself; if this holds true we stop.

5.1.19 Algorithm. (for the construction of the unit ball of an extremal

complex polytope norm for a nondefective finite family F = {A1, . . . ,A`})
Initialization

(0) Choose a candidate s.m.p. Q ∈Pk(F ) (for some k ≥ 1)

(1) Set ρ = ρ(Q)1/k and define the scaled family

F ∗ = {ρ−1 Ai}i∈{1,...,`} which is such that ρ(F ∗)≥ 1

(2) Compute the candidate leading eigenvector u of F ∗ associated with Q

and set v0 = u

(3) Define for step 0 the sets:

the essential system of vertices W (0) = {v0}

new vectors generated V (0) = {v0}

essential vertices added X (0) = {v0}

the absolute convex hull P(0) = absco(W (0)).
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(4) Set s = 1

Main iteration

(5) Compute the set of new vectors generated at step s

V (s) = F ∗
(
X (s−1)

)
.

(6) If V (s) ⊂P(s−1) then

Set S [F ∗,x] = P(s−1)

Stop.

(7) Set P(s) = absco
(
W (s−1)∪V (s)

)
.

(8) Compute the essential system of vertices W (s) of P(s), such that

W (s) ⊆W (s−1)∪V (s).

(9) Set X (s) = V (s)∩W (s) set of the essential vertices added at step s;

(10) Set s = s + 1 and Goto (5).

If the procedure halts for some s, then S [F ∗,x] is a polytope. Moreover,

if the algorithm stops at step (6) and span
(
P(s−1)

)
= span

(
W (s−1)

)
= Cn

then S [F ∗,x] is a b.c.p., i.e. determines the unit ball of an extremal complex

polytope norm for F ∗, and Q is truly an s.m.p. for the family; otherwise

F is reducible, i.e. span
(
W (s−1)

)
is a common invariant subspace of the

family. When this last situation occurs, in order to proceed we may reduce

(decompose) the family by means of the transformation matrix

M =
[

M1 M2

]
where M1 ∈ Cn×n 1 provides a basis for the subspace span

(
W (s−1)

)
and M2 ∈

Cn×n 2 (where n2 = n−n1) gives a basis for its complement in Cn.

We obtain a transformed family made up of

M−1Ai M =

[
Ai Bi

0 Ci

]
with i ∈ {1, . . . , `} (5.17)
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which has the same joint spectral radius as the original family (ref Property

4 (4.32)). More precisely we have that

ρ (F ) = max{ρ(F1),ρ(F2)},

where F1 = {Ai}`i=1 and F2 = {Ci}`i=1 (ref Property 6 on page 114).

If we apply the same algorithm to both family F1 and F2, iterating this

process if necessary and making use also of the stopping criterion described

in the following, we can get the spectral radius of the original family F as the

maximum between ρ(F1) and ρ(F2). If ρ(F1)< ρ(F2) [or ρ(F1)> ρ(F2) ]

we can construct an extremal polytope norm for the original family using

the leading eigenvector of F2 [or F1]. If instead ρ(F1) = ρ(F2) it is an open

problem how to guarantee the existence and construct an extremal polytope

norm for the original family F .

We observe that the same algorithm may be applied also to defective

families. Theorem 4.2.14 ensures that a defective family is always reducible

(ref Fig. 4.1) so, making use of the previous algorithm, we should be able to

reduce correctly the family into two families F1 and F2 and iterating this

process we may be lead to identify the spectral radius of the original family.

However in this case we can not guarantee the success of the algorithm.

Given a candidate s.m.p. Q for the defective family and supposed x is an

associated candidate leading eigenvector, we do not know a priori if x belongs

or not to the nontrivial invariant subspace of the family, property that is

essential: if x does not belong to the nontrivial invariant subspace of F

and we use it as initial vector, the algorithm ends up by computing just a

diverging trajectory that span the entire space even if Q is truly an s.m.p.

of the family. Consider, in fact, that the defectiveness of the family does

not imply in general the defectiveness of the possible s.m.p., as shown by

Guglielmi and Zennaro in [79]. The authors present examples of defective

3×3 and 4×4 families that do not admit any defective s.m.p.’s (and also

any limit spectrum maximizing products ref [79]). So it can happen that F

is defective, but the candidate s.m.p. Q is nondefective and this makes very

intricate to guarantee a priori that a leading eigenvector of Q belongs to the

nontrivial invariant subspace of the family.

Finally we observe that, when the family is real and the leading eigen-
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vector associated with the candidate s.m.p. Q is real as well, we can apply

a simpler version of the previous algorithm: instead of considering absolute

convex hulls and complex polytope norms we can deal directly with con-

vex hulls and real polytope norms. In such a way at step (3) and (7) the

equations become

P(0) = co
(
W (0),−W (0)

)
P(s) = co

(
W (s−1)∪V (s)∪−W (s−1)∪−V (s)

)
and therefore we have to solve a linear programming problem. This is always

the case when we study the finiteness property of pairs of 2×2 sign–matrices.

A stopping criterion

A useful criterion to stop the iteration and eventually discard the candi-

date s.m.p. Q is given by the following Theorem (again, see also [106]).

5.1.20 Theorem. Let F be a finite irreducible family of matrices. Then

ρ(F ∗) > 1 if and only if, at some step s of Algorithm 5.1.19, v0 lies strictly

inside P(s), that is v0 ∈
◦

P (s).

Proof. Assume that, at some step s, v0 ∈
◦

P (s). This would mean that there

exists xs ∈ ∂P(s) such that xs = βsv0 with |βs|> 1. Let V (s) = {vi}m
i=1 be an

essential system of vertices of P(s). Thus we can write

xs =
m

∑
i=1

λivi with λi
′s ∈ C and

m

∑
i=1
|λi| ≤ 1. (5.18)

Since, by construction, for each i there exists a finite product Pi ∈P(F ∗)

such that vi = Pi v0, there must exist at least a product P∈P(F ∗) such that

‖Pv0‖P(s) = 1. Using the fact that 1 = ‖xs‖P(s) = |βs| · ‖v0‖P(s) , we have

‖Pv0‖P(s) = |βs| · ‖v0‖P(s) > ‖v0‖P(s) =⇒ ‖P‖P(s) ≥ |βs|> 1. (5.19)

Thus ‖F ∗‖P(s) > 1.

Since P(s) ⊆P(s+1), we would still have v0 ∈
◦

P (s+1) and the previous

condition would occur for all subsequent values of s, with |βs+1| ≥ |βs|.
If ρ(F ∗) = 1, by the irreducibility assumption,P(s) would converge to

some centrally symmetric convex set as s→ ∞.
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Consequently there would exist ŝ such that ‖P‖P(r) < |βs| for all r > ŝ,

which is not possible. Consequently ρ(F ∗) > 1. Viceversa, by the irre-

ducibility assumption, if ρ(F ∗) > 1 then

lim
s→∞

P(s) = Cn.

This implies that there exists s such that v0 ∈
◦

P (s).

5.2 Application: Finiteness property of pairs of

matrices in M2(S)

In this Section we address the problem of establishing the finiteness prop-

erty of pairs of 2×2 sign–matrices. We recall that a set of matrices has the

finiteness property if the maximal rate of growth, in the multiplicative semi-

group it generates, is given by the powers of a finite product.

As a main tool of our proof we make use of the procedure, presented in

the previous Section, to find a so–called real extremal polytope norm for the

set. In particular, we will check if a certain product in the multiplicative

semigroup is spectrum maximizing using the algorithm presented in the

previous Section.

For pairs of sign–matrices we develop the computations exactly and

hence we are able to prove analytically the finiteness property. On the

other hand, the algorithm can be used in a floating point arithmetic and

provide a general tool for approximating the joint spectral radius of a set of

matrices.

We start denoting by Mn(S) the set of pairs of n×n matrices with entries

in S = {−1,0,+1}. We recall Conjecture 4.2.22 by Blondel, Jungers and

Protasov which state that every pair of n×n sign–matrices has the finiteness

property.

We consider here the case of a family F = {A,B} where A,B ∈M2(S).

The number of ordered pairs No = (34−3)(34−5) = 5928 (obtained dis-

carding the zero matrix, the identity and its opposite from the set and the

cases where the second matrix is equal to the first one or its opposite) is

very large, but the number of cases to examine is immediately reduced to
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Ne = No/8, since the joint spectral radius of the sets {±A,±B} does not

change as well as it does not depend of the ordering of the two matrices.

Hence Ne = 741, which is still a quite large number of cases. By using suit-

able properties, we shall see that the actual number of essential cases to

examine is much lower.

Mainly, the properties we shall use are based on suitable similarity trans-

formations, which do not change the joint spectral radius.

As in [91], in order to analyze the essential cases, we separate them into

classes (n0,n1), where n0 is the number of non–zero entries of A and n1 is

the number of non–zero entries of B. By symmetry, we can assume n0 ≥ n1.

Our approach consists in showing the finiteness property of every considered

case by determining explicitly the associated s.m.p., in most cases through

the construction of the unit ball of a suitable real extremal polytope norm.

This does not allow a unified proof but, instead, requires to treat most of

the essential cases separately.

Although all the pairs of binary matrices have already been considered

in [91], here we reconsider the most difficult cases because our procedure

is quite different from that used in [91] and does not rely on the possible

non–negativity of the matrices.

The set of representative matrices (we exclude −A if we consider A) with

a single non–zero entry which has to be considered is given by C = {Ci}4
i=1

with

C1 =

(
1 0

0 0

)
, C2 =

(
0 1

0 0

)
, C3 =

(
0 0

1 0

)
, C4 =

(
0 0

0 1

)
.

The set of representative matrices with two non–zero entries which has

to be considered is given by D = {Di}11
i=1 with

D1 =

(
1 1

0 0

)
, D2 =

(
0 0

1 1

)
, D3 =

(
1 −1

0 0

)
, D4 =

(
0 0

−1 1

)
,

D5 =

(
1 0

1 0

)
, D6 =

(
0 1

0 1

)
, D7 =

(
1 0

−1 0

)
, D8 =

(
0 −1

0 1

)
,

D9 =

(
1 0

0 −1

)
, D10 =

(
0 1

1 0

)
, D11 =

(
0 1

−1 0

)
.
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The set of representative matrices with three non–zero entries which has

to be considered is given by E = {Ei}16
i=1 with

E1 =

(
1 1

1 0

)
, E2 =

(
1 −1

1 0

)
, E3 =

(
1 1

−1 0

)
, E4 =

(
1 −1

−1 0

)
,

E5 =

(
1 1

0 1

)
, E6 =

(
1 −1

0 1

)
, E7 =

(
1 1

0 −1

)
, E8 =

(
1 −1

0 −1

)
,

E9 =

(
1 0

1 1

)
, E10 =

(
1 0

−1 1

)
, E11 =

(
−1 0

−1 1

)
, E12 =

(
−1 0

1 1

)
,

E13 =

(
0 1

1 1

)
, E14 =

(
0 −1

1 1

)
, E15 =

(
0 1

−1 1

)
, E16 =

(
0 −1

−1 1

)
.

The set of representative matrices with four non–zero entries which has

to be considered is given by F = {Fi}8
i=1 with

F1 =

(
−1 1

1 1

)
, F2 =

(
1 −1

1 1

)
, F3 =

(
1 1

−1 1

)
, F4 =

(
1 1

1 −1

)
,

F5 =

(
1 1

−1 −1

)
, F6 =

(
1 −1

1 −1

)
, F7 =

(
1 −1

−1 1

)
, F8 =

(
1 1

1 1

)
.

Now consider the similarity transformations associated with the following

matrices:

P1 =

(
0 1

1 0

)
, P2 =

(
1 0

0 −1

)
, P3 =

(
0 1

−1 0

)
,

which are such that P2
1 = I, P2

2 = I, P2
3 =−I.

Clearly, for k = 1,2,3 we have that

PkCiP−1
k ∈±C, PkDiP−1

k ∈±D, PkEiP−1
k ∈±E, PkFiP−1

k ∈±F, (5.20)

so that these similarities do not change the finiteness property, nor the fact

that the matrices are sign–matrices.
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In detail, denoting by ∼ a similarity relation, we get

D1 ∼ D2 ∼ D3 ∼ D4, D5 ∼ D6 ∼ D7 ∼ D8, (5.21)

E1 ∼ E4 ∼ E13 ∼ E16, E2 ∼ E3 ∼ E14 ∼ E15,

E5 ∼ E6 ∼ E9 ∼ E10, E7 ∼ E8 ∼ E11 ∼ E12,
(5.22)

F1 ∼ F4, F2 ∼ F3, F5 ∼ F6, F7 ∼ F8. (5.23)

As we have mentioned, in the sequel we shall denote by

F ∗ = (1/ρ(P))1/k F for some P ∈Pk(F ) s.t. ρ(P) 6= 0

and call it the scaled family.

Our aim will be to prove that F ∗ has joint spectral radius equal to 1

(which implies that P is an s.m.p. of F ).

In several cases we shall observe that one of the following standard norms,

‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞, is extremal.

Some other cases are easily treated by observing that the real polytope

norm ‖ ·‖+∗ , associated with the b.r.p. P+ = co(V,−V ) with V = {v0,v1,v2},
where

v0 =

(
1

0

)
, v1 =

(
1

1

)
, v2 =

(
0

1

)
,

or ‖ ·‖−∗ , associated with the b.r.p. P− = co(W,−W ) with W = {w0,w1,w2},
where

w0 =

(
1

0

)
, w1 =

(
1

−1

)
, w2 =

(
0

1

)
,

is extremal.

For some cases we make use of the spectral radius properties previously

mentioned, while all the other cases are treated by using Algorithm 5.1.19.

Before summarizing the results through different tables, we give an ex-

tensive proof of an illustrative case.
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5.2.1 Illustrative case

Consider the case A = E2, B = D11.

We want to prove that P = ABA2 B is an s.m.p., ρ(F ) = ρ(P)1/5 =
(

3+
√

5
2

)1/5

and a real extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4,v5,v6}, where v0 is the leading eigenvector of P, v1 = A∗v0,

v2 = B∗v0, v3 = A∗v2, v4 = A∗v3, v5 = A∗v4, v6 = B∗v5. To this aim, set γ =
1

ρ(P)1/5 ≈ 0.825. Then we get

v0 =

(
1
2

1+
√

5

)
, v1 = γ

(
2

1+
√

5

−1

)
, v2 = γ

2

 3+
√

5
1+
√

5
2

1+
√

5

 ,

v3 = γ
3

(
1

3+
√

5
1+
√

5

)
, v4 = γ

3

 2
1+
√

5

−3+
√

5
1+
√

5

 , v5 = γ
4

(
3+
√

5
1+
√

5

−1

)
.

As illustrated in Figure 5.1, we analyze the transformed vectors F ∗(V ).

Some of them are vertices themselves by construction of P and, hence,

do not need to be analyzed. Here we report such vectors together with

the minimizing convex combinations of vertices of P which determine their

norms (see (5.4)):

A∗v0 = γ

( √
5−1

1+
√

5

1

)
= λv3 + µ(−v4), λ =

2(3 +
√

5)

γ2(11 + 5
√

5)
, µ =

2
γ2(7 + 3

√
5)
,

‖A∗v0‖P = λ + µ ≈ 0.90;

A∗v1 = v2;

A∗v2 = v3;

A∗v3 = λ (−v1), λ = γ
3, ‖A∗v3‖P = λ ≈ 0.56;

A∗v4 = γ
4

 5+
√

5
1+
√

5
2

1+
√

5

= λv2 + µv5, λ =
4(2 +

√
5)

7 + 3
√

5
γ

2, µ =
2

7 + 3
√

5
,

‖A∗v4‖P = λ + µ ≈ 0.98;

A∗v5 = v0;
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B∗v0 = v1;

B∗v1 = λ (−v0), λ = γ
2, ‖B∗v0‖P = λ ≈ 0.68;

B∗v2 = v4;

B∗v3 = v5;

B∗v4 = λ (−v2), λ = γ
2, ‖B∗v4‖P = λ ≈ 0.68;

B∗v5 = λv3, λ = γ
2, ‖B∗v5‖P = λ ≈ 0.68.

This proves the extremality of ‖ · ‖P and that P = ABA2 B is an s.m.p.

Figure 5.1: Polytope norm for the pair {A = E2, B = D11} (left) and the set

F ∗(V ) (right). Red points indicate the vectors {A∗vi}5
i=0 and blue points

indicate the vectors {B∗vi}5
i=0.

5.2.2 Summary of results

We show in the subsequent tables the s.m.p. (s.m.p.’s) for all significant

cases, that is for those matrix pairs whose analysis cannot be reduced to

that of another matrix pair appearing in the tables. Rows correspond to a

specific matrix A while columns to a matrix B in the pair F = {A,B}.

For a detailed analysis of specific cases we refer the reader to Appendix A.
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The case n0 = 1 (families of the type F = {Ci,C j}).

Recall that we suppose n0 ≥ n1. The only possibility is (n0,n1) = (1,1),

corresponding to families of the type F = {Ci,C j} (i < j).

The analysis is always trivial. In fact, it is very easy to see that ρ(F ) = 1

and any among ‖ ·‖1, ‖ ·‖2 and ‖ ·‖∞ is an extremal norm. Moreover, if i = 1

and j = 4 an s.m.p. is P = C1 or C4, respectively. In the case of i = 1

and j = 4 is valid also the Property 10, special case 5 on page 116. While if

(i, j) = (2,3) an s.m.p. is P = C2C3 by equation (4.38) of Property 10, special

case 3.

A\B C2 C3 C4

C1 A A A,B

C2 AB B

C3 B

The case n0 = 2.

The subcase (n0,n1) = (2,1) (families of the type F = {Di,C j}). Since

‖C j‖1 = ‖C j‖∞ = 1, ρ(Di) = 1 and either ‖Di‖1 = 1 or ‖Di‖∞ = 1, we have that

ρ(F ) = 1 and that an s.m.p. is P = Di.

The subcase (n0,n1) = (2,2) (families of the type F = {Di,D j}). In

view of (5.20) and (5.21), we can restrict the choice of the first matrix A to

the set D′ = {D1,D5,D9,D10,D11} and let the choice of B be free in D.

In the sequel we mark by an asterisk (∗) or two asterisks (∗∗) equivalent

columns.

A\B D2 D∗3 D∗4 D5 D6 D∗7 D∗8 D9 D10 D11

D1 A,B A,B A,B AB A,B A,B A,B A,B A,B A,B

D5 A,B A,B A,B A,B A,B A,B A,B A,B A,B

D9 A,B A,B A,B A,B A,B A,B A,B A,B

D10 A,B A,B A,B A,B A,B A,B A,B

D11 A,B A,B A,B A,B A,B A,B
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The case n0 = 3.

In view of (5.20) and (5.22), we can restrict the choice of the first matrix

A to the set E′ = {E1,E2,E5,E7} and let the choice of B to be free.

The subcase (n0,n1) = (3,1) (families of the type F = {Ei,C j}).

A\B C∗1 C2 C3 C∗4

E1 A A A A

E2 A,B A A A,B

E5 A,B A A4 B A,B

E7 A,B A A A,B

The subcase (n0,n1) = (3,2) (families of the type F = {Ei,D j}).

A\B D1 D2 D∗3 D4 D5 D∗6 D7 D8 D9 D10 D11

E1 A A A A A A A A A A A

E2 AB A2 B A,B A,B A,B A,B AB A2 B AB A,B ABA2 B

E5 A,B A2 B A,B A5 B A2 B A,B A5 B A,B A,B A3 B A4 B

E7 A,B A,B A,B AB AB A,B A,B A,B A,B A,B AB

The subcase (n0,n1) = (3,3) (families of the type F = {Ei,E j}).

A\B E2 E3 E∗4 E5 E6 E7 E8 E9

E1 A A A,B A A A A A

E2 AB B AB3 A2 B3 AB A,B A2 B3

E5 A3 B2 B A,B A,B A,B AB

E7 A,B B A,B A,B AB3

A\B E10 E11 E12 E∗13 E14 E15 E∗16

E1 A A A A,B A A A,B

E2 AB3 A,B AB B ABA(AB)2 B A,B B

E5 A4 B4 A3 B A3 B B A3 B A3 B2 B

E7 AB3 AB A,B B A,B AB B
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We remark that in this case we find the longest spectrum–maximizing

products, of length ` = 8, namely for F = {E5,E10}, where P = E4
5 E4

10 and

for F = {E2,E14}, where P = E2 E14 E2 (E2 E14)2 E14.

The case n0 = 4.

In view of (5.20) and (5.23), we can restrict the choice of the first matrix

A to the set F′ = {F1,F3,F5,F8} and let the choice of B be free.

The subcase (n0,n1) = (4,1) (families of the type F = {Fi,C j}).

A\B C∗1 C∗∗2 C∗∗3 C∗4

F1 A A A A

F3 A A A A

F5 B AB AB B

F8 A A A A

The subcase (n0,n1) = (4,2) (families of the type F = {Fi,D j}).

A\B D∗1 D∗2 D∗∗3 D∗∗4 D∗∗5 D∗∗6 D∗7 D∗8 D∗∗9 D∗10 D∗∗11

F1 A A A A A A A A A A A

F3 A A A A A A A A A A A

F5 B B AB AB AB AB B B AB B AB

F8 A A A A A A A A A A A

The subcase (n0,n1) = (4,3) (families of the type F = {Fi,E j}). It

is useful observing that P3F1P−1
3 = −F1, P3F3P−1

3 = F3, P1F5P−1
1 = −F5 and

that both the similarity transformations associated with P1 and P3 are one–

to–one applications between the sets of matrices E′′ = {E j | 1 ≤ j ≤ 8} and

E′′′= {E j | 9≤ j≤ 16}. Consequently, when A = Fi (i = 1,3,5), we can restrict

the choice of the matrix B within the set E′′.
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A\B E∗1 E2 E3 E∗4 E5 E6 E7 E8 E9−E16

F1 B A A B A A A AB

F3 B (AB)2 A2 B A2 BA3 B B A3 B2 AB2 A2 B A2 B

F5 B AB B B AB4 AB4 B AB

F8 A A A A A A A A A

The subcase (n0,n1) = (4,4) (families of the type F = {Fi,Fj}). If

A = F8, B ∈ F then A is an s.m.p.

Now it is useful to observe that P3F1P−1
3 =−F1, P3F3P−1

3 = F3, P3F5P−1
3 =

−F6 and P3F8P−1
3 = F7. Consequently, when A = Fi (i = 1,3), we can restrict

the choice of the matrix B within the set F′′ = {F2,F3,F4,F5}.

A\B F2 F3 F4 F5 F6

F1 A,B A,B A,B AB

F3 A,B A,B A2 B

F5 AB2 AB AB

F8 A A A A A

5.3 Conclusions and future work

We have proved the finiteness property for any pair of 2×2 sign–matrices.

In most non–trivial cases, this has been made possible by detecting an ex-

tremal real polytope norm for the family constituted by two sign–matrices.

The finite convergence of the procedure for constructing the unit ball of such

a norm, carried out on a case–by–case basis, implies the finiteness property.

This is a promising first step toward the validation of Conjecture 4.2.22

which would imply that finite sets of rational matrices fulfil the finiteness

property (ref Theorem 4.2.20).

A Matlab version of Algorithm 5.1.19 is available on the webpage of

Nicola Guglielmi1.

Unfortunately, it seems clear that such an approach can hardly be ex-

tended to the general case of a pair of sign–matrices of arbitrary dimension.

1http://univaq.it/~guglielm
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The use of an induction argument on the dimension seems difficult. Never-

theless, we plan to explore it in future.

The algorithm presented, which proves to be extremely useful in practice

as demonstrated by results reported in this Chapter and in Appendix A,

makes use of Theorem 5.1.17 (the so–called Small CPE Theorem) and its

refinement Theorem 5.1.18. It would be undoubtedly useful to extend these

Theorems to other cases. The task is tough (recall that Jungers and Protasov

[92] have founded counterexamples to Conjecture 5.1.12), but the possible

benefits are enticing.

Another problem we would like to address in a future work is that of

the joint spectral radius approximation. In many practical problems it is

just required to find a good approximation of the spectral radius of a family

and, as we said, the Gripenberg’s algorithm [74] allows to efficiently compute

lower and upper bounds of ρ(F ) based on the four members inequality (5.1).

However, while the lower bound ρk(F ) converges usually in a few steps k

to the actual value ρ(F ) due to the existence of a short s.m.p. for F ,

the convergence of the upper bound ρ̂k(F ) depends heavily on the operator

norm chosen. The idea we would like to develop in a future work is that

of using polytope norms as well as ellipsoidal norms [57] in the quest for

tighter upper bounds.

Finally we believe that Conjecture 4.2.18, concerning the measure of the

set of counterexamples to the finiteness property, deserves to be analyzed in

more details and we plan to study it in a future work.



Conclusions

In the present thesis we studied spectral properties of families of ma-

trices, with particular emphasis on rank–one perturbed matrices, stochastic

matrices and generic families.

In the first Chapter we introduced the complete principle of biorthog-

onality, generalizing the well known Brauer’s principle of biorthogonal-

ity, and we applied it to the study of the rank–one perturbed matrix

A(c) = cA + (1− c)λxv∗, with A a square complex matrix, c ∈ C, x and v

nonzero complex vectors such that Ax = λx and v∗x = 1. From this analysis

we derived the eigenvalues and Jordan blocks of A(c), an explicit expression

for both the left λ–eigenvector y(c) and its limit lim
c→1

y(c).

In Chapter 2 first we discussed the Google PageRank model and its ad-

herence to the reality, pointing out pathologies and limitations of the actual

model and proposing some possible improvements that led us to introduce

what we defined as a VisibilityRank or CommercialRank, quantity which

could be of interest, besides the Web ranking, also in other applications like

political/social sciences or in ranking the importance of a paper and/or of a

researcher looking in scientific databases.

Then we analyzed the characteristics of the matrix G(c) = cG+(1−c)evT

as a function of the complex parameter c, with G the basic (stochastic)

Google matrix and v a complex vector such that v∗e = 1. In particular,

making use of the general matrix–theoretic analysis made in the first Chap-

ter, we obtained the eigenvalues, Jordan form and the eigenvector structure

of G(c) for c ∈ C. For the left 1–eigenvector of G(c), which is the complex

analog of the PageRank vector y(c), we studied its regularity, limits, ex-

pansions, and conditioning as a function of c, discovering that the vector
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function y(c) is analytic in both the disk {c : |1− c| < ε} and the unit disk

{c : |c|< 1}. Therefore, the lim
c→1

y(c) exists unique and is equal to ỹ regardless

of the path taken, which can be a non–real path in the complex plane. We

discussed about the limit value ỹ = Y X∗v, where v is the personalization vec-

tor and Y X∗ = N is the ergodic projector coinciding with the Cesaro mean

lim
r→∞

1
r + 1

r

∑
j=0

G j(1).

In the last part of the Chapter, resting on the analysis of the general

parametric Google matrix developed in the first part, we proposed two al-

gorithms for the efficient evaluation of the PageRank. Both of them appear

to be promising, especially in the case of c close or equal to 1, and they are

a preliminary step that, in our opinion, merits further research.

In Chapter 3 we presented the Vicsek model, which allows to describe

the dynamics of groups of autonomous agents and the attainment of a global

consensus among the agents. We observed that whether the topology of the

network of agents is fixed or it varies over time, the convergence of the sys-

tem to a global consensus can be traced back to the spectral properties of

the matrices associated with the system which are, by construction, stochas-

tic matrices. In the latter case checking if the second spectral radius of the

family is strictly less than 1 proves to be a sufficient condition which guar-

antees the system to reach a global consensus eθcons independently of the

initial conditions θ(0). The common value θcons depends only on the initial

state of the system and on a ranking of the agents which proved to be a

generalization of the Google PageRank in a dynamical context.

We believe that analysing the influence of an agent, or group of agents,

on the final value θcons from a dynamical point of view may give new hints

in the study of many complex processes connected to human and biologi-

cal behavior like infectious diseases diffusion, goods and services prices in

economy, market trends in finance, viral marketing etc.

In the last part of the thesis we studied spectral properties of generic

families. In particular we presented the generalization of spectral radius to a

set of square matrices, the so–called joint spectral radius, and its properties.

We described an algorithm for the exact computation of this quantity which

is based on the construction of extremal polytope norm for the family. We
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used it to prove the finiteness property for any pair of 2×2 sign–matrices.

This is a promising first step toward the validation of Conjecture 4.2.22

which would imply that finite sets of rational matrices fulfil the finiteness

property, prospective extremely enticing from a practical point of view.

Finally, about the approximation of the joint spectral radius, even though

many algorithms have been proposed in the literature that allows to obtain

good approximations, we believe that more can be done in terms of accuracy

of the solution and time needed to evaluate it. For instance, the Gripenberg’s

algorithm [74] allows to compute lower and upper bounds of ρ(F ) based

on the four members inequality (5.1) and proves to be very useful in many

application. Nevertheless the achievable precision is tied to the matrix norm

used which is usually far away from being the extremal one. We believe that,

making use of polytope norms as well as ellipsoidal norms [57], it must be

possible to increase consistently the precision of this kind of algorithms.
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Appendices





Appendix A

Detailed analysis for pairs of

matrices in M2(S)

In this Appendix we provide a case–by–case analysis of the matrix pairs

tabulated in Section 5.2.2. In particular we provide explicitly the computed

extremal polytope norm in those cases where they have been used to deter-

mine an s.m.p.

The case n0 = 2

The subcase (n0,n1) = (2,2) (families of the type F = {Di,D j}).

• A = D1 and B = D j ( j = 2,3,4,9,10,11).

Since ρ(A) = ρ(B) = ‖A‖1 = ‖B‖1 = 1, we have that ρ(F ) = 1 and that

A and B are both s.m.p.’s.

• A = D1 and B = D5.

We have that B = A∗, equation (4.38) of Property 10, special case 3,

ensures that P = AB is an s.m.p.

• A = D1 and B = D6.

We find that P = B is an s.m.p., ρ(F ) = ρ(P) = 1 and an extremal

polytope norm is given P = co(V,−V ) with V = {v0,v1}, where v0 is

the leading eigenvector of P, v1 = A∗v0.
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• A = D1 and B = D j ( j = 7,8).

Since A2 = A, B2 = B, ρ(AB) = ρ(BA) = 0 and ρ(A) = ρ(B) = 1, we have

that ρ(F ) = 1 and that A and B are both s.m.p.’s.

• A = D5 and B ∈ D.

Since D5 = DT
1 and DT ⊆±D and since, if P is an s.m.p. of the family

F = {A,B}, then PT is an s.m.p. of the family F T = {AT ,BT}, we are

led again to the previous cases.

• A = D j and B = Dk ( j = 9,10,11, k = 2,3,4,6,7,8).

Since P1D9P−1
1 =−D9, P2D9P−1

2 = D9, P3D9P−1
3 =−D9, P1D10P−1

1 = D10,

P2D10P−1
2 = −D10, P3D10P−1

3 = −D10, P1D11P−1
1 = −D11, P2D11P−1

2 =

−D11, P3D11P−1
3 = D11 and since P1D2P−n1

1 = D1, P2D3P−1
2 = D1,

P3D4P−1
3 = −D1, P1D6P−1

1 = D5, P2D7P−1
2 = D5, P3D8P−1

3 = −D5, by

using the similarity transformations associated with P1,P2 and P3 we

are led to the previous cases.

• A = D j and B = Dk ( j,k = 9,10,11).

Since ρ(A) = ρ(B) = ‖A‖∞ = ‖B‖∞ = 1, we have that ρ(F ) = 1 and that

A and B are both s.m.p.’s.

The case n0 = 3

The subcase (n0,n1) = (3,1) (families of the type F = {Ei,C j}).

• A = E1, B ∈ C.

We find that P = A is an s.m.p., ρ(A) = 1+
√

5
2 = ‖A‖2 and ‖B‖2 =

√
2

as a result ρ(F ) = ρ(A).

• A = E2, B ∈ C.

Since ρ(A) = ‖A‖+∗ = ‖B‖+∗ = 1, we have that ρ(F ) = 1 and that A is

an s.m.p.

• A = E5, B = C j ( j = 1,2,4).

The family F is upper triangular and defective with ρ(F ) = 1 and A

is an s.m.p.
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• A = E5, B = C3.

We find that P = A4B is an s.m.p., ρ(F ) = ρ(P) = 41/5 and an extremal

polytope norm is given by P = co(V,−V ) with V = {v0,v1,v2,v3,v4,v5},
where v0 is the leading eigenvector of P, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2,

v4 = A∗v3, v5 = A∗v4.

• A = E7, B ∈ C.

Since ρ(A) = ‖A‖−∗ = ‖B‖−∗ = 1, we have that ρ(F ) = 1 and that A is

an s.m.p. In the case of B = C2 also l2 norm is extremal.

The subcase (n0,n1) = (3,2) (families of the type F = {Ei,D j}).

• A = E1, B ∈ D.

Since ρ(A) = ‖A‖2 = 1+
√

5
2 and ‖B‖2 ≤

√
2, we have that ρ(F ) = 1+

√
5

2

and that A is an s.m.p.

• A = E2, B = D1.

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 =
√

2 and an ex-

tremal polytope norm is given P = co(V,−V ) with V = {v0,v1,v2},
where v0 is the leading eigenvector of P, v1 = B∗v0, v2 = A∗v0.

• A = E2, B = D j ( j = 2,8).

We find that P = A2 B is an s.m.p., ρ(F ) = ρ(P)1/3 = 21/3 and an

extremal polytope norm is given P = co(V,−V ) with V = {v0,v1,v2},
where v0 is the leading eigenvector of P, v1 = B∗v0, v2 = A∗v1.

• A = E2, B = D j ( j = 3,4,5,6,10).

Since ρ(A) = ρ(B) = ‖A‖+∗ = ‖B‖+∗ = 1, we have that ρ(F ) = 1 and

that A and B are both s.m.p.’s.

• A = E2, B = D7.

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 =
√

2 and an ex-

tremal polytope norm is given P = co(V,−V ) with V = {v0,v1,v2},
where v0 is the leading eigenvector of P, v1 = B∗v0, v2 = A∗v1.
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• A = E2, B = D9.

The l2 norm is extremal and P = AB is an s.m.p., ρ(AB) = ‖AB‖2 =
1+
√

5
2 and ‖AB‖2,‖AB‖2,‖AB‖2 ≤ 1+

√
5

2 so we have ρ(F ) = ρ(AB)1/2 =(
1+
√

5
2

)1/2
.

• A = E2, B = D11.

See the illustrative example in Section 5.2.1.

• A = E5, B = D j ( j = 1,3,6,8,9).

The family F is upper triangular and defective with ρ(F ) = 1 and

both A and B are s.m.p.’s.

• A = E5, B = D j ( j = 2,5).

We find that P = A2 B is an s.m.p., ρ(F ) = ρ(P)1/3 = 31/3 and

an extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4}, where v0 is the leading eigenvector of P, v1 = A∗v0,

v2 = B∗v0, v3 = A∗v1, v4 = A∗v2.

• A = E5, B = D j ( j = 4,7).

We find that P = A5 B is an s.m.p., ρ(F ) = ρ(P)1/6 = 21/3 and

an extremal polytope norm is given P = co(V,−V ) with V =

{v0,v1,v2,v3,v4,v5,v6}, where v0 is the leading eigenvector of P, v1 =

A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = A∗v3, v5 = A∗v4, v6 = A∗v5.

• A = E5, B = D10.

We find that P = A3 B is an s.m.p., ρ(F ) = ρ(P)1/4 =
(

3+
√

13
2

)1/4

and an extremal polytope norm is given by P = co(V,−V ) with

V = {v0,v1,v2,v3,v4,v5}, where v0 is the leading eigenvector of P,

v1 = A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = B∗v1, v5 = A∗v3.

• A = E5, B = D11.

See the illustrative example in Section 5.2.2. We find that P = A4 B

is an s.m.p., ρ(F ) = ρ(P)1/5 = (2 +
√

3)1/5 and an extremal polytope

norm is given P = co(V,−V ) with V = {v0,v1,v2,v3,v4,v5,v6}, where v0

is the leading eigenvector of P, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = A∗v3,

v5 = A∗v4, v6 = B∗v5.
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Figure A.1: Polytope norm for the pairs {A = E5,B = D4} (left) and {A =

E5,B = D11} (right).

• A = E7, B = D j ( j = 1,3,6,8,9).

The family F is upper triangular with ρ(F ) = 1 and A and B are both

s.m.p.’s.

• A = E7, B = D j ( j = 2,7,10).

Since ρ(A) = ρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have that ρ(F ) = 1 and

that A and B are both s.m.p.’s.

• A = E7, B = D j ( j = 4,5).

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 =
√

2 and an ex-

tremal polytope norm is given by P = co(V,−V ) with V = {v0,v1},
where v0 is the leading eigenvector of P and v1 = B∗v0.

• A = E7, B = D11.

We find that P = AB is an s.m.p. and l2 norm is extremal, ρ(AB) =

‖AB‖2 = 1+
√

5
2 and ‖AB‖2,‖AB‖2,‖AB‖2 ≤ 1+

√
5

2 so we have ρ(F ) =

ρ(AB)1/2 =
(

1+
√

5
2

)1/2
.

The subcase (n0,n1) = (3,3) (families of the type F = {Ei,E j}).

• A = E1, B ∈ E.
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Since ρ(A) = ‖A‖2 = ‖B‖2 = 1+
√

5
2 , we have ρ(F ) = 1+

√
5

2 and A is an

s.m.p., for B = E j ( j = 4,13,16) also B is an s.m.p.

• A = E2, B = E3.

Using the Property 10, special case 6 on page 116, or equation (4.38)

of Property 10, special case 3, we find that P = AB is an s.m.p. and

ρ(F ) = ρ(P)1/2 = 1+
√

5
2 .

• A = E2, B = E j ( j = 4,13,16). Since ρ(B) = ‖A‖2 = ‖B‖2 = 1+
√

5
2 , we

have that ρ(F ) = 1+
√

5
2 and that B is an s.m.p.

• A = E2, B = E j ( j = 5,10).

We find that P = AB3 is an s.m.p., ρ(F ) = ρ(P)1/4 = (2 +
√

3)1/4

and an extremal polytope norm is given by P = co(V,−V ) with

V = {v0,v1,v2,v3,v4,v5,v6,v7}, where v0 is the leading eigenvector of P,

v1 = A∗v0, v2 = B∗v0, v3 = A∗ v4 = B∗v2, v5 = A∗v4, v6 = B∗v4, v7 = B∗v6.

• A = E2, B = E j ( j = 6,9).

We find that P = A2 B3 is an s.m.p., ρ(F ) = ρ(P)1/5 = (2 +
√

3)1/5

and an extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4,v5,v6}, where v0 is the leading eigenvector of P, v1 =

B∗v0, v2 = B∗v1, v3 = B∗v2, v4 = A∗v3, v5 = B∗v3, v6 = A∗v5.

• A = E2, B = E j ( j = 7,12).

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 = (1 +
√

2)1/2

and an extremal polytope norm is given by P = co(V,−V ) with

V = {v0,v1,v2}, where v0 is the leading eigenvector of P, v1 = A∗v0,

v2 = B∗v0.

• A = E2, B = E j ( j = 8,11,15).

Since ρ(A) = ρ(B) = ‖A‖+∗ = ‖B‖+∗ = 1, we have that ρ(F ) = 1 and that

A and B are both s.m.p.’s. For B = E15 holds true also the Property

10, special case 5 on page 116.

• A = E2, B = E14.
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We find that P = ABA2BAB2 is an s.m.p., ρ(F ) = ρ(P)1/8 = (7+4
√

3)1/8

and an extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4,v5,v6,v7}, where v0 is the leading eigenvector of P, v1 =

B∗v0, v2 = B∗v1, v3 = A∗v2, v4 = B∗v3, v5 = A∗v4, v6 = A∗v5, v7 = B∗v6.

Observe that this is the first of the two cases with the largest num-

ber of factors in the s.m.p. The essential vertices of P are just the

leading eigenvectors of F , that is, the eigenvectors of all the cyclic

permutations of P.

Figure A.2: Polytope norm for the pairs {A = E2,B = E5} (left) and {A =

E2,B = E10} (right).

• A = E5, B = E j ( j = 3,15).

We find that P = A3 B2 is an s.m.p., ρ(F ) = ρ(P)1/5 =
(
2 +
√

3
)1/5

and an extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4,v5,v6}, where v0 is the leading eigenvector of P, v1 =

A∗v0, v2 = B∗v0, v3 = B∗v1, v4 = B∗v2, v5 = A∗v4, v6 = A∗v5.

• A = E5, B = E j ( j = 4,13,16).

Since ρ(B) = ‖A‖2 = ‖B‖2 = 1+
√

5
2 , we have that ρ(F ) = 1+

√
5

2 and that

B is an s.m.p.

• A = E5, B = E j ( j = 6,7,8).
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Figure A.3: Polytope norm for the pairs {A = E2,B = E6} (left) and {A =

E2,B = E14} (right).

The family F is upper triangular and defective with ρ(F ) = 1 and

both A and B are s.m.p’s.

• A = E5, B = E9.

We have that B = A∗ and, by equation (4.38) of Property 10, special

case 3, P = AB is an s.m.p.

• A = E5, B = E10.

We find that P = A4 B4 is an s.m.p., ρ(F ) = ρ(P)1/8 =
(
7 + 4

√
3
)1/8

and an extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4,v5,v6,v7}, where v0 is the leading eigenvector of P, v1 =

B∗v0, v2 = B∗v1, v3 = B∗v2, v4 = B∗v3, v5 = A∗v4, v6 = A∗v5, v7 = A∗v6.

This is the second of the two cases with the largest number of factors

in the s.m.p. Again, the essential vertices of P are just the leading

eigenvectors of F .

• A = E5, B = E j ( j = 11,12).

We find that P = A3 B is an s.m.p., ρ(F ) = ρ(P)1/4 =
(

3+
√

13
2

)1/4

and an extremal polytope norm is given by P = co(V,−V ) with

V = {v0,v1,v2,v3,v4,v5}, where v0 is the leading eigenvector of P,

v1 = A∗v0, v2 = B∗v0, v3 = B∗v1, v4 = A∗v2, v5 = A∗v4.
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Figure A.4: Polytope norm for the pairs {A = E5,B = E3} (left) and {A =

E5,B = E10} (right).

• A = E5, B = E14.

We find that P = A3 B is an s.m.p., ρ(F ) = ρ(P)1/4 =
(
2 +
√

3
)1/4

and an extremal polytope norm is given by P = co(V,−V ) with

V = {v0,v1,v2,v3,v4,v5,v6,v7}, where v0 is the leading eigenvector of

P, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = B∗v2, v5 = A∗v3, v6 = B∗v3,

v7 = B∗v5.

• A = E7, B = E j ( j = 3,12,14).

Since ρ(A) = ρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have that ρ(F ) = 1 and that

A and B are both s.m.p.’s. For B = E12 also the Property 10, special

case 5 on page 116, is valid.

• A = E7, B = E j ( j = 4,13,16).

Since ρ(B) = ‖A‖2 = ‖B‖2 = 1+
√

5
2 , we have that ρ(F ) = 1+

√
5

2 and that

B is an s.m.p.

• A = E7, B = E j ( j = 6,8).

The family F is upper triangular and defective with ρ(F ) = 1 and

both A and B are s.m.p’s.

• A = E7, B = E j ( j = 9,10).
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Figure A.5: Polytope norm for the pairs {A = E5,B = E11} (left) and {A =

E5,B = E14} (right).

We find that P = AB3 is an s.m.p., ρ(F ) = ρ(P)1/5 =
(

3+
√

13
2

)1/4

and an extremal polytope norm is given by P = co(V,−V ) with

V = {v0,v1,v2,v3,v4,v5}, where v0 is the leading eigenvector of P,

v1 = B∗v0, v2 = B∗v1, v3 = B∗v2, v4 = B∗v3, v5 = A∗v4.

• A = E7, B = E11.

Using the Property 10, special case 6 on page 116, we find that P = AB

is an s.m.p., ρ(F ) = ρ(P)1/2 = 1+
√

5
2 . The same result is obtained

making use of l2 norm that proves to be extremal for this family.

• A = E7, B = E15.

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 =
(

1 +
√

2
)1/2

and an extremal polytope norm is given by P = co(V,−V ) with

V = {v0,v1,v2}, where v0 is the leading eigenvector of P, v1 = B∗v0,

v2 = B∗v1.

The case n0 = 4

The subcase (n0,n1) = (4,1) (families of the type F = {Fi,C j}).

• A = Fi (i = 1,3), B ∈ C.
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Figure A.6: Polytope norm for the pairs {A = E7,B = E15} (left) and {A =

E7,B = E9} (right).

Since ρ(A) = ‖A‖2 =
√

2 and ‖B‖2 = 1, we have that ρ(F ) =
√

2 and

that A is an s.m.p.

• A = F5, B = C j ( j = 1,4).

Since ρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have that ρ(F ) = 1 and that B is

an s.m.p.

• A = F5, B = C j ( j = 2,3).

Since ρ(AB) = ‖A‖−∗ = ‖B‖−∗ = 1, we have that ρ(F ) = 1 and that

P = AB is an s.m.p.

• A = F8, B ∈ C.

Since ρ(A) = ‖A‖1 = 2 and ‖B‖1 = 1, we have that ρ(F ) = 2 and that

A is an s.m.p.

The subcase (n0,n1) = (4,2) (families of the type F = {Fi,D j}).

• A = Fi (i = 1,3), B ∈ D.

Since ρ(A) = ‖A‖2 =
√

2 and ‖B‖2 ≤
√

2, we have that ρ(F ) =
√

2 and

that A is an s.m.p.

• A = F5, B = D j ( j = 1,2,7,8,10).
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Since ρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have that ρ(F ) = 1 and that B is

an s.m.p.

• A = F5, B = D j ( j = 3,4,5,6,9,11).

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 =
√

2 and an ex-

tremal polytope norm is given by P = co(V,−V ) with V = {v0,v1},
where v0 is the leading eigenvector of P and v1 = B∗v0. For B = D j

( j = 3,4,9,11) also l1 norm is extremal.

• A = F8, B ∈ D.

Since ρ(A) = ‖A‖2 = 2 and ‖B‖2≤
√

2, we have that ρ(F ) = 2 and that

A is an s.m.p.

The subcase (n0,n1) = (4,3) (families of the type F = {Fi,E j}).

• A = F1, B = E j ( j = 1,4).

Since ρ(B) = ‖B‖2 = 1+
√

5
2 and ‖A‖2 =

√
2, we have that ρ(F ) = 1+

√
5

2

and that B is an s.m.p.

• A = F1, B = E j ( j = 2,3,7).

We find that P = A is an s.m.p., ρ(F ) = ρ(P) =
√

2 and an extremal

polytope norm is given by P = co(V,−V ) with V = {v0,v1,v2}, where

v0 is the leading eigenvector of P, v1 = B∗v0, v2 = A∗v1.

• A = F1, B = E j ( j = 5,6).

We find that P = A is an s.m.p., ρ(F ) = ρ(P) =
√

2 and an

extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4,v5,v6}, where v0 is the leading eigenvector of P, v1 =

B∗v0, v2 = A∗v1, v3 = B∗v1, v4 = A∗v3, v5 = B∗v3, v6 = A∗v5.

• A = F1, B = E8.

We find that P = AB is an s.m.p., ρ(F ) = ρ(P) =
√

2 and an extremal

polytope norm is given by P = co(V,−V ) with V = {v0,v1}, where v0

is the leading eigenvector of P and v1 = B∗v0.



169

• A = F3, B = E j ( j = 1,4).

Since ρ(B) = ‖B‖2 = 1+
√

5
2 and ‖A‖2 =

√
2, we have that ρ(F ) = 1+

√
5

2

and that B is an s.m.p.

• A = F3, B = E2.

We find that P = (AB)2 A2 B is an s.m.p., ρ(F ) = ρ(P)1/7 =(
4
(
2 +
√

3
))1/7

and an extremal polytope norm is given by P =

co(V,−V ) with V = {v0,v1,v2,v3,v4, v5,v6,v7,v8,v9,v10}, where v0 is the

leading eigenvector of P, v1 = A∗v0, v2 = B∗v0, v3 = A∗v1, v4 = A∗v2,

v5 = A∗v4, v6 = A∗v5, v7 = B∗v5, v8 = A∗v7, v9 = A∗v8, v10 = B∗v9.

• A = F3, B = E3.

We find that P = A2 BA3 B is an s.m.p., ρ(F ) = ρ(P)1/7 =(
4
(

2 +
√

2
))1/7

and an extremal polytope norm is given by P =

co(V,−V ) with V = {v0,v1,v2,v3,v4, v5,v6,v7}, where v0 is the leading

eigenvector of P, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = A∗v3, v5 = A∗v4,

v6 = B∗v5, v7 = A∗v6.

Figure A.7: Polytope norm for the pairs {A = F1,B = E3} (left) and {A =

F3,B = E3} (right).

• A = F3, B = E5.

We find that P = A3 B2 is an s.m.p., ρ(F ) = ρ(P)1/5 =
(

2
(

2 +
√

2
))1/5

and an extremal polytope norm is given by P = co(V,−V ) with V =
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{v0,v1,v2,v3,v4, v5,v6,v7}, where v0 is the leading eigenvector of P,

v1 = B∗v0, v2 = A∗v1, v3 = B∗v1, v4 = A∗v2, v5 = A∗v3, v6 = A∗v4, v7 = A∗v5.

• A = F3, B = E6.

We find that P = AB2 is an s.m.p., ρ(F ) = ρ(P)1/3 =
(

2 +
√

2
)1/3

and an extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4, v5,v6,v7}, where v0 is the leading eigenvector of P,

v1 = A∗v0, v2 = B∗v0, v3 = A∗v1, v4 = A∗v2, v5 = B∗v2, v6 = A∗v4, v7 = A∗v6.

Figure A.8: Polytope norm for the pairs {A = F3,B = E5} (left) and {A =

F3,B = E6} (right).

• A = F3, B = E j ( j = 7,8).

We have that l2 norm is extremal since ρ3(F ) = ρ(A2 B)1/3 = ρ̂3(F ) =

‖A2 B‖1/3
2 . P = A2 B is an s.m.p., ρ(F ) = ρ(P)1/3 =

(
1 +
√

5
)1/3

.

• A = F5, B = E j ( j = 1,4).

We find that P = B is an s.m.p., ρ(F ) = ρ(P) = 1+
√

5
2 and an extremal

polytope norm is given by P = co(V,−V ) with V = {v0,v1}, where v0

is the leading eigenvector of P and v1 = A∗v0.

• A = F5, B = E j ( j = 2,8).

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 =
√

3 and an ex-

tremal polytope norm is given by P = co(V,−V ) with V = {v0,v1},
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where v0 is the leading eigenvector of P and v1 = B∗v0.

• A = F5, B = E j ( j = 3,7).

Since ρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have that ρ(F ) = 1 and that B is

an s.m.p.

• A = F5, B = E j ( j = 5,6).

We find that P = AB4 is an s.m.p., ρ(F ) = ρ(P)1/5 = 41/5 and

an extremal polytope norm is given by P = co(V,−V ) with V =

{v0,v1,v2,v3,v4, v5}, where v0 is the leading eigenvector of P, v1 = B∗v0,

v2 = B∗v1, v3 = B∗v2, v4 = B∗v3, v5 = B∗v4.

Figure A.9: Polytope norm for the pairs {A = F5,B = E4} (left) and {A =

F5,B = E5} (right).

• A = F8, B ∈ E.

Since ρ(A) = ‖A‖1 = ‖B‖1 = 2, we have that ρ(F ) = 2 and that A is

an s.m.p.

The subcase (n0,n1) = (4,4) (families of the type F = {Fi,Fj}).

• A = F1, B = Fj ( j = 2,3,4).

Since ρ(A) = ρ(B) = ‖A‖2 = ‖B‖2 =
√

2, we have that ρ(F ) =
√

2 and

that both A and B are s.m.p.’s.
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• A = F1, B = F5. (See Figure A.10)

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 =
√

2 and an ex-

tremal polytope norm is given by P = co(V,−V ) with V = {v0,v1},
where v0 is the leading eigenvector of P and v1 = B∗v0.

Figure A.10: Polytope norm for the pairs {A = F1,B = F5} (left) and {A =

F3,B = F5} (right).

• A = F3, B = Fj ( j = 2,4).

Since ρ(A) = ρ(B) = ‖A‖2 = ‖B‖2 =
√

2, we have that ρ(F ) =
√

2 and

that both A and B are s.m.p.’s.

• A = F3, B = F5.

l1 norm proves to be extremal, ρ3(F ) = ρ(A2 B)1/3 = ρ̂3(F ) =

‖A2 B‖1/3
1 . P = A2 B is an s.m.p., ρ(F ) = ρ(P)1/3 = 41/3.

• A = F5, B = F2.

We have that l1 norm is extremal, ρ3(F ) = ρ(AB2)1/3 = ρ̂3(F ) =

‖AB2‖1/3
1 . P = AB2 is an s.m.p., ρ(F ) = ρ(P)1/3 = 41/3.

• A = F5, B = F4.

We find that P = AB is an s.m.p., ρ(F ) = ρ(P)1/2 =
√

2 and an ex-

tremal polytope norm is given by P = co(V,−V ) with V = {v0,v1},
where v0 is the leading eigenvector of P and v1 = B∗v0.
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• A = F5, B = F6.

Since ‖A‖1 = ‖B‖1 = 2 and ρ(AB)1/2 = 2, we have that ρ(F ) = 2 and

that P = AB is an s.m.p.

• A = F8, B ∈ F.

Since ρ(A) = ‖A‖1 = ‖B‖1 = 2, we have that ρ(F ) = 2 and that A is

an s.m.p.
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Appendix B

Numerical results for the

consensus

First example

Let us consider 20 agents and the following 35 configurations Ai of their

neighborhoods.

A1 =



N1 = {1,7,8,14,15,16,17,18,20}
N2 = {2,3}
N3 = {1,3,8,10,17,19}
N4 = {4,11,13,14,17}
N5 = {3,5,7,10,15,18,20}
N6 = {1,6,9,10,11,17}
N7 = {7,8,9}
N8 = {4,8,9,13}
N9 = {4,8,9,14,15,20}
N10 = {2,8,9,10,11,17}

N11 = {1,5,9,11,12,15,16}
N12 = {2,5,6,8,12,16}
N13 = {6,7,13,18,20}
N14 = {2,3,4,9,11,13,14,16}
N15 = {2,3,6,7,9,12,15,18}
N16 = {1,5,7,9,11,12,15,16,18,20}
N17 = {4,11,17,19}
N18 = {11,17,18,19,20}
N19 = {5,6,11,16,19}
N20 = {2,3,7,8,14,16,18,20}

A2 =



N1 = {1,6,16,19}
N2 = {2,3,5,10,17,20}
N3 = {3,4,14,15,19,20}
N4 = {4,6,12,20}
N5 = {3,5,7,10,12,14,18}
N6 = {6,8,15,16,18,19,20}
N7 = {5,6,7,10,19}
N8 = {2,4,6,8,15,20}
N9 = {2,5,8,9,13,15,17,20}
N10 = {1,8,10,11,15,16,18}

N11 = {11,15,17}
N12 = {4,8,11,12,15,16,17,19,20}
N13 = {5,11,13,15,16}
N14 = {11,14,16}
N15 = {3,5,13,15,16}
N16 = {1,9,12,13,16,19,20}
N17 = {7,11,17}
N18 = {7,10,15,18,20}
N19 = {1,2,7,11,16,18,19}
N20 = {1,3,4,7,9,11,13,17,18,20}



176 Numerical results for the consensus

A3 =



N1 = {1,6,8,15,17,20}
N2 = {1,2,4,8,9,13,16,17,20}
N3 = {1,3,5,8,12,13,15,17,19,20}
N4 = {2,3,4,5,8,11,14,16,17}
N5 = {3,5,7,9,15,17,20}
N6 = {4,6,15}
N7 = {1,7,8,11,16,19,20}
N8 = {8,11,14,18,20}
N9 = {2,4,6,9,12,14,16}
N10 = {2,6,10,11}

N11 = {5,6,8,9,10,11,12,14,19}
N12 = {1,3,4,6,7,9,12,15,16,20}
N13 = {1,5,7,8,13}
N14 = {4,7,14,16,20}
N15 = {11,15}
N16 = {2,3,4,10,16,19}
N17 = {2,6,13,16,17,18,19}
N18 = {2,4,17,18,20}
N19 = {6,7,9,12,19}
N20 = {4,5,6,10,19,20}

A4 =



N1 = {1,18,20}
N2 = {2,4,6,7,11}
N3 = {3,7,17,18,20}
N4 = {4,8}
N5 = {5,9,15,17}
N6 = {5,6}
N7 = {1,3,4,7,12,13,14}
N8 = {5,6,8,13,17,20}
N9 = {4,9,11,13,14,17,19}
N10 = {3,5,7,10,13,17,18}

N11 = {7,11,12,16,17,20}
N12 = {12}
N13 = {5,9,12,13,19,20}
N14 = {11,14,18}
N15 = {1,3,12,14,15,16,20}
N16 = {4,12,15,16,20}
N17 = {3,4,13,16,17,18,20}
N18 = {2,8,15,18,20}
N19 = {9,16,19,20}
N20 = {4,5,8,15,20}

A5 =



N1 = {1,2,5,8,16,18,20}
N2 = {1,2,5,15,16}
N3 = {3,4,8,9,12,13,14,15}
N4 = {2,4,7,9,11,12,19}
N5 = {3,5,6,7,13}
N6 = {1,2,6,8,20}
N7 = {7,16,18}
N8 = {8,10,11,18}
N9 = {3,7,9,10,17,18,20}
N10 = {6,8,10,17,19}

N11 = {1,5,6,11,17,18}
N12 = {3,7,12,15,20}
N13 = {1,3,10,12,13,14,17}
N14 = {1,3,14,15}
N15 = {4,5,8,10,15}
N16 = {6,11,12,16,17,18,20}
N17 = {16,17,18,19}
N18 = {4,8,10,16,18,19}
N19 = {1,3,4,6,7,10,12,14,18,19}
N20 = {2,4,9,16,20}

A6 =



N1 = {1,2,4,8,15,17}
N2 = {2}
N3 = {3,7,20}
N4 = {3,4,7,16}
N5 = {1,2,4,5,7,11,17,18}
N6 = {6,9,14}
N7 = {4,7,8,13}
N8 = {2,8,12,15,19,20}
N9 = {6,8,9,14,15,18,19}
N10 = {1,2,7,10,13,16,17,19,20}

N11 = {2,6,10,11,17,19}
N12 = {9,10,12,16}
N13 = {6,12,13,14,19}
N14 = {4,5,8,12,14,16}
N15 = {9,14,15}
N16 = {1,4,5,11,12,15,16}
N17 = {4,6,7,11,17,20}
N18 = {3,6,12,13,14,18}
N19 = {2,4,16,19,20}
N20 = {2,9,14,16,20}
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A7 =



N1 = {1,3,6,9,10,18,19}
N2 = {2,5,7,8,11,17}
N3 = {1,3,8,9,10,16,19,20}
N4 = {4,5,12,17,20}
N5 = {5,6,7,16}
N6 = {1,6,8,10,11,12,14}
N7 = {1,7,11,19}
N8 = {1,5,8,15,19}
N9 = {2,5,9,15,18,20}
N10 = {2,10,15}

N11 = {1,2,6,8,10,11,16,17,19}
N12 = {12,15,20}
N13 = {3,5,11,12,13,16,17}
N14 = {1,2,4,7,10,11,12,14}
N15 = {1,4,5,6,8,12,13,15}
N16 = {1,3,10,15,16,17,20}
N17 = {12,14,15,17,19,20}
N18 = {1,16,18}
N19 = {1,5,8,10,15,19}
N20 = {1,7,10,15,20}

A8 =



N1 = {1,8,11,18}
N2 = {2,12,16}
N3 = {3,4,5,10,13}
N4 = {4,5,6,7,10,12,14,16}
N5 = {5,9,12}
N6 = {3,6,9,13,16,17,18,19}
N7 = {6,7,14,15}
N8 = {1,6,8,12,17,18}
N9 = {5,6,9,10,16,19}
N10 = {4,8,10,13,19}

N11 = {4,6,11,14,20}
N12 = {3,7,11,12}
N13 = {7,11,13,15,16,19,20}
N14 = {9,10,11,14,18,19}
N15 = {6,10,15,17,19}
N16 = {1,4,12,13,15,16,20}
N17 = {3,11,16,17,18}
N18 = {1,5,18,20}
N19 = {2,6,8,11,13,19}
N20 = {2,3,5,6,11,18,20}

A9 =



N1 = {1,8,9,10,11}
N2 = {2,6,7,8,13,14,18,20}
N3 = {3,6,8,11,15,19}
N4 = {4,7}
N5 = {1,2,3,5}
N6 = {6,13}
N7 = {1,7,8}
N8 = {2,8,9,13,19}
N9 = {1,5,9,12,16,17}
N10 = {4,5,10,13,19}

N11 = {7,10,11,16,20}
N12 = {4,6,12,18}
N13 = {5,11,12,13}
N14 = {1,3,5,14}
N15 = {6,7,8,11,15}
N16 = {2,3,4,6,8,11,16,17,19,20}
N17 = {7,10,17,18}
N18 = {5,8,13,16,18,19}
N19 = {11,14,19}
N20 = {1,2,3,10,12,13,19,20}

A10 =



N1 = {1,2,4,5,7,14,20}
N2 = {2,4,6}
N3 = {1,2,3,6,12,13,17,18}
N4 = {1,2,4,5,9,14,19}
N5 = {1,3,5,9,13}
N6 = {1,6,10,13}
N7 = {4,7,11,20}
N8 = {8,10,12,19}
N9 = {6,7,9,10,12,15,17}
N10 = {3,5,10,20}

N11 = {2,4,6,11,18}
N12 = {10,12,13,17,19}
N13 = {6,11,13,19,20}
N14 = {3,6,13,14,18,20}
N15 = {14,15,17,19,20}
N16 = {2,3,6,7,13,15,16,20}
N17 = {5,7,10,11,15,16,17}
N18 = {1,5,9,12,15,17,18}
N19 = {1,5,8,13,19}
N20 = {2,4,11,13,14,15,17,20}
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A11 =



N1 = {1,4,13}
N2 = {2,8,11,15}
N3 = {2,3,4,5,7,9,13,14,17}
N4 = {3,4,6,8,9,20}
N5 = {3,4,5,11,17,19}
N6 = {5,6,14,19}
N7 = {3,6,7,8,9,11,12,20}
N8 = {6,8,18}
N9 = {5,9,11,13,14,16}
N10 = {5,6,8,10,11,12,15,19}

N11 = {5,6,11,13,17}
N12 = {3,5,9,12}
N13 = {1,5,9,13}
N14 = {1,4,11,14,15}
N15 = {5,6,8,10,12,15,17,18}
N16 = {4,9,10,13,14,15,16}
N17 = {2,3,5,7,10,11,12,16,17,19}
N18 = {4,7,15,16,17,18}
N19 = {2,3,9,10,12,15,16,19}
N20 = {8,9,12,14,15,17,18,19,20}

A12 =



N1 = {1,3,9,14,15,16,19}
N2 = {1,2,8,9,11,12,15,20}
N3 = {3,12,20}
N4 = {4,5,6,9,10,12,17,20}
N5 = {5,14}
N6 = {3,6,7,8,12}
N7 = {2,7,9,12,18}
N8 = {1,3,5,8,12,17,19}
N9 = {2,7,9,12,17,19,20}
N10 = {6,7,8,10,12,13,15}

N11 = {3,6,11,13,19}
N12 = {3,6,7,8,10,12,18}
N13 = {2,11,13,15,17}
N14 = {2,9,10,11,14,16}
N15 = {5,11,15,18,19}
N16 = {1,4,5,12,13,16,17}
N17 = {1,3,4,10,11,13,15,17}
N18 = {3,4,12,15,18}
N19 = {4,6,7,12,19}
N20 = {7,9,18,20}

A13 =



N1 = {1,6,9,12,20}
N2 = {2,4,13,15,16}
N3 = {3,4,5,14,15}
N4 = {2,4,6,15,17,19}
N5 = {5,7,12,13,15}
N6 = {6,10,13,14,15,19}
N7 = {2,7,11,12,16}
N8 = {2,5,8,20}
N9 = {3,4,5,9,10,12,14,17,18,19}
N10 = {1,10,16,19,20}

N11 = {2,3,11,16,20}
N12 = {4,12,17,20}
N13 = {2,9,10,13,16,17,19}
N14 = {6,8,14,20}
N15 = {8,10,13,14,15,17,19}
N16 = {2,3,9,16,19,20}
N17 = {3,6,7,8,9,12,17,18,19}
N18 = {8,15,18}
N19 = {3,5,7,11,12,15,18,19}
N20 = {1,6,20}

A14 =



N1 = {1,3,4,5,6,7,10,11,19}
N2 = {2,7,10,14,18,20}
N3 = {3,6,7,11,15}
N4 = {4,7,10,15,18,19}
N5 = {1,2,5,9,10,14}
N6 = {1,2,3,6}
N7 = {4,7}
N8 = {2,6,8,14,17,19}
N9 = {1,5,9,12}
N10 = {1,2,10}

N11 = {4,5,11,13,15,16,20}
N12 = {4,8,12,13,16,19,20}
N13 = {3,4,9,13,14,17,18}
N14 = {1,14,17}
N15 = {5,10,11,15,18,19}
N16 = {6,16,18}
N17 = {6,8,10,12,14,15,17,18,20}
N18 = {1,2,5,9,10,18}
N19 = {1,9,10,12,19}
N20 = {7,9,12,13,20}
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A15 =



N1 = {1,4,5,12,20}
N2 = {2}
N3 = {3,8,10,13,17,18,19}
N4 = {2,4,5,8,11,16,19}
N5 = {2,3,5,8,9,12,16,17,18,19}
N6 = {1,2,3,4,6,8,11,12}
N7 = {1,3,7,8,9,10,11,14,15,20}
N8 = {8,9,13}
N9 = {1,7,8,9,12,15,16}
N10 = {2,4,6,8,9,10,11,13}

N11 = {5,8,11,18}
N12 = {5,6,7,12,13,14,16}
N13 = {2,3,7,13,15,18}
N14 = {10,14}
N15 = {1,2,7,9,11,15,16,18,19,20}
N16 = {1,4,11,15,16,17}
N17 = {9,14,15,17,20}
N18 = {1,8,14,16,17,18}
N19 = {3,8,13,15,19,20}
N20 = {3,9,11,17,20}

A16 =



N1 = {1,6,9,10,17,20}
N2 = {2,3,6,8,11,18}
N3 = {2,3,5,7,14,15,19}
N4 = {4,5,11,13,15,19}
N5 = {2,5,6,16,18}
N6 = {6,9,10,12,20}
N7 = {1,4,7,8,9,19,20}
N8 = {8,10,14}
N9 = {9,13,15}
N10 = {3,5,9,10,12,15,16,18,19}

N11 = {5,11,16,20}
N12 = {1,10,12,16}
N13 = {4,5,8,10,11,13,16,17,19}
N14 = {1,10,13,14,18,19}
N15 = {10,12,15,17,18}
N16 = {10,16}
N17 = {1,5,6,7,9,10,14,17,18,20}
N18 = {2,3,7,8,11,12,17,18,19}
N19 = {1,5,16,19}
N20 = {1,3,8,9,12,16,17,19,20}

A17 =



N1 = {1,5,13,17}
N2 = {1,2,3,4,10,13,15}
N3 = {2,3,7,9,18}
N4 = {2,4,5,9,10,12}
N5 = {2,5,12,14,20}
N6 = {6,10,13,17}
N7 = {2,4,5,6,7,10,13,17}
N8 = {8,9,14,17}
N9 = {3,7,8,9,11,14,17,20}
N10 = {2,3,10,15}

N11 = {1,7,11,13,17}
N12 = {5,12,15}
N13 = {2,4,13,15,17,18}
N14 = {5,7,8,9,14,15,18}
N15 = {13,14,15,16}
N16 = {7,9,12,13,16}
N17 = {8,9,13,16,17,18,20}
N18 = {3,5,6,13,17,18,20}
N19 = {6,18,19}
N20 = {3,4,8,10,11,18,19,20}

A18 =



N1 = {1,2,8,10,11,15}
N2 = {2,9,18,19}
N3 = {2,3,10,11,15}
N4 = {3,4,9,14,15}
N5 = {1,5,6,18,19}
N6 = {2,4,6,10,14,16}
N7 = {2,7,17,18}
N8 = {8,10,15,18}
N9 = {1,5,9,12,16}
N10 = {5,6,10,11,16,19}

N11 = {8,10,11,12,19,20}
N12 = {4,6,12,13,17,20}
N13 = {3,5,6,13,14}
N14 = {1,2,3,8,14,15,17}
N15 = {2,5,6,8,11,15}
N16 = {2,12,16,18,19}
N17 = {1,3,17,18,20}
N18 = {3,4,13,18,19,20}
N19 = {1,2,3,11,15,19}
N20 = {1,8,10,12,17,20}
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A19 =



N1 = {1,4,13,14,18}
N2 = {2,7,19}
N3 = {2,3,18,19}
N4 = {1,4,7,8,15,16,18,20}
N5 = {5,6,8,15,17,18,20}
N6 = {5,6,7,9,10,16}
N7 = {7,10,16}
N8 = {5,7,8,10,11,12,14}
N9 = {4,9,17,18}
N10 = {2,4,10,11,14,18}

N11 = {1,3,5,11,17}
N12 = {12,13,14,15,19}
N13 = {1,6,7,9,13,18,19}
N14 = {6,8,12,14}
N15 = {4,6,8,14,15,17,19}
N16 = {12,13,16,20}
N17 = {2,4,6,9,13,14,17}
N18 = {3,7,10,11,13,15,17,18,20}
N19 = {1,4,6,7,10,13,15,16,19}
N20 = {1,8,9,10,11,13,20}

A20 =



N1 = {1,2,3,10,15,18}
N2 = {2,3,4,5,6,7,8}
N3 = {3,6,12,13}
N4 = {4,13,18}
N5 = {5,8,14,16}
N6 = {3,6,8,9,14,16,19,20}
N7 = {6,7,8,9,15}
N8 = {4,8,17}
N9 = {7,8,9,10,12,14,15,19}
N10 = {1,10,11,14,19}

N11 = {1,2,3,8,9,11,17,18,19,20}
N12 = {4,5,7,8,10,12,13,14}
N13 = {2,4,5,9,12,13}
N14 = {5,14,16,17}
N15 = {4,6,9,10,13,14,15,17}
N16 = {2,4,8,15,16,19}
N17 = {3,4,8,17}
N18 = {4,5,15,18,19,20}
N19 = {5,13,15,19,20}
N20 = {3,11,12,17,20}

A21 =



N1 = {1,2,4,16,18,20}
N2 = {2,6,9,14,18,19}
N3 = {3,6,7,11,18}
N4 = {1,4,9,11,12,13,17}
N5 = {5,9}
N6 = {6,8,16,20}
N7 = {6,7,10,19}
N8 = {2,6,8,12,16,18,20}
N9 = {7,9,16,20}
N10 = {1,8,10,15,19,20}

N11 = {4,8,11,15,16,19}
N12 = {5,12,15,19}
N13 = {1,2,5,7,13,18}
N14 = {1,4,6,11,12,13,14,15,17}
N15 = {2,4,6,15,16,20}
N16 = {1,2,12,16}
N17 = {3,7,10,11,17,20}
N18 = {3,5,11,18}
N19 = {2,3,9,10,17,19,20}
N20 = {1,2,4,5,7,8,9,20}

A22 =



N1 = {1,8,13,19}
N2 = {1,2,4,12,15,20}
N3 = {1,2,3,5,7,17,19}
N4 = {1,2,4,18}
N5 = {2,5,9,14,15,16,19}
N6 = {1,6,10,12,15,16,19}
N7 = {2,7,8,13,15,16,18,19}
N8 = {2,8}
N9 = {3,6,8,9,11,16,17}
N10 = {3,6,7,9,10,12,16,17}

N11 = {1,3,4,5,6,10,11,18}
N12 = {1,9,10,12}
N13 = {2,7,10,13,16,18,20}
N14 = {2,5,10,12,13,14}
N15 = {2,5,7,8,9,13,15,18}
N16 = {6,12,16,20}
N17 = {1,6,8,9,12,13,14,17}
N18 = {7,9,12,16,18,19}
N19 = {11,14,16,17,18,19}
N20 = {1,6,8,14,17,18,20}
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A23 =



N1 = {1,10,11,15,16,19}
N2 = {2,4,8,11,15,17,18}
N3 = {3,15}
N4 = {4,5,7,11,12,16}
N5 = {2,5,7,9,12,13,15,19}
N6 = {2,3,6,7,11,12,13,15,17}
N7 = {2,7,8,13,15,17,18,19}
N8 = {1,3,5,6,7,8,19}
N9 = {1,2,9,11,15,17,20}
N10 = {2,4,6,8,10,12}

N11 = {2,3,4,7,9,10,11}
N12 = {1,3,4,7,9,11,12,15}
N13 = {3,7,13,15}
N14 = {4,7,14,20}
N15 = {3,10,12,14,15,17,18}
N16 = {5,11,12,15,16,17}
N17 = {6,9,13,17,19,20}
N18 = {1,2,5,14,16,18,19,20}
N19 = {1,2,4,7,11,12,15,17,19}
N20 = {3,6,10,19,20}

A24 =



N1 = {1,2,3,4,9,11}
N2 = {2,6,9,10,11,19,20}
N3 = {3,4,5,6,16,20}
N4 = {4,7,10,13,18}
N5 = {1,3,4,5,7,9,11,14,15,16}
N6 = {4,6,12,15}
N7 = {1,4,5,7,9,19,20}
N8 = {2,8,9,12,14,19}
N9 = {1,2,5,7,9,12,13,14,15,17,19,20}
N10 = {2,3,8,10,19,20}

N11 = {2,7,10,11,20}
N12 = {6,12,15}
N13 = {6,12,13,15,17,19}
N14 = {9,10,13,14,19}
N15 = {1,2,7,9,12,13,15}
N16 = {2,4,5,12,16,19}
N17 = {1,3,7,17,18,20}
N18 = {1,2,3,5,7,15,18}
N19 = {1,3,4,15,17,19}
N20 = {1,2,3,11,15,17,18,20}

A25 =



N1 = {1,4,6,10,20}
N2 = {1,2,3,4,6,10,14}
N3 = {1,3,14,17,19,20}
N4 = {4,9,10,13}
N5 = {1,3,5,10,18,19}
N6 = {6,14,17,19}
N7 = {3,7,11,12,13,16,18,19,20}
N8 = {2,3,8,10,19}
N9 = {6,7,8,9,12}
N10 = {8,10,11,12,13,14,16,18}

N11 = {3,5,11,17,18,19}
N12 = {3,4,5,8,9,12,14,17}
N13 = {2,3,6,8,13,20}
N14 = {3,6,13,14,15,17,19}
N15 = {1,7,15,19}
N16 = {6,7,16}
N17 = {3,6,10,15,17}
N18 = {4,8,9,14,18}
N19 = {4,5,6,19,20}
N20 = {1,7,10,15,20}

A26 =



N1 = {1,2,9,12,14,18}
N2 = {2,7,17}
N3 = {1,3,6,10,17}
N4 = {2,3,4,5,6,17,20}
N5 = {5,6,19}
N6 = {3,5,6,9,10,11,18,20}
N7 = {1,3,6,7,10,13,18}
N8 = {3,7,8,9,14,15,16,17}
N9 = {4,9,10,11,15}
N10 = {10,13,17,19,20}

N11 = {1,3,11,13,15,16,20}
N12 = {5,6,12,15,18,20}
N13 = {13,15}
N14 = {1,4,5,6,7,14,17}
N15 = {4,5,7,11,12,14,15}
N16 = {4,5,11,16,17,20}
N17 = {2,3,4,5,6,9,12,15,16,17}
N18 = {3,17,18}
N19 = {4,10,15,17,19,20}
N20 = {3,4,8,20}
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A27 =



N1 = {1,2,4,5,8,12,14,15,20}
N2 = {1,2,13,15,19}
N3 = {2,3,7,12,13,16}
N4 = {4,14,17,20}
N5 = {5,10,12,13,19}
N6 = {2,4,6,8,14,15,16}
N7 = {2,3,5,7,10,11}
N8 = {5,6,7,8}
N9 = {1,4,7,9,10,17}
N10 = {6,8,10,13,18,20}

N11 = {1,4,7,8,9,11,14,20}
N12 = {2,7,12,15}
N13 = {1,2,4,5,13,14,15,16,19}
N14 = {2,5,9,14}
N15 = {5,10,14,15,16,19}
N16 = {1,5,6,7,9,10,16}
N17 = {5,9,12,13,15,17}
N18 = {1,7,10,11,14,18}
N19 = {1,5,14,19}
N20 = {11,20}

A28 =



N1 = {1,7,10,11}
N2 = {2,5,6,14,16}
N3 = {3,6,10}
N4 = {2,4,6,12,18}
N5 = {1,5,7,20}
N6 = {1,2,6,20}
N7 = {6,7,11,18}
N8 = {3,4,6,7,8,10,19}
N9 = {1,4,5,9,13}
N10 = {1,7,8,10,12}

N11 = {1,11,13,14,17}
N12 = {2,6,12,14,17}
N13 = {5,7,10,11,13,17,18,20}
N14 = {3,7,14,16,19,20}
N15 = {2,7,10,12,15}
N16 = {3,7,10,12,16}
N17 = {2,17,18}
N18 = {3,5,9,12,16,18,19}
N19 = {1,3,9,11,18,19}
N20 = {2,4,6,9,11,13,20}

A29 =



N1 = {1,9,12}
N2 = {2,7,13,14,15,17,20}
N3 = {2,3,11,14,15,16,19}
N4 = {3,4,13,16,20}
N5 = {5,7,8,12,13,15}
N6 = {1,6,7,11,14,17,19}
N7 = {5,7,9,12,15,16}
N8 = {4,7,8,12}
N9 = {9,11,16,20}
N10 = {1,2,6,10,13,14,16}

N11 = {11,17,18,20}
N12 = {6,11,12,14,18}
N13 = {2,8,10,12,13,17}
N14 = {1,2,12,14,15,17}
N15 = {11,12,15,17}
N16 = {5,15,16}
N17 = {1,3,9,11,15,17}
N18 = {2,7,8,9,14,18,20}
N19 = {5,12,13,18,19}
N20 = {2,3,4,5,6,7,17,18,20}

A30 =



N1 = {1,5,8,11,13,15,18,19}
N2 = {2,8,9,14,18,19}
N3 = {3,7,13,14}
N4 = {4}
N5 = {5,7,15,18}
N6 = {2,6,10,11}
N7 = {4,7,8,9,11,12,17}
N8 = {3,8,17,18}
N9 = {9,10,12,15,16,20}
N10 = {5,9,10,13,14}

N11 = {11,17}
N12 = {2,5,7,8,11,12,14}
N13 = {6,12,13}
N14 = {1,6,14,16}
N15 = {2,4,5,6,10,15,17,18}
N16 = {1,2,16,17}
N17 = {5,11,14,15,17}
N18 = {2,7,13,14,15,17,18,20}
N19 = {5,8,12,13,16,19}
N20 = {2,5,12,19,20}
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A31 =



N1 = {1,6,9,14,15,16,19,20}
N2 = {2,3,5,9,12,15,17}
N3 = {1,2,3,7,9,11,12,20}
N4 = {4,8,10,14,20}
N5 = {2,4,5,9,20}
N6 = {6,15,16,20}
N7 = {3,6,7,8,9,14,16,17,19,20}
N8 = {5,8,14,16,18,19,20}
N9 = {1,8,9,13,19}
N10 = {9,10,13,17}

N11 = {3,7,11,13,14,15,16,20}
N12 = {8,10,12,15,18}
N13 = {4,6,8,10,13,14,16}
N14 = {8,10,14}
N15 = {1,4,5,15,19}
N16 = {1,9,16}
N17 = {8,11,12,15,17,19,20}
N18 = {2,18}
N19 = {2,7,10,11,19}
N20 = {3,11,15,17,19,20}

A32 =



N1 = {1,4,5,10}
N2 = {2,11,13,15}
N3 = {1,3,4,11,12,18}
N4 = {2,3,4,6,8,10,13,14}
N5 = {1,5,14,17,18}
N6 = {3,6,9,12,16}
N7 = {3,7,9,11,16,19}
N8 = {3,4,8,16,20}
N9 = {3,4,8,9,11,14,17}
N10 = {2,3,4,5,6,7,9,10,11,12,16}

N11 = {3,9,11,16,20}
N12 = {2,3,6,11,12,13,17,18,19}
N13 = {2,5,6,9,13,14,18,19}
N14 = {6,9,14,16,17}
N15 = {1,4,5,6,8,10,12,15,20}
N16 = {2,5,7,12,14,15,16}
N17 = {2,9,14,15,17,20}
N18 = {2,3,7,8,16,18,20}
N19 = {5,10,16,19,20}
N20 = {4,5,7,8,13,17,18,20}

A33 =



N1 = {1,4,11,20}
N2 = {2,10,18}
N3 = {2,3,9,19}
N4 = {2,4,5,7,9,10,12,20}
N5 = {2,5,6,14,15,16}
N6 = {5,6,14,16}
N7 = {5,7,8,17}
N8 = {3,8,9,11,12,15,18}
N9 = {6,9}
N10 = {9,10,12,19}

N11 = {3,4,6,7,11,13,15}
N12 = {1,2,5,11,12,13,15,16,19,20}
N13 = {2,7,8,12,13,18,20}
N14 = {3,4,6,10,14,16,17,19,20}
N15 = {4,8,12,15,17}
N16 = {1,4,8,16,20}
N17 = {2,3,4,7,10,15,17,18,19}
N18 = {1,9,11,13,18}
N19 = {1,2,11,12,16,18,19}
N20 = {4,5,8,10,13,14,16,18,20}

A34 =



N1 = {1,4,6}
N2 = {2,7,8,11}
N3 = {3,19}
N4 = {1,4,8,10,11,20}
N5 = {1,5,9,12,16,18,19}
N6 = {2,6,7,10,16,18}
N7 = {4,7,10,13,16,17}
N8 = {7,8,9,15,18}
N9 = {5,9,15,16,20}
N10 = {2,4,5,10,13}

N11 = {1,5,11,13,15,16,17}
N12 = {2,5,6,8,9,12}
N13 = {4,5,7,8,10,13,15,19}
N14 = {1,5,9,10,13,14,16,17,18}
N15 = {2,3,14,15,20}
N16 = {2,9,11,12,13,16,17}
N17 = {1,4,6,8,10,15,16,17}
N18 = {9,12,15,18}
N19 = {2,16,18,19}
N20 = {2,9,17,20}
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A35 =



N1 = {1,6,9,18}
N2 = {2,7,10,12,14,16}
N3 = {2,3,4,5,19}
N4 = {1,2,4,7,17,18}
N5 = {1,5,6,13,15,16}
N6 = {3,4,5,6,7,15,16,18}
N7 = {2,4,7,10}
N8 = {1,3,6,8,12}
N9 = {4,6,7,9,13}
N10 = {8,10,12,18}

N11 = {2,9,11,12,17,19}
N12 = {6,10,12,14,16}
N13 = {8,10,11,12,13,16,18,19}
N14 = {6,7,8,10,14}
N15 = {1,2,3,5,8,11,12,15,17}
N16 = {8,10,11,16,17,18}
N17 = {2,11,15,17}
N18 = {1,4,6,7,11,13,14,18}
N19 = {1,12,13,19}
N20 = {4,5,6,9,10,11,17,18,20}

The evolution matrix Fj, associated with A j for j = 1, . . . ,35, is equal to

the adjacency matrix A j, corresponding to A j, premultiplied by the diagonal

matrix D j = [dii], with dii cardinality of Ni (ref equation (3.11)). We define

the density of a neighborhood Ni as the cardinality of Ni, not counting the

agent i, divided by 19, which is the total number of possible neighbors of

i. The set of evolution matrices F =
{

Fj
}35

j=1 has a mean density around

0.249.

We observe that the matrices in the set with maximum spectral radius

are those with a corresponding topology of the network such that one agent

is the leader among all the agents, i.e. it has no outgoing links to the other

agents, but there is a directed path from every agent in the network to it.

This is the case of Fi with i = {4,6,15,30}. Their second spectral radii are

ρ2(F6) = 0.953639710720261

ρ2(F15) = 0.964986919188626

ρ2(F4) = 0.965467413828792

ρ2(F30) = 0.984891122708641

If we make use of the Gripenberg algorithm presented in [74], which is

based on the four members inequality (4.23), to study the bounded family

F , after 20 steps and choosing as operator norm the spectral norm, we

obtain the following bounds for the second joint spectral radius of the set

ρ10(F ) = 0.984891 ≤ ρ2(F ) ≤ 0.997385 = ρ̂20(F ).

These bounds allow us to conclude that the family F has a second spectral

radius strictly less then 1. Moreover, we observe that the lower bound is

given by the second spectral radius of F30 which is, therefore, a candidate

s.m.p.
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Now, making use of the algorithm proposed by Protasov et al. in [57], we

obtain an approximated extremal ellipsoidal norm for the family F which

gives a tighter upper bound for ρ2(F ).

We start solving for k = 2 the optimization problem

min r

s.t. X � 0,

AT XA � rX , for all A ∈Pk(F )

(B.1)

where Pk(F ) is the set of all the possible products of length k whose factors

are elements of F .

Applying a conic programming method together with the bisection

method, we obtain the matrix X given by

X = diag(w)−H ·10−3

where

H ≈



0 2.47 5.45 2.32 3.97 3.00 2.76 3.34 2.36 3.39 10.61 4.84 1.95 2.92 2.85 2.17 1.15 3.85 1.81

2.47 0 4.44 2.17 2.98 1.73 2.82 2.25 1.90 2.61 2.53 2.77 1.49 2.83 1.82 1.19 2.29 2.83 2.88

5.45 4.44 0 4.41 −3.51 6.75 2.74 5.23 3.04 2.10 1.70 −4.13 7.46 3.74 5.97 10.51 3.31 0.71 4.16

2.32 2.17 4.41 0 3.10 2.20 2.29 2.51 2.13 3.29 7.09 3.21 1.69 2.53 2.43 1.48 1.41 2.98 1.79

3.97 2.98 −3.51 3.10 0 3.83 3.35 3.59 2.97 3.35 3.71 1.44 3.32 3.70 3.35 4.32 2.79 2.76 3.63

3.00 1.73 6.75 2.20 3.83 0 3.23 2.56 2.70 3.96 6.94 4.40 1.08 3.61 2.38 1.28 2.13 3.28 2.90

2.76 2.82 2.74 2.29 3.35 3.23 0 3.49 3.01 3.88 10.11 3.11 2.46 2.39 2.87 3.12 0.66 3.53 1.10

3.34 2.25 5.23 2.51 3.59 2.56 3.49 0 2.81 3.72 3.87 3.36 1.61 3.63 2.25 1.75 2.64 3.32 3.44

2.36 1.90 3.04 2.13 2.97 2.70 3.01 2.81 0 2.23 5.61 3.91 1.64 3.10 2.21 2.16 1.90 3.03 2.82

3.39 2.61 2.10 3.29 3.35 3.96 3.88 3.72 2.23 0 9.43 5.22 2.67 4.59 4.08 2.84 2.99 3.73 4.02

10.61 2.53 1.70 7.09 3.71 6.94 10.11 3.87 5.61 9.43 0 5.64 2.99 13.06 7.29 2.75 12.32 3.74 14.69

4.84 2.77 −4.13 3.21 1.44 4.40 3.11 3.36 3.91 5.22 5.64 0 3.28 4.05 4.07 4.37 2.81 2.31 3.36

1.95 1.49 7.46 1.69 3.32 1.08 2.46 1.61 1.64 2.67 2.99 3.28 0 2.51 1.34 −0.06 1.93 2.67 2.38

2.92 2.83 3.74 2.53 3.70 3.61 2.39 3.63 3.10 4.59 13.06 4.05 2.51 0 3.57 2.91 0.74 3.78 1.14

2.85 1.82 5.97 2.43 3.35 2.38 2.87 2.25 2.21 4.08 7.29 4.07 1.34 3.57 0 0.71 2.41 2.96 2.88

2.17 1.19 10.51 1.48 4.32 1.28 3.12 1.75 2.16 2.84 2.75 4.37 −0.06 2.91 0.71 0 1.96 3.18 2.78

1.15 2.29 3.31 1.41 2.79 2.13 0.66 2.64 1.90 2.99 12.32 2.81 1.93 0.74 2.41 1.96 0 2.86 −1.01

3.85 2.83 0.71 2.98 2.76 3.28 3.53 3.32 3.03 3.73 3.74 2.31 2.67 3.78 2.96 3.18 2.86 0 3.66

1.81 2.88 4.16 1.79 3.63 2.90 1.10 3.44 2.82 4.02 14.69 3.36 2.38 1.14 2.88 2.78 −1.01 3.66 0



w≈
(

1.5551 1.5583 1.8478 1.5579 1.5611 1.5518 1.5561 1.5515 1.5604 1.5440 1.6066 1.5719 1.5727 1.5508 1.5495 1.5803 1.5880 1.5473 1.5891
)

Associated to the symmetric and positive definite matrix X there is the

ellipsoidal norm ‖ · ‖X , defined in (4.5), which is the approximation of an

extremal norm for the family F .

Hence, if we run the Gripenberg algorithm choosing as operator norm

the ellipsoidal norm ‖ · ‖X , after 10 steps we obtain

ρ10(F ) = 0.984891 ≤ ρ2(F ) ≤ 0.990199 = ρ̂10(F )

and, after 20 steps,

ρ20(F ) = 0.984891 ≤ ρ2(F ) ≤ 0.987545 = ρ̂20(F ).
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Let us consider now equation (3.12). If we choose as initial condition

θ(0)T = (0.07280 , 0.28590 , 0.43005 , 1.00000 , 0.01876,

0.05239 , 0.20579 , 0.79045 , 0.89105 , 0.78879,

0.54911 , 0.66611 , 0.36084 , 0.90684 , 0.23010,

0.83631 , 0.22347 , 0.44872 , 0.76184 , 0.95011)

such that ‖θ(0)‖∞ = 1 and with mean value equal to 0.523471, after t steps

the solution of (3.12) is given by

θ(t) = Fi t−1 · . . . ·Fi1 ·Fi0θ(0) (B.2)

where the sequence i = (i0, i1, . . . , it−1) takes values in the set {1, . . . ,35}.
Let us consider θ (1)(t) solution of (B.2) corresponding to the previously

mentioned θ(0) and to the sequence of indices given by i(1)
= (30,30, . . .).

It results that θ
(1)
4 (t) = 1 for every t ≥ 0 and the mean value of θ (1)(t) is

around 0.999733 for t = 500 and 0.999999868 for t = 1000: the solution is

slowly converging to e.

On the contrary, if we consider a generic sequence like

i(2)
= (12,7,33,5,30,3,19,21,14,7, . . .),

after 10 steps the system has almost reached a global consensus. In partic-

ular the mean value of the solution θ (2)(10) is around 0.502774 and the gap

between its minimum and maximum value is 5.7 ·10−5.

For every generic product we have, in a similar way, convergence after

a few steps. This is due to the fact that a generic product of matrices

belonging to F presents a second spectral radius which is, usually, less than

0.5.

Second example

For the second example we consider 125 agents and the following 10

configurations Ai of their neighborhoods.
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A1 =



N1 = {1,11,22,77,83,87}
N2 = {2,9,10,18,79,82,87,101,104,112,115}
N3 = {3,7,21,28,33,38,39,42,53,54,73,98,108,110,120}
N4 = {4,19,26,30,35,60,86,87,101,114}
N5 = {3,5,6,10,16,66,75,81,84,113}
N6 = {1,5,6,16,22,35,41,55,68,77,87,101}
N7 = {7,9,18,30,56,60,64,79,84,86,104,123,124}
N8 = {8,18,26,40,74,86,100}
N9 = {7,9,10,15,18,22,42,70,73,79,88,89,93,103}
N10 = {1,10,29,39,40,48,49,55,71,80,91,95,121,122,125}
N11 = {4,8,11,17,21,24,28,30,34,48,49,54,63,70,94,102,118}
N12 = {8,12,14,18,22,41,81}
N13 = {1,13,16,34,42,47,59,80,111}
N14 = {14,35,36,57,63,74,96}
N15 = {3,15,23,33,34,37,42,73,74,81,91,97,110,122}
N16 = {4,16,26,77,82}
N17 = {7,17,28,37,42,64,78,109,123}
N18 = {12,14,15,18,23,32,34,64,88,104,113}
N19 = {4,18,19,21,22,23,24,44,64,66,72,74,76,77,87,93,102,113,114,125}
N20 = {20,39,53,56,57,70,84,120}
N21 = {21,32,43,50,68,90,91,104}
N22 = {4,16,22,28,39,42,53,58,64,71,88,123}
N23 = {3,10,23,38,67,85,90,102,112}
N24 = {16,19,22,24,25,27,30,33,34,49,68,77,79,84,92,99,103}
N25 = {10,14,17,22,24,25,32,41,61,71,76,86,112}
N26 = {4,26,38,50,53,61,70,73,100,110,111,117,125}
N27 = {2,8,27,37,48,60,72,79,93,112}
N28 = {9,16,28,29,45,60,68,77,79,82,100,110,119}
N29 = {2,29,45,67,78,83,100,101,102}
N30 = {15,27,30,51,61,94,101,108,115}
N31 = {1,6,10,31,43,79,80,106,108}
N32 = {15,16,19,27,31,32,42,78,79,84,97,116}
N33 = {30,32,33,37,74,84,103,114,116}
N34 = {31,34,43,45,61,66,84,89,92,93,113}
N35 = {1,5,35,39,41,45,106,108,112}
N36 = {19,29,30,36,47,75,77,90,94,101,107}
N37 = {19,22,23,37,50,70,87,93,103,113,121}
N38 = {1,11,31,38,54,76,90,107}
N39 = {4,12,13,15,26,39,71,87,119}
N40 = {9,33,39,40,52,61,79,85,109,114,117,118}
N41 = {1,2,9,20,30,31,34,41,47,54,56,58,59,67,85,107,116,124}
N42 = {10,14,20,42,52,64,67,72,88,99,103}
N43 = {43,45,48,56,69,92,100,103,107,113}
N44 = {8,26,28,44,60,68,108,125}
N45 = {5,9,13,19,33,35,36,45,46,74,80,92,95,101,105,106}
N46 = {1,6,12,13,24,41,46,77,85,89,97,111}
N47 = {4,14,18,21,33,47,64,85,90,99,101,111}
N48 = {11,16,42,48,51,68,75,88,106,112}
N49 = {20,39,49,67,86}
N50 = {8,35,41,48,50,54,62,70,93,97,105}
N51 = {9,17,36,39,51,56,59,61,71,87,92,104}
N52 = {9,15,23,33,52,90,93,95,99,111}
N53 = {26,31,32,53,59,62,94,95,111,119}
N54 = {10,18,30,42,54,66,125}
N55 = {1,8,15,17,35,55,64,85,97,110}
N56 = {5,8,10,23,25,27,41,56,66,70,87,95,107,119}
N57 = {4,18,23,30,31,35,57,60,69,87,107,108,119}
N58 = {3,30,35,58,59,63,71,96,119}
N59 = {1,20,28,56,59,62,87,99,102,113,118}
N60 = {2,7,34,60,61,80,86,112,122}
N61 = {19,37,42,46,61,64,68,69,101,106,111,117,120}
N62 = {3,32,50,62,69,83,96,114,117}
N63 = {3,14,20,23,42,46,63,78,79,91,101,107}

N64 = {14,19,27,64,85,101,125}
N65 = {24,40,65,89,97,99,112}
N66 = {6,8,13,33,35,46,59,66,74,85,94,97,98}
N67 = {67,104,118}
N68 = {5,7,9,14,32,44,51,57,68,100,107,117}
N69 = {2,3,19,69,109}
N70 = {26,31,32,33,46,56,58,65,70,72,74,107,119,124}
N71 = {3,4,13,27,32,35,36,45,71,73,87,92,105,107,108,125}
N72 = {25,28,42,44,45,57,71,72,86}
N73 = {36,41,73,105,112,113}
N74 = {8,13,19,74,123}
N75 = {4,21,26,75,91,118}
N76 = {3,9,13,21,25,29,73,76,79,80,96,107}
N77 = {27,31,50,67,69,77,81,84,97,106,109,119}
N78 = {17,22,38,42,45,73,78,101,109}
N79 = {26,27,59,73,79,87,93}
N80 = {25,29,37,38,43,45,46,65,68,73,74,76,78,80,82,110,118}
N81 = {1,20,56,60,66,80,81,90,107,108,115,122}
N82 = {8,29,40,75,76,82,85,93}
N83 = {9,14,42,46,63,83,85,107,109}
N84 = {5,14,35,83,84,100,122}
N85 = {9,26,44,48,62,64,67,85,110}
N86 = {23,37,61,62,81,86,106}
N87 = {14,81,87,95,98,114,119,124}
N88 = {1,10,27,51,65,67,70,88,91,99,107,121}
N89 = {7,8,26,37,49,89,109,116,122,124}
N90 = {35,47,49,55,56,81,90,97}
N91 = {16,40,61,64,91,116,122}
N92 = {11,15,21,23,57,60,63,66,77,92,101,107,123}
N93 = {23,30,52,64,93,102,106,119}
N94 = {10,21,22,35,39,61,94}
N95 = {5,32,39,63,64,75,76,77,95,112,125}
N96 = {11,31,35,42,44,66,96,106,113,117}
N97 = {7,12,33,38,64,89,94,96,97,99,124}
N98 = {2,3,24,77,80,87,98,99,111,123}
N99 = {3,13,15,29,35,46,73,83,89,95,99,104,114,122}
N100 = {24,41,57,58,59,70,100,101,103,111,119}
N101 = {47,76,101,111,118}
N102 = {1,3,8,9,14,61,69,85,94,102,112,114}
N103 = {48,60,76,78,89,100,101,103,106,109}
N104 = {19,29,30,34,73,86,104}
N105 = {16,23,25,34,73,96,97,98,105,111,112}
N106 = {14,25,30,38,44,45,66,79,83,89,90,101,104,106,114,120}
N107 = {5,16,18,22,58,65,101,104,107}
N108 = {2,5,15,27,33,44,58,66,108,110,114,121}
N109 = {21,23,31,44,46,48,57,91,105,109,125}
N110 = {9,53,68,83,95,110,112,115,125}
N111 = {10,32,58,71,97,111,112,113,115,122}
N112 = {30,32,38,58,73,112,123,124}
N113 = {11,57,58,59,76,79,93,102,110,113,116}
N114 = {3,19,32,46,64,67,94,114}
N115 = {1,29,32,41,66,87,115}
N116 = {15,20,23,30,64,69,72,81,84,89,95,101,109,116,119,125}
N117 = {16,51,57,65,66,75,94,115,117}
N118 = {25,27,30,41,50,77,90,92,112,118}
N119 = {9,10,26,63,64,89,93,119}
N120 = {34,36,47,60,61,62,64,72,74,86,87,97,98,100,102,103,114,120,122}
N121 = {10,42,49,67,69,77,79,94,100,114,121}
N122 = {7,12,20,33,67,81,85,88,90,91,99,107,116,121,122,123,124}
N123 = {14,39,44,51,59,61,62,75,89,92,106,116,119,123}
N124 = {2,8,13,15,32,36,39,41,51,61,80,83,100,124}
N125 = {10,15,16,24,32,33,74,121,125}

A2 =



N1 = {1,21,25,34,36,40,60,80,105,124}
N2 = {2,6,47,54,83,107,112}
N3 = {2,3,39,62,84,102,106,120}
N4 = {4,25,30,34,43,55,57,61,78,105}
N5 = {2,5,6,15,21,22,34,41,49,60,62,63,69,83,102,106,115}
N6 = {6,18,52,54,103,106}
N7 = {7,8,21,24,27,40,41,54,62,90,104,111}
N8 = {8,14,36,52,65,74,98,103}
N9 = {7,9,26,35,47,52,82,86,88,91,95,105,120,122}
N10 = {10,13,53,60,75,95,118}
N11 = {8,11,22,37,48,52,76,99,116,118,120}
N12 = {3,8,12,17,55,59,69,84,108,114}
N13 = {13,14,40,41,50,55,62,68,70,74,86,94,98,100,105,107,109,120}
N14 = {14,30,33,48,54,58,59,79,86,90,103,120}
N15 = {15,26,29,38,47,51,76,87,107,115,118}
N16 = {6,16,23,32,37,55,112}
N17 = {17,31,37,53,62,63,65,110,120,121,123,125}
N18 = {3,15,18,25,27,38,40,45,55,82,94,103,110,117,120}
N19 = {19,61,79,85,114}
N20 = {7,9,14,16,20,27,50,65,73,74,81,83,87,95,104,108,119}
N21 = {9,19,21,40,67,76,84,109,116}
N22 = {22,38,47,51,62,80,102,113}
N23 = {15,18,23,29,35,46,59,78}
N24 = {24,38,45,73,74,78,79,108}
N25 = {25,27,29,44,67,84,90,93,101,109,113,114,116}
N26 = {7,26,30,71,87,98,120}
N27 = {2,25,27,31,46,47,82,95,97}
N28 = {6,28,35,37,49,69,72,85,112,116}
N29 = {7,17,21,29,41,46,48,54,56,66,67,73,79,118,121}
N30 = {11,15,30,31,34,55,69,124}
N31 = {3,16,18,30,31,35,36,39,43,48,68,69,72,84,96,112}
N32 = {10,13,14,31,32,55,68,80,94,97,105,125}

N33 = {3,16,21,28,33,43,48,64,86,108}
N34 = {23,27,30,34,37,46,48,63,67,86,94,116}
N35 = {9,19,35,78,90,108,123}
N36 = {14,24,36,37,74,102,105,114,121}
N37 = {37,68,76,85,88,92,93,107,118}
N38 = {37,38,43,45,50,60,73,92,113}
N39 = {2,24,30,39,40,78,82,93,102,118}
N40 = {10,11,40,58,78,94,95,118}
N41 = {6,14,22,23,26,28,41,48,56,70,86,94,96,99,107}
N42 = {34,41,42,72,76,80,89,103,104,109,118}
N43 = {8,43,53,57,76,81,88,89,94,124}
N44 = {3,44,63,76,81,102,103}
N45 = {11,14,17,21,44,45,55,75,122}
N46 = {5,31,35,38,46,49,56,60,65,74,82,87}
N47 = {23,26,28,33,38,47,67,68,86,92,96,121,124}
N48 = {48,63,109}
N49 = {4,6,23,30,36,37,49,61,67,68,71}
N50 = {4,7,14,17,28,30,41,45,50,51,53,54,56,72,86,113,114,115,122}
N51 = {15,16,21,25,31,47,50,51,62,66,78,109,114,121}
N52 = {13,23,52,63,65,82,90,99,102,105}
N53 = {25,45,48,53,76,88,96}
N54 = {9,29,54,57,67,73,85,92}
N55 = {11,14,16,52,53,55,70,78,98,107,109}
N56 = {15,36,45,55,56,69,72,79,88,98,108,119}
N57 = {2,19,36,57,76,90,91,120,121}
N58 = {12,32,39,45,58,94,110}
N59 = {7,24,34,59,62,72,92,95,96,119,124}
N60 = {6,19,53,60,74,86}
N61 = {4,7,9,10,17,26,59,61,66}
N62 = {15,20,26,27,43,50,55,58,62,65,69,71,77,114,115,119}
N63 = {6,8,11,34,41,63,80,84}
N64 = {38,61,64,68,70,84,107}
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N65 = {1,24,25,32,33,42,44,48,50,65,70,85,91,92,105}
N66 = {2,11,14,25,41,49,55,66,76,79}
N67 = {33,41,67,77,91,99,108,115}
N68 = {8,26,44,60,68,75,81,87,89,92,109,115,120}
N69 = {8,30,52,54,69,75,110}
N70 = {3,4,9,33,49,54,57,70,79,91,97,106,116,118,125}
N71 = {4,8,68,70,71,76,86,102,118,122}
N72 = {38,52,68,72,91,98,104}
N73 = {8,23,65,73,84,105,113,125}
N74 = {18,30,63,69,74,78,80,95}
N75 = {3,29,61,75,77,78,98,100,106,112,114}
N76 = {45,56,64,67,74,76,83,94,115,124}
N77 = {30,34,40,44,60,70,77,90,94,96,105,122}
N78 = {3,9,58,66,76,77,78,84}
N79 = {21,33,60,74,79,84,93,107,113}
N80 = {10,16,37,58,65,80,99,119,123,125}
N81 = {3,41,42,56,58,81,88,96}
N82 = {25,40,43,52,82,83,107,122,125}
N83 = {45,60,65,83,90,101,105,114,118}
N84 = {8,12,23,27,38,48,67,83,84,90,109,119,120}
N85 = {2,3,11,13,43,71,74,76,85,102}
N86 = {29,86,105,121}
N87 = {5,11,25,35,36,50,63,87,90,100,101,119,120}
N88 = {2,17,33,39,58,68,79,85,88,93,101,117}
N89 = {44,49,50,60,89,91,117}
N90 = {6,22,32,34,35,37,52,64,87,90,92,94,111,116,118}
N91 = {9,15,16,20,31,52,63,66,71,81,91,96,114}
N92 = {4,7,9,37,41,46,52,92,93,122}
N93 = {13,66,84,93,101,125}
N94 = {11,14,44,51,65,80,94,97,113,118}
N95 = {2,7,28,46,55,75,94,95,106}

N96 = {20,21,33,63,64,68,96,98,119}
N97 = {7,23,25,26,67,97,103,117,120}
N98 = {5,15,16,17,24,31,32,56,67,72,86,98,110,114,117,122}
N99 = {6,23,29,30,99,106,114,116,121,125}
N100 = {20,24,32,52,53,77,100}
N101 = {38,40,62,69,75,77,82,83,97,101}
N102 = {6,19,21,32,35,46,47,66,78,97,98,101,102,113}
N103 = {48,65,67,103}
N104 = {11,27,38,47,72,80,104,105,122}
N105 = {31,38,39,45,53,85,86,96,98,101,105}
N106 = {5,15,19,36,42,73,81,91,100,104,106}
N107 = {3,24,25,52,54,62,63,66,79,84,85,96,107}
N108 = {6,9,11,35,71,89,99,103,108}
N109 = {12,18,27,29,56,61,62,109,111,112,116,117}
N110 = {12,21,28,44,66,70,73,87,96,100,105,110,116}
N111 = {1,30,38,51,76,83,92,101,110,111}
N112 = {18,20,47,86,89,91,104,112}
N113 = {14,19,42,58,62,80,92,97,113}
N114 = {4,6,56,114}
N115 = {13,21,26,30,32,55,58,62,66,72,78,82,93,97,98,104,115,117}
N116 = {10,34,39,46,51,80,81,91,103,104,109,116}
N117 = {12,57,79,97,100,113,117,123}
N118 = {4,7,26,36,46,69,118,121}
N119 = {5,13,29,31,33,50,53,65,73,76,82,106,114,119}
N120 = {25,28,30,46,53,70,71,107,120}
N121 = {4,12,29,34,61,62,63,88,97,112,121}
N122 = {15,21,37,43,49,51,56,87,88,99,104,111,117,120,122}
N123 = {2,49,59,65,80,82,89,120,123}
N124 = {13,22,45,62,64,68,71,73,85,87,110,124}
N125 = {2,35,40,49,94,95,125}
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N1 = {1,4,63,74,77,80}
N2 = {2,9,12,18,21,100,105,125}
N3 = {3,12,16,22,51,54,62,64,96,97,100,104,105,111,116}
N4 = {4,18,21,34,41,90}
N5 = {5,72,93,98}
N6 = {6,55,78,98,112,123}
N7 = {7,14,31,35,58,78,116,120}
N8 = {2,8,11,24,26,28,32,34,54,60,84,102}
N9 = {8,9,17,41,58,77,78,102,105}
N10 = {5,7,10,15,20,45,53,56,70,73,78,90,92,101,104,108,111,114,116}
N11 = {4,11,17,22,66,68,85,102,105,116,125}
N12 = {12,19,26,29,36,54,65,90,96,104}
N13 = {13,35,39,56,70,73,83,109,118,124}
N14 = {14,15,22,40,62,64,69,93,101,121}
N15 = {8,13,15,22,29,40,52,56,68,73,83,91,116}
N16 = {12,16,41,44,55,58,90,119}
N17 = {3,4,17,46,82,86,96}
N18 = {4,15,18,29,35,38,45,71,117}
N19 = {2,6,19,31,59,74,85,104,110,114}
N20 = {3,20,36,44,49,62,78,107,118}
N21 = {12,21,33,50,56,72,90,97,100,112,115}
N22 = {8,22,36,38,45,53,56,63,67,89,90,106,119}
N23 = {13,23,33,42,51,59,75,84,112,113}
N24 = {21,24,86,88,99,118}
N25 = {8,25,40,42,74,98,107}
N26 = {3,26,28,39,54,63,87,92,120,125}
N27 = {27,34,44,52,53,66,71,81,89,92,107,112}
N28 = {13,28}
N29 = {3,20,26,29,40,61,68,85,95,109,111}
N30 = {9,16,19,30,38,48,66,68,72,76,78,89,92,95,103,115}
N31 = {5,25,30,31,47,50,56,90,93,97,103}
N32 = {5,28,32,44,72,73,80,92,93,96,101,120}
N33 = {14,20,29,33,35,36,68,74,105,109,112}
N34 = {14,34,45,47,83,93,103}
N35 = {8,31,35,55,60,61,76}
N36 = {36,66,70,86,106,112}
N37 = {37,44,53,65,71,81,101,120}
N38 = {1,3,19,38,44,64,65,83,89,99,115}
N39 = {39,44,77,91,94,102,104}
N40 = {14,20,39,40,45,68,71,72}
N41 = {20,41,45,63,74,90,102,123}
N42 = {3,36,42,43,52,77,78,81,106,107}
N43 = {2,11,43,74,78,82,113,114}
N44 = {3,5,10,21,24,44,52,53,58,93,98,103,111}
N45 = {4,12,45,73,82,120,122}
N46 = {4,5,15,30,31,43,46,60,73,76,89,106,116,117,119,121,124}
N47 = {4,27,32,41,47,53,70,80}
N48 = {1,3,48,85,94,106,107}
N49 = {14,25,30,36,49,53,90,115,119}
N50 = {3,14,30,49,50,60,67,99,106,107,112,117}
N51 = {7,11,27,47,51,61,62,83,90,92,109}
N52 = {3,13,33,45,52,83,88,90,97,103}
N53 = {42,46,53,77,84,98,99,101,105}
N54 = {17,18,32,43,46,54,64,65,107}
N55 = {6,17,27,29,35,51,55,79,105,115}
N56 = {2,38,41,46,56,61,92,119}
N57 = {3,14,24,57,79,84,96,102,112}
N58 = {2,18,24,42,52,58,59,69,90,102,107}
N59 = {2,25,31,47,52,59,89,105,113}
N60 = {6,15,29,32,60}
N61 = {12,25,33,61,88,92,93,123}
N62 = {9,17,34,38,51,62,98,99}
N63 = {1,19,34,46,47,63,66,67,101,104,124}

N64 = {64,112,116,125}
N65 = {6,7,41,60,65,106,111,112,114}
N66 = {50,66,83,97,100}
N67 = {18,22,24,31,32,35,48,58,67,77,83,95,102,104,125}
N68 = {6,16,41,43,45,59,61,68,101,104,124}
N69 = {4,20,32,36,37,38,50,69,76,86,121,125}
N70 = {9,11,12,13,53,70,74,80,87,96,100,113,116,118,124}
N71 = {1,9,27,29,59,63,65,71,77,84,91,97,103}
N72 = {31,46,68,72,125}
N73 = {24,38,55,66,70,73,78,88,98,111}
N74 = {24,35,45,48,65,68,69,74,86,105,110,117}
N75 = {27,31,38,49,53,60,74,75,77,92,106,123}
N76 = {2,11,31,33,58,61,63,71,76,90,92,95,123,125}
N77 = {36,62,77,80,96,124,125}
N78 = {5,31,40,61,73,78,84,94}
N79 = {13,24,26,45,51,57,66,76,79,84,99,109}
N80 = {2,5,11,17,29,40,51,57,72,80,92,99,122,123}
N81 = {29,41,45,81,89,91,113}
N82 = {12,17,38,46,50,64,81,82,97,105,110}
N83 = {29,42,54,83,106}
N84 = {25,26,27,29,30,31,53,61,84,113,115,118,121}
N85 = {40,54,69,85}
N86 = {40,46,53,56,63,67,73,77,86,100,112,123}
N87 = {10,19,24,27,33,37,38,41,52,62,82,87,102,110,116,117}
N88 = {4,36,73,88,123}
N89 = {3,4,31,89,101,112}
N90 = {4,5,6,9,23,33,69,72,90,98,110}
N91 = {10,31,83,88,91,100,107,113}
N92 = {19,22,35,54,55,67,92,104,107,108,120,122}
N93 = {5,10,22,28,32,71,84,93,96,115,121}
N94 = {54,74,76,91,94}
N95 = {45,46,47,68,79,82,83,84,92,95,99}
N96 = {2,23,32,57,69,70,72,76,96,98,115,121}
N97 = {15,16,25,74,78,97,99,116,123}
N98 = {7,31,33,50,62,82,96,98,102,111,116}
N99 = {6,8,45,53,62,65,83,99,105,108,109}
N100 = {7,28,35,54,65,70,81,83,100,105,106}
N101 = {22,43,48,51,75,76,87,94,101,105,110,120}
N102 = {6,8,49,52,78,85,101,102,104,107,117}
N103 = {5,7,24,31,34,39,59,61,83,85,96,103,109,111,124}
N104 = {8,36,53,65,86,95,103,104,110,115}
N105 = {6,41,44,56,78,79,86,90,94,105,114,124}
N106 = {17,39,56,74,91,95,106,114}
N107 = {12,16,32,50,54,56,107,123}
N108 = {3,13,50,53,60,75,83,91,97,108,117,121}
N109 = {4,16,26,29,32,34,43,65,69,74,93,94,97,107,109,114}
N110 = {20,21,22,38,53,81,96,110,111,113,114}
N111 = {6,37,44,54,101,111}
N112 = {12,17,22,24,90,101,112,119}
N113 = {1,13,15,21,24,63,65,73,81,89,91,96,113,118}
N114 = {35,43,47,69,82,113,114}
N115 = {4,9,48,51,65,66,69,70,73,90,98,115,119}
N116 = {16,36,37,40,47,53,56,79,80,82,98,103,104,106,111,116,122,123}
N117 = {46,78,96,109,117,118}
N118 = {34,47,71,96,111,115,118,120}
N119 = {17,49,57,72,75,101,116,119}
N120 = {6,25,35,45,60,114,120,121}
N121 = {15,20,30,46,54,65,77,94,121,123}
N122 = {11,13,14,16,33,46,67,96,104,122}
N123 = {30,34,39,56,62,63,69,111,116,123}
N124 = {34,47,50,86,90,114,124}
N125 = {33,36,70,73,125}
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N1 = {1,4,22,28,30,32,41,45,61,62,68,79,92,105,114,116}
N2 = {2,28,31,42,48,64,72,77,79,81,88,92,122}
N3 = {3,12,42,49,50}
N4 = {4,7,45,51,54,55,63,79,81,111}
N5 = {5,8,24,25,30,38,48,110}
N6 = {3,4,6,34,41,51,54,58,61,63,76,106,122}
N7 = {4,7,13,34,61,76,84,94,111}
N8 = {2,8,27,60,79,85,95,101}
N9 = {9,10,13,15,21,28,31,55,56,65,85,111,124}
N10 = {1,10,23,31,54,107,113,123}
N11 = {11,17,29,40,43,46,53,65,73,96,104,111,117,121,125}
N12 = {8,12,74,90,106,107,116}
N13 = {13,24,31,44,53,93}
N14 = {13,14,21,115,122}
N15 = {6,14,15,28,33,45,51,84,90,105}
N16 = {6,9,16,75,109,123}
N17 = {2,17,22,31,38,59,115}
N18 = {18,70,93,95,117}
N19 = {11,19,23,34,45,56,65,93,112}
N20 = {20,23,37,66,95,104,107,116,120}
N21 = {7,14,17,21,31,44,54,62,69,111,113,121}
N22 = {5,6,15,22,33,36,45,69,79}
N23 = {20,23,58,67,76,81,84,113,119}
N24 = {24,37,40,43,48,75,86,99,107,118}
N25 = {11,25,29,50,60,88,91,111,125}
N26 = {15,18,21,26,28,64,69,79,83,104,119}
N27 = {4,12,27,32,33,36,76,78,90,93,100}
N28 = {24,28,45,53,122}
N29 = {25,29,39,54,69,78,99}
N30 = {3,17,20,30,36,44,50,71,87,93,94,96}
N31 = {8,15,20,22,31,41,56,59,61,62,67,78,79,82,102,107,122,124}
N32 = {3,32,62,68,73,75,84,103,113}
N33 = {13,16,19,20,26,29,30,31,32,33,43,61,82,85,89,99,123}
N34 = {4,12,25,34,56,58,71,79,98}
N35 = {1,9,21,24,35,41,52,80,88,90,104}
N36 = {3,7,12,20,36,38,84,116}
N37 = {8,22,31,37,50,54,68,72,86,88,113,117,121}
N38 = {8,13,14,31,38,42,46,92,103,106,107,116}
N39 = {5,16,39,72,80,82,108,109,111}
N40 = {16,39,40,41,55,61,67,70,73,81,85,90,99,111}
N41 = {29,41,49,69,88,97,110,115,121}
N42 = {1,9,11,14,38,42,50,54,55,58,67,75,86,92,117}
N43 = {3,9,40,43,92}
N44 = {1,44,50,58,62,82,106,124}
N45 = {1,12,29,30,45,52,75,101}
N46 = {7,46,55,70,77,79,92,97,114,117,118}
N47 = {2,4,7,22,23,24,47,97}
N48 = {10,35,48,63,72,85,98,105,107,113,120,122}
N49 = {3,16,20,39,49,65,73,77,106}
N50 = {21,37,40,47,49,50,70,89,91,93,94,99,104,111}
N51 = {15,22,29,42,51,67,71,91,93,97,103,112,118,123}
N52 = {11,28,33,52,101,105,106,111}
N53 = {26,41,50,53,74,76,81,100,101,109}
N54 = {2,12,33,36,54,82,109,118}
N55 = {3,8,9,36,49,51,55,58,59,89,92,102,104,113}
N56 = {27,29,38,40,50,56,69,72,73,87,101,103,104,107}
N57 = {1,33,38,44,52,57,62,63,65,67,76,109,114}
N58 = {3,21,30,37,44,58,62,70,83,92,105,106}
N59 = {5,15,28,43,47,59,60,85,97,104,108,110,114,125}
N60 = {7,12,16,46,53,55,60,95,108,114}
N61 = {10,12,39,43,50,61,67,72,95,119}
N62 = {6,41,62,92,96,121,122}
N63 = {48,57,62,63}

N64 = {7,9,17,26,38,43,47,64,66,68,91,98,108,114}
N65 = {3,19,29,39,45,55,64,65,102,109}
N66 = {2,5,10,20,33,40,42,64,66,99,106,107,108,112,121}
N67 = {1,50,58,67,82,91,107,109}
N68 = {14,32,46,68,95,96}
N69 = {26,43,69,78,83,90,101}
N70 = {2,12,14,28,30,42,50,70,76,85,106,114,118,119}
N71 = {2,5,9,35,43,52,61,71,101,120}
N72 = {5,12,13,38,57,61,65,72,76,105,107,119}
N73 = {9,16,36,72,73,81,86,109,116}
N74 = {9,32,37,53,56,58,60,68,74,78,79,107,114,121,123}
N75 = {10,14,38,42,51,75,98,108,116,117}
N76 = {8,15,27,76,95,102,120,125}
N77 = {1,21,29,43,62,72,73,77,91,92,103,108,116,121}
N78 = {4,8,40,49,50,70,78,84,105,119}
N79 = {7,9,39,51,54,79,88,90,100,112,118}
N80 = {37,79,80,90,102,113,115,116,124}
N81 = {15,26,40,61,62,67,68,69,81,93,99,109}
N82 = {5,25,35,48,50,59,75,81,82,95,113,124}
N83 = {2,5,21,36,57,58,83,92,99,114,125}
N84 = {24,40,84,85,108,117,124}
N85 = {5,25,32,38,49,54,85,90,122}
N86 = {13,21,49,70,72,86,95,96,100,105,106,107,108,109,118}
N87 = {10,17,26,28,40,44,65,71,77,87,89,102,115,116,117,121}
N88 = {12,13,23,54,59,60,67,88,100,104}
N89 = {89}
N90 = {44,74,90,97,120,123}
N91 = {6,25,41,48,49,63,72,86,91,108,112,114,121}
N92 = {17,20,38,62,65,91,92,116}
N93 = {2,8,12,38,64,65,90,93,100,102,104,111}
N94 = {19,44,59,68,74,88,94,107,109}
N95 = {18,28,42,50,57,62,70,86,95}
N96 = {5,35,41,43,55,71,77,93,96,100,124}
N97 = {31,34,42,44,47,54,67,71,74,76,93,97,108}
N98 = {8,22,23,30,35,36,63,84,98,106,111,121}
N99 = {26,28,39,66,78,91,99,105,124}
N100 = {20,48,54,84,100,115}
N101 = {13,14,37,89,100,101,120}
N102 = {7,12,30,42,45,57,64,70,79,85,87,94,102,104,117}
N103 = {2,39,55,70,74,85,103}
N104 = {34,36,51,56,60,65,77,91,101,104,109,120}
N105 = {5,60,65,78,88,90,105,106,110,115}
N106 = {21,26,29,38,53,54,56,59,64,65,71,96,98,102,106}
N107 = {12,17,31,55,61,70,73,96,101,107,116}
N108 = {3,38,42,49,65,75,103,105,107,108,120}
N109 = {5,8,47,63,64,104,109,113}
N110 = {21,22,30,33,48,57,61,107,110}
N111 = {4,7,8,15,18,19,51,81,95,111,112,117}
N112 = {39,105,107,112}
N113 = {2,5,14,16,41,48,56,59,103,113,119}
N114 = {9,52,64,69,74,91,104,105,113,114,124,125}
N115 = {14,34,53,61,78,82,105,106,115}
N116 = {5,6,7,24,71,73,86,88,91,92,96,116}
N117 = {3,15,35,47,48,71,88,117,122}
N118 = {1,6,26,53,82,86,87,94,109,118}
N119 = {2,18,30,33,61,86,119}
N120 = {4,54,65,78,86,87,94,100,102,113,114,117,120}
N121 = {8,34,44,52,76,87,114,117,121,124}
N122 = {13,29,41,63,72,78,79,83,85,90,93,106,122}
N123 = {12,19,30,73,84,90,112,123}
N124 = {6,12,18,25,33,54,64,69,94,101,105,124}
N125 = {12,17,56,66,78,91,99,101,103,122,125}
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N1 = {1,14,24,25,29,37,69,75,79,94,97,118}
N2 = {2,27,53,92,97,104,108,114,124}
N3 = {3,11,13,20,90,93,95,112}
N4 = {4,22,35,55,65,68,93,101,107,109,117,118}
N5 = {5,16,17,42,55,91,107,115}
N6 = {6,17,24,42,85,89,120,121}
N7 = {7,28,41,66,82,88,94,96}
N8 = {6,8,17,41,63,73,78,92,104,105}
N9 = {9,10,18,53,60,68,84,89,113,115}
N10 = {1,10,15,38,58,65,78,80,85,95,114,115,125}
N11 = {3,4,11,22,27,39,44,46,60,62,78,85,95,102,107,110,111}
N12 = {9,11,12,17,39,45,47,58,62,70,82,91}
N13 = {13,14,53,56,65,67,115}
N14 = {14,27,32,39,40,42,58,85,95,107,109,110}
N15 = {15,31,44,65,68}
N16 = {9,16,18,19,27,38,50,59,74,76,83,98,115,119,121}
N17 = {17,57,69,77,102,107,120}
N18 = {11,18,63,82,99,105,114,119,123}
N19 = {1,12,19,44,49,89,93,101,113}
N20 = {5,14,18,20,27,50,63,79,102}
N21 = {1,21,23,36,61,67}
N22 = {3,22,33,65,66,71,101,105}
N23 = {8,14,21,23,32,38,42,46,51,62,64,70,79,97,104,106,113,114}
N24 = {13,22,24,53,63,72,90,95,97,104,109,120}
N25 = {7,11,25,26,31,42,51,55,65,68,93,101,114,122}
N26 = {25,26,31,38,46,48,111}
N27 = {27,31,40,46,50,63,64,84,99,104,113,114,116,119}
N28 = {8,28,44,46,48,62,65,66,69,92,96}
N29 = {6,29,41,57,59,60,61,67,70,72,93,99,113,125}
N30 = {9,26,28,30,33,42,49,74,77,86,101,121}
N31 = {28,31,35,46,54,97,101,115,121}
N32 = {17,21,32,35,36,76,84,98,109}

N33 = {25,33,93,103,108,123}
N34 = {4,12,20,28,34,36,55,62,73,122}
N35 = {31,35,37,44,46,51,57,68,76,108,123}
N36 = {7,12,35,36,42,44,66,67,76,85,91}
N37 = {6,37,41,95,120,123}
N38 = {13,17,28,30,38,45,59,66,94,103,118}
N39 = {15,16,39,46,47,51,63,70}
N40 = {40,41,51,58,66,69,94,100,117}
N41 = {1,22,25,41,60,63,70,86,98,107}
N42 = {5,10,20,42,48,51,67,110,117}
N43 = {9,11,29,35,40,43,91,96,97,105,106,122}
N44 = {1,5,36,42,44,70,76,77,106,112}
N45 = {16,35,41,45,59,75,102,119,122,125}
N46 = {4,19,25,45,46,59,63,77,83,86,88,95,97,105,109}
N47 = {14,17,26,28,47,54,58,80,97,123}
N48 = {4,5,48,58,60,82,90,122}
N49 = {9,23,24,28,30,49,57,59,78,100,105,108}
N50 = {4,17,27,30,50,51,56,78,96,113,119}
N51 = {7,11,48,51,68,82,88,105,108,115,121}
N52 = {38,52,76,84,87,88}
N53 = {21,28,42,43,44,53,69,83,87,105}
N54 = {1,25,28,40,52,54,81,97}
N55 = {4,9,53,55,70,73,82,112}
N56 = {7,9,23,46,52,56,75,80,95,101,106,110,111}
N57 = {11,57,59,66,89,92,97,109,119,121}
N58 = {32,54,58,71,119}
N59 = {5,11,13,14,42,45,59,86,106,122,124}
N60 = {7,12,27,33,39,60,79,80,95,106,115}
N61 = {3,7,12,31,35,55,61,77,98,118,122}
N62 = {3,6,16,21,26,58,62,73,75,76,99,124}
N63 = {44,46,59,63,77,84}
N64 = {29,40,64,94,108,112,125}
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N65 = {12,20,22,26,65,72,77,96,105,106,109,112}
N66 = {25,43,66,73,74,77,81,90,100,108}
N67 = {16,18,38,45,67,70,72,91,106,108}
N68 = {3,14,29,68,75,86,95,107,116}
N69 = {7,19,35,46,57,69,76,81,93,113,114}
N70 = {1,27,35,48,56,70,88,89,116,121,123}
N71 = {8,13,34,40,49,57,58,71,80,81,84,90,101,118}
N72 = {8,30,55,60,67,68,72,99,113}
N73 = {8,22,50,53,61,70,73,76,80,81,91,92,95,97,109}
N74 = {6,12,36,41,48,51,52,58,74,91,94,99,107,118}
N75 = {17,51,75,90,91,112,116}
N76 = {4,5,19,23,50,52,58,60,72,76,78,100,102}
N77 = {7,18,59,61,72,77,101,108,109,117,123,124}
N78 = {34,45,50,62,78,85,122}
N79 = {1,3,4,16,22,24,34,37,40,48,49,69,79,89,90,117,122}
N80 = {6,9,10,27,44,63,80,81,84,118}
N81 = {4,7,13,26,46,49,71,81,100,103,106,117,125}
N82 = {3,21,28,34,54,56,82,85,87,91,103,117}
N83 = {6,15,19,30,64,81,83,85,98,109}
N84 = {3,4,5,10,27,47,65,84,85,104,117}
N85 = {3,39,43,60,85,91,93,121,124}
N86 = {11,21,42,56,58,79,86,87,99}
N87 = {6,13,36,38,65,81,83,87,88,99,101,117,119}
N88 = {11,13,19,24,32,57,83,88,95,101,103,112}
N89 = {1,24,30,56,68,69,79,89}
N90 = {6,32,63,67,89,90,96,102,118,119}
N91 = {33,47,51,77,85,91,99,120,122,125}
N92 = {4,15,29,61,80,81,91,92,108,118,121}
N93 = {7,39,46,50,57,61,85,93,96,98}
N94 = {14,19,26,65,81,94,117}
N95 = {12,28,31,46,49,58,59,87,92,95,112,114}

N96 = {8,13,19,25,66,68,96,103,105,118}
N97 = {5,6,27,36,37,42,46,51,76,96,97,103,108,109}
N98 = {24,37,55,59,71,77,98,123}
N99 = {10,13,52,54,63,64,65,91,99}
N100 = {56,63,87,90,92,99,100}
N101 = {22,31,33,42,63,101,125}
N102 = {40,43,61,69,85,93,96,102,109,117}
N103 = {8,14,33,39,51,58,64,77,103,106,108,110,112}
N104 = {6,9,10,14,30,44,46,71,79,80,103,104,118}
N105 = {21,34,38,45,47,61,71,99,105,119}
N106 = {25,34,41,45,63,89,96,104,106}
N107 = {1,13,15,49,59,76,79,105,107}
N108 = {8,16,67,83,87,101,102,108}
N109 = {8,9,26,34,54,61,78,91,99,103,104,107,109,120}
N110 = {10,18,51,89,104,108,109,110,119}
N111 = {5,6,11,14,43,55,98,111}
N112 = {6,8,12,19,61,68,84,86,104,112,115,118,121}
N113 = {8,10,16,85,91,103,113,121}
N114 = {19,21,31,54,63,74,89,114,117,120,123,125}
N115 = {29,33,45,48,49,67,75,76,93,97,101,102,109,115}
N116 = {34,40,41,67,72,83,102,116}
N117 = {14,18,29,33,117}
N118 = {38,86,91,101,118,119}
N119 = {4,17,40,52,81,90,118,119}
N120 = {4,5,10,13,19,24,33,35,60,62,67,70,95,96,98,99,101,103,104,105,120}
N121 = {14,22,49,51,63,68,70,81,95,100,121}
N122 = {41,47,50,55,79,85,88,102,107,112,122}
N123 = {9,15,18,41,45,47,52,56,75,76,111,122,123}
N124 = {4,10,13,31,33,46,51,77,96,112,124}
N125 = {6,11,71,92,111,114,125}
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N1 = {1,13,29,76,86,117}
N2 = {2,17,30,51,52,58,62,63,68,72,85,113,114}
N3 = {3,35,45,49,56,83,112}
N4 = {4,19,21,38,43,60,67,71,94,102,121}
N5 = {1,5,15,24,35,36,49,52,64,65,99,112,119}
N6 = {2,3,5,6,14,18,23,47,53,94,97,98,106}
N7 = {5,6,7,54,57,80,83,85}
N8 = {8,32,49,65,73,98}
N9 = {9,14,18,26,30,84,85,98}
N10 = {10,29,68,71,92,94,98,103,108}
N11 = {3,11,22,23,32,42,52,75,123,124}
N12 = {12,15,38,44,48,63,80,81,98,125}
N13 = {2,13,18,21,76,82,85,88,105,123}
N14 = {3,14,112}
N15 = {10,12,15,46,77,82,108}
N16 = {7,16,21,42,49,53,56,68,71,85,105,115,116,124}
N17 = {17,18,27,36,55,67,71,99,112}
N18 = {7,18,22,24,30,98,100,112}
N19 = {17,19,27,31,32,42,83,84,86,101,108}
N20 = {7,15,19,20,25,30,58,70,74,87,94}
N21 = {21,34,39,41,62,65,81,83,88,95,106}
N22 = {22,29,30,31,33,82,105,122}
N23 = {7,23,24,36,40,70,75,78,94,102,109}
N24 = {1,6,8,15,18,22,24,52,59,60,62,112,121}
N25 = {14,23,25,42,65,71,72,82,98,105,107,108,114}
N26 = {26,33,44,80,81,82,91,96,115,124}
N27 = {27,39,67,72,73,80,92,109,111}
N28 = {28,52,77,94,96}
N29 = {19,29,38,42,66,84,96,99,111}
N30 = {5,8,23,26,28,30,36,49,57,76,84,107}
N31 = {1,25,31,53,56,95,98,104,105}
N32 = {13,32,39,47,51,70,83,92}
N33 = {19,33,35,36,41,53,63,103,124}
N34 = {7,18,34,72,77,88,101,104}
N35 = {17,18,21,35,41,57,62,74,79,90,101,111,114,125}
N36 = {3,20,22,28,36,39,68,69,88,111,116}
N37 = {1,5,32,37,40,50,54,56,75,93,116}
N38 = {13,20,32,36,38,79,88,90,97}
N39 = {6,39,44,57,73,103,121}
N40 = {40,45,49,64,75,78,80,87,101,103,107,114,119}
N41 = {3,4,6,24,37,41,70,84,86,93,112,114,121}
N42 = {14,26,36,42,73,86,103,110}
N43 = {8,22,31,39,43,59,64,82,88,92,94,113}
N44 = {1,44,49,52,65,67,82,84,88,97}
N45 = {23,45,95,98,105,123}
N46 = {46,66,71,75,81,104,118}
N47 = {7,16,19,36,42,47,53,96,102,114,115}
N48 = {17,28,48,55,108,124}
N49 = {41,42,49,52,57,61,71,74,76,81,92,97,107,109}
N50 = {1,50,51,59,70,86,91,112}
N51 = {1,10,20,34,39,51,56,77,107}
N52 = {28,29,52,59,68,80,94,108,109,118}
N53 = {14,15,44,53,57,64,78,96,123}
N54 = {37,54,61,67,84,110,122}
N55 = {16,35,55,75,76,77,80,84,97,116}
N56 = {7,9,20,26,36,42,46,56,62,78,84,99,114}
N57 = {8,12,50,53,57,64,71,73,90,99,110,119}
N58 = {9,12,22,38,42,44,51,58,65,66,68,76,88,91,97,103,107,108,124}
N59 = {9,13,21,34,59,91,116,119}
N60 = {7,8,24,30,37,40,60,123}
N61 = {1,12,16,27,40,47,61,86,99,110,114}
N62 = {6,20,62,64,70,82,87,91,98,115}
N63 = {5,14,32,34,37,54,63,82,91,93,101,109,114}

N64 = {3,6,9,23,53,64,85,96,100,109}
N65 = {2,4,5,17,23,26,38,51,65,80,92,103}
N66 = {28,37,38,46,66,72,90,99,100,104,113,122}
N67 = {16,18,38,67,120}
N68 = {40,52,68,71,95}
N69 = {5,42,52,58,69,70,95,106,108,116}
N70 = {26,59,70,76,78,114,116,119}
N71 = {11,28,31,44,51,54,58,64,71,77,96,112,115,120}
N72 = {2,10,22,23,44,72,113,116}
N73 = {15,25,73,78,115}
N74 = {9,20,27,30,37,54,60,68,74,79,97,107}
N75 = {23,27,32,34,43,48,59,65,75,89,99,112}
N76 = {4,10,25,28,39,48,62,76,118,125}
N77 = {1,20,47,51,56,69,75,77,84,87,89,97,122}
N78 = {2,75,78,89,91,124}
N79 = {7,8,20,47,54,79,91,116,121,124}
N80 = {7,28,30,39,59,64,71,72,75,80,91,93,102,117}
N81 = {2,15,53,54,63,76,79,81,91,117,119}
N82 = {7,9,24,25,33,71,79,82,100}
N83 = {3,4,24,29,31,36,41,83,86,102,107}
N84 = {12,21,22,37,55,84,111,122,125}
N85 = {23,29,48,50,85,95,97}
N86 = {42,52,80,86,96,97,99,107,110,112,116,121}
N87 = {5,28,38,52,56,57,65,87,109}
N88 = {21,22,24,30,37,50,55,75,86,88,120}
N89 = {4,13,22,28,29,49,62,89,90,91,118}
N90 = {12,17,20,26,30,54,58,76,90,92,93,98,104,120}
N91 = {24,29,33,41,49,51,91,111}
N92 = {5,22,27,38,45,53,54,59,69,73,92,109,110,112}
N93 = {6,13,34,59,69,78,93,109}
N94 = {19,22,35,37,45,54,55,58,68,70,89,94,96,113}
N95 = {2,7,50,78,95,118}
N96 = {32,65,66,76,90,93,96,112}
N97 = {15,33,62,88,95,97,100,104,106}
N98 = {13,37,51,74,86,95,98,100,112,115}
N99 = {6,39,43,99,121}
N100 = {17,21,22,34,40,41,61,70,90,100,108,112}
N101 = {3,8,43,57,96,101,103}
N102 = {8,30,34,42,47,52,65,77,85,102}
N103 = {59,63,65,72,94,95,103,108,124}
N104 = {4,15,21,57,77,82,96,104}
N105 = {7,28,46,47,56,69,75,82,85,93,97,105,112,118}
N106 = {27,32,38,106,107}
N107 = {7,23,29,33,61,63,107,113}
N108 = {17,23,33,47,60,63,65,75,78,91,92,101,108,111,122}
N109 = {28,77,80,84,102,104,109,111,124}
N110 = {8,24,27,28,47,64,94,100,102,110,116}
N111 = {12,18,23,53,61,65,74,93,108,109,111,118}
N112 = {16,18,19,34,47,50,52,66,71,104,112,114}
N113 = {51,55,63,80,100,113}
N114 = {2,73,89,107,114,125}
N115 = {8,10,16,23,32,41,47,61,63,70,76,79,89,93,115,118,120}
N116 = {21,30,40,43,46,82,105,116,123}
N117 = {25,38,85,100,101,117,124}
N118 = {25,47,69,79,93,118,120}
N119 = {5,10,22,27,34,56,66,67,71,85,87,91,98,108,117,119}
N120 = {4,31,48,49,52,55,59,73,91,93,120}
N121 = {10,27,44,95,98,121}
N122 = {10,14,35,49,63,75,91,97,102,122}
N123 = {4,17,20,28,52,73,93,96,98,111,117,120,123}
N124 = {40,52,73,77,78,96,101,117,119,124}
N125 = {3,10,34,43,92,105,108,125}
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N1 = {1,5,31,65,71,80,85,91,94,107}
N2 = {2,8,11,19,27,31,38,47,48,50,58,76,89,98,102,104,110,116}
N3 = {3,11,20,23,34,48,51,57,70,81,88,92,95,97,102,104}
N4 = {2,3,4,22,39,59,67,71,95,124}
N5 = {5,28,31,42,112,114}
N6 = {6,27,35,37,48,82}
N7 = {7,18,42,66,67,72,77,80,86,101,103,109,117,121}
N8 = {8,11,21,28,32,57,74,86}
N9 = {2,9,23,37,39,44,58,75,86,104,107,117,124}
N10 = {7,10,13,19,20,36,38,63,82,83,86,89,92,93,105,111,120,121}
N11 = {11,13,19,51,84,85,93,100}
N12 = {10,12,60,63,69,74,79,105,117}
N13 = {7,13,26,31,56,57,84,104,106,109}
N14 = {4,14,18,24,25,28,86,113}
N15 = {3,7,10,15,63,70,72,76,88,91,99,111,125}
N16 = {3,13,16,32,39,46,49,54,79,81,87,99,101,111,115,118}
N17 = {4,17,24,50,53,54,71,96,111,114}
N18 = {10,18,21,23,24,26,33,42,60,66,70,82,86,111,112,116}
N19 = {8,19,22,27,55,116}
N20 = {9,10,17,19,20,22,27,38,40,65,72,79,87,93,96}
N21 = {3,21,44,46,98,101}
N22 = {22,24,32,46,56,57,70,85,92}
N23 = {23,73,84,94,97,100,104,106,116,122}
N24 = {11,15,18,24,52,54,55,63,66,68,71,78,92}
N25 = {14,20,25,40,45,54,60,63,77,100,110}
N26 = {10,26,40,43,46,53,61,73,102,107,110,115,122,123}
N27 = {19,27,40,41,46,61,67,77,78,81,88,89,91,99,100,111,120,124}
N28 = {6,10,18,19,27,28,62,65,67,75,95,112}
N29 = {22,29,31,45,48,62,69,84,101}
N30 = {1,2,3,30,33,35,70,83,89,94,96,116}
N31 = {5,24,31,35,40,47,71,95,115,119}
N32 = {6,7,9,30,32,55,63,101,103,106,123}
N33 = {3,14,18,21,30,33,35,51,72,77,92,96,111}
N34 = {34,49,51,54,91,96,107,109,122}
N35 = {1,5,11,18,25,30,33,34,35,81,84,92}
N36 = {5,13,24,26,28,33,36,40,44,46,81,100,106,111,118,122}
N37 = {1,9,24,27,37,41,69,94,121}
N38 = {11,38,43,87,100,109}
N39 = {15,17,39,53,56,58,78,99,101,103}
N40 = {36,40,45,110}
N41 = {13,41,56,58,75,95}
N42 = {42,63,73,101,105,111,113}
N43 = {37,43,47,56}
N44 = {14,31,44,84,108}
N45 = {2,14,42,45,73,91,111}
N46 = {7,24,29,46,82,105,107}
N47 = {10,11,20,25,27,36,37,41,44,47,51,64,69,71,74,100,112,120}
N48 = {19,46,48,51,68,79,118}
N49 = {31,44,49,65,71,73,81,98}
N50 = {19,50,60,63,65,73,99,102}
N51 = {1,4,21,37,47,51,62,69,82,93,112,124}
N52 = {6,9,17,52,66,70,113,116}
N53 = {6,14,19,32,40,53,57,80,90,94,105,106,117,118,121,123}
N54 = {4,13,17,28,45,54,65,72,76,84,93,94,95,113,117,123}
N55 = {6,8,17,22,27,55,75,77,87,88,119}
N56 = {7,24,56,59,69,88,98,108}
N57 = {4,14,15,17,21,39,57,70,77,82,113}
N58 = {2,5,42,47,58,63,97,98,101,103,105,112,113}
N59 = {8,18,41,42,59,62,70,78,91,93,95,97,105,107,118}
N60 = {15,22,33,42,56,60,73,88,97,103,104,120}
N61 = {39,40,41,61,72,87,105,111,113}
N62 = {33,41,57,62,98,101,110,118,119}
N63 = {33,37,44,63,75,80,81,110}

N64 = {16,21,31,45,64,72,115,119}
N65 = {4,12,33,47,52,59,62,65,70,79,112}
N66 = {13,26,28,42,45,48,51,52,66,67,86,91,93,99,102,103}
N67 = {4,5,11,21,32,37,67,68,92,93,94,105,108,112,117}
N68 = {1,12,21,37,43,50,53,60,61,62,63,68,91,94,101,114,122}
N69 = {13,39,42,69,80,109}
N70 = {33,70,84,89,100,104,113}
N71 = {7,27,42,66,71,95,96,109}
N72 = {6,26,31,34,43,48,67,72,83,89,107,116}
N73 = {7,24,28,42,43,46,63,73,74,88,94,106,120}
N74 = {5,30,45,74,103,108,122,123,124,125}
N75 = {1,14,22,24,26,40,44,46,73,75,84,96,100}
N76 = {19,37,43,76,82,99,122}
N77 = {34,63,70,71,77,98,99,111}
N78 = {10,29,30,37,38,46,54,67,78,79,85,92,95,99,101,119}
N79 = {15,22,35,39,47,49,58,64,70,76,79,93,113}
N80 = {8,23,39,41,42,45,46,53,66,75,78,80}
N81 = {9,10,17,19,41,46,54,57,58,79,81,89,102,120}
N82 = {4,6,8,42,45,47,67,69,82,107}
N83 = {23,33,56,68,73,83,86,109,113,114}
N84 = {2,54,74,75,84,85,99,100,108,117}
N85 = {3,24,25,32,63,73,85,93,105,109,118}
N86 = {31,86,110,121}
N87 = {1,15,22,37,46,57,87,118}
N88 = {18,42,58,59,65,66,68,83,86,88,95,113,115,118,119}
N89 = {14,24,32,71,75,79,89,96,101,109,115,120}
N90 = {18,35,42,43,48,75,79,90,92,104,110}
N91 = {2,20,27,28,44,74,91,108}
N92 = {1,21,25,52,58,75,80,92,109,110}
N93 = {12,14,45,53,70,88,93,107,115,122}
N94 = {12,20,35,38,41,60,62,69,74,75,94,106,123,125}
N95 = {35,46,73,82,88,95,97,105}
N96 = {11,26,28,29,33,48,60,64,71,74,96,100,106,113,117}
N97 = {12,23,61,69,71,81,84,85,97,109,125}
N98 = {15,67,81,82,96,98,109,125}
N99 = {7,35,56,61,70,83,88,99,115,117}
N100 = {20,26,54,72,74,95,97,98,100,107,116,117}
N101 = {6,30,36,41,47,54,86,87,98,101,106,124}
N102 = {11,16,34,50,66,79,84,93,101,102,116}
N103 = {6,13,21,41,70,103,115,116}
N104 = {25,31,42,48,75,76,88,92,95,104}
N105 = {15,37,51,69,70,82,93,104,105,106,110}
N106 = {16,26,30,44,64,67,80,100,101,106}
N107 = {10,13,25,44,107,116}
N108 = {9,12,53,59,98,107,108,115}
N109 = {7,15,23,30,42,82,96,100,101,103,104,106,109,117}
N110 = {10,30,50,52,68,77,80,84,95,98,103,110}
N111 = {6,29,41,52,61,65,75,77,79,111,120}
N112 = {5,7,10,29,47,59,61,65,92,98,100,103,112}
N113 = {7,10,41,55,61,77,81,113}
N114 = {33,44,57,81,85,111,114,119,120,121}
N115 = {26,42,53,109,115,120}
N116 = {37,56,78,107,112,116,120,125}
N117 = {9,18,25,34,40,50,53,62,90,94,105,108,117,122}
N118 = {8,29,57,63,71,81,84,118}
N119 = {24,40,45,47,67,92,99,103,108,116,119}
N120 = {38,40,47,53,75,88,106,107,108,120}
N121 = {14,25,37,40,51,56,89,92,104,108,117,121}
N122 = {5,26,34,35,45,54,57,59,76,82,84,92,96,122,124}
N123 = {3,7,24,76,88,91,107,108,123}
N124 = {3,13,19,42,49,52,59,75,86,92,96,115,124}
N125 = {3,37,51,74,90,94,125}
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N1 = {1,3,45,49,65,77,78,82,109,111}
N2 = {2,13,28,31,32,36,44,76,87,97,106,107,113}
N3 = {3,13,15,22,76,89,100,118}
N4 = {4,18,19,34,37,47,57,58,66,71,76,125}
N5 = {5,10,14,29,43,78,95,113}
N6 = {6,9,31,37,38,61,70,87,100,103,104,112,124,125}
N7 = {7,8,9,12,29,37,40,69,123}
N8 = {5,8,41,61,66,70,80,83,100,116}
N9 = {7,9,22,23,37,83,85,90,93,103,106}
N10 = {10,63,77,106,122,123}
N11 = {4,10,11,19,25,33,53,70,88,109,110}
N12 = {9,12,50,72,83,93,119}
N13 = {9,13,17,55,61,76,78,98,99,106}
N14 = {3,4,14,71,80,89,110}
N15 = {1,15,21,23,65,75,125}
N16 = {16,28,34,84,101,118,122}
N17 = {1,4,17,32,38,101,124}
N18 = {1,17,18,25,37,48,63,73,96,106,116}
N19 = {19,43,66,98,102,119}
N20 = {20,39,43,50,63,66,73,81,84,89,90,100,107,108,116,117}
N21 = {21,32,60,75,84}
N22 = {14,19,22,26,38,41,43,46,48,53,70,103}
N23 = {3,5,23,28,35,37,58,66,73,76,95,102}
N24 = {8,24,25,28,39,46,47,58,77,98,106}
N25 = {25,34,56,88,92,98,109,122}
N26 = {16,26,51,65,66,100,101,109,121}
N27 = {14,16,27,42,52,70,111,117,118,120,121,125}
N28 = {2,12,18,28,36,40,61,94,102,125}
N29 = {29,37,44,68,77,78,97,99}
N30 = {1,27,30,40,55,95,100,115,124}
N31 = {19,28,31,37,53,67,80,82,83,92,102,103,116,117}
N32 = {18,27,32,45,48,57,70,81,83}

N33 = {12,27,33,44,61,66,76,85}
N34 = {11,12,21,34,53,60,76,84,92,99,108,125}
N35 = {2,26,32,35,37,49,64,66,78,86,95,100,103,108}
N36 = {8,10,21,26,29,36,40,99,108,111,121,123}
N37 = {12,20,22,37,70,89,100}
N38 = {38,56,79}
N39 = {19,39,67,92,98}
N40 = {1,9,12,15,27,36,40,42,47,57,68,86,104,106}
N41 = {9,19,30,41,99}
N42 = {2,42,43,46,54,65,72,89,95,109,113,117,124}
N43 = {1,4,7,17,37,43,49,51,95,97,114}
N44 = {28,44,57,78,83,84,87,88,99,108}
N45 = {12,19,24,34,45,53,58,74,75,80,113}
N46 = {3,10,14,23,32,40,46,56,75,89,119}
N47 = {27,29,34,47,76,83,96,105,120}
N48 = {11,12,21,25,48,81,88,89,99,124}
N49 = {47,49,91,113,118}
N50 = {4,26,50,78,82,87,101,113,123}
N51 = {6,7,26,36,51,73,93,117}
N52 = {6,11,19,24,31,37,43,52,58,72,74,104,107}
N53 = {11,12,14,20,21,27,53,54,55,62}
N54 = {2,45,54,69,77,86,94,95}
N55 = {16,37,48,54,55,56,59,77,83,89,96,102,108,117}
N56 = {3,18,28,31,33,42,56,58,84,98,103,105,107,108}
N57 = {19,25,35,54,57,60,78,85,86,112,122}
N58 = {7,44,58,67,68,107}
N59 = {11,12,42,52,59,87,88,94,110,112}
N60 = {47,50,60,66,81,114,121}
N61 = {1,53,56,61,78,88,89,102,104,111,112}
N62 = {17,21,51,62,82,85,102,115,116,124}
N63 = {27,48,51,58,59,63,79,101,102}
N64 = {38,43,49,57,64,70,75,79,81,88,101,113,114,115,116}
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N65 = {10,20,31,35,48,53,59,65,89,98,109,112,116,119,124}
N66 = {42,53,58,65,66,79,90,98,100,119}
N67 = {13,25,26,34,52,60,67,102,124}
N68 = {8,68,69,70,74,80,82,102,114}
N69 = {6,8,13,69,103,113}
N70 = {7,11,14,18,25,37,52,70,71,76,77,110}
N71 = {9,22,23,44,47,71,96,110}
N72 = {11,17,22,23,24,41,44,46,51,54,72,99,107,109}
N73 = {5,25,37,46,50,52,73,78,120}
N74 = {8,10,16,22,54,57,63,70,71,74,91,94}
N75 = {8,13,16,23,57,60,75,112,121}
N76 = {8,22,25,29,30,33,55,76,95,99,111,123}
N77 = {9,22,51,65,68,73,77,80,97,102,108,109}
N78 = {11,25,35,53,71,78,86,90,104,111,117,120}
N79 = {34,35,43,78,79,90,103,110}
N80 = {9,47,55,64,66,75,78,80,82,120}
N81 = {3,15,59,81,86,100,106,116}
N82 = {12,14,21,33,36,43,82,89,109}
N83 = {6,39,48,73,79,83,88,89,95,102,114}
N84 = {11,12,20,42,68,84,89,99}
N85 = {6,7,17,23,45,46,54,60,65,80,82,85,99,112,119,123}
N86 = {4,24,32,49,51,53,55,85,86,93,99,101,107,117,121}
N87 = {14,17,21,28,36,81,87,90,96,102,103,120}
N88 = {3,86,88,89,99,111}
N89 = {6,18,29,37,39,41,46,70,89,91,99}
N90 = {7,34,42,53,71,90,104,108,115}
N91 = {30,54,91,105,108,118}
N92 = {9,14,21,51,64,79,89,92,96,125}
N93 = {12,26,31,40,62,67,93,123}
N94 = {17,35,76,91,94,103,104,106,121}
N95 = {14,22,26,40,63,74,95}

N96 = {46,58,90,96,114,122}
N97 = {4,11,12,39,40,55,90,94,97,117,119}
N98 = {1,3,21,26,36,52,76,98,112}
N99 = {3,16,21,26,42,99,104,115,125}
N100 = {29,33,45,52,61,68,71,100,117}
N101 = {2,3,9,17,20,26,54,61,72,75,78,98,101,102,125}
N102 = {2,7,9,33,39,48,66,100,102}
N103 = {18,27,31,32,47,53,59,75,88,93,103,109}
N104 = {48,100,104,111,119,120}
N105 = {7,17,26,36,37,46,103,105,111}
N106 = {8,13,31,50,52,67,98,106,108,114}
N107 = {32,56,66,106,107,113}
N108 = {25,56,94,108}
N109 = {1,5,10,28,50,54,60,61,77,85,97,101,105,109,117}
N110 = {28,35,42,52,64,79,83,104,110}
N111 = {15,51,68,86,92,104,111,117,121,122}
N112 = {10,36,63,64,98,105,112}
N113 = {10,79,88,95,113,120}
N114 = {1,8,10,12,37,44,86,114,116,118}
N115 = {12,29,34,42,43,47,51,54,57,62,68,69,92,97,100,105,110,115}
N116 = {2,17,43,64,73,83,102,116,120}
N117 = {1,4,9,12,28,30,33,43,74,116,117}
N118 = {11,12,15,22,53,55,72,81,88,96,117,118}
N119 = {3,29,60,78,82,85,119}
N120 = {31,39,57,75,89,91,95,99,101,103,106,120,123}
N121 = {3,5,8,14,26,35,49,56,61,71,77,100,109,114,116,121}
N122 = {3,13,20,28,37,46,47,48,51,52,60,61,72,73,112,122}
N123 = {1,14,32,33,60,64,81,101,121,123}
N124 = {24,25,71,90,124}
N125 = {2,7,13,22,28,36,47,59,102,104,118,125}
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N1 = {1,4,21,48,57,86,110,112,114,115}
N2 = {2,7,11,12,24,25,28,37,63,91,93,107,116,125}
N3 = {2,3,11,36,39,55,66,90,98,113}
N4 = {4,49,65,85,123}
N5 = {5,11,15,17,24,56,57,66,76,81,99,102}
N6 = {1,6,46,74,100,101,105,120,125}
N7 = {7,32,41,54,59,66,76,77,83,84,86,101,112,121}
N8 = {8,32,54,57,58,59,65,75,109,120,124}
N9 = {7,9,43,50,66,84,87}
N10 = {10,25,29,59,62,81,92,110,118}
N11 = {8,9,11,34,54,57,72,85,98,102}
N12 = {12,32,42,62,64,76,105}
N13 = {4,13,20,81,112}
N14 = {9,12,14,61,73,75,89,95,99}
N15 = {8,15,36,43,44,82,84,98,105,106,113,119,123}
N16 = {14,16,23,33,82,85,107,116}
N17 = {17,33,47,60,65,74,82,92,101}
N18 = {18,21,23,29,62,64,78,92,107,108,117}
N19 = {1,10,19,40,45,56,67,76,90,91,109,119}
N20 = {1,4,20,29,48,60,64,67,72,99,110,123}
N21 = {17,21,66,78,83,90,120}
N22 = {10,11,13,20,22,35,37,56,69,90,110}
N23 = {23,36,41,73,84}
N24 = {13,24,32,52,61,70,96,98,112,121}
N25 = {15,25,67,74,85,87,117}
N26 = {8,14,19,20,22,24,26,49,51,61,64,89,95,108,113,115,116,124}
N27 = {1,10,17,22,25,27,56,73,77,85,97,109,122,124}
N28 = {1,28,42,45,46,65,88,107,108,110,115,121,122}
N29 = {3,25,29,45,64,118,121,123,124}
N30 = {7,11,13,28,30,71,77,102,107,109,115,125}
N31 = {8,31,53,79,89,90,91,98,120}
N32 = {14,32,65,88,100,104,112}
N33 = {18,30,33,39,43,71,84,89,98,105}
N34 = {5,9,16,26,27,34,38,50,105,110,114}
N35 = {2,10,15,24,35,41,48,55,60,82,84,104,107,108}
N36 = {4,5,8,26,27,36,56,64,84,88,95,104,113,116}
N37 = {6,29,37,46,62,99,100,105,123}
N38 = {11,38,82,109}
N39 = {20,29,35,39,49,61,71,94,102,116,121}
N40 = {19,40,50,53,68,71,75,77,78,81,92,101}
N41 = {18,31,41,56,57,77,83,94,101,104,109,119}
N42 = {5,6,33,42,66,94,103,106,124}
N43 = {28,43,47,85,86,118}
N44 = {2,13,35,44,45,89,115}
N45 = {25,28,33,44,45,53,57,62,64,67,71,81,82,101,108,114}
N46 = {4,19,21,46,47,57,60,89,90,97,115,120}
N47 = {25,38,47,59,62,74,124}
N48 = {35,41,48,55,58,59,74,95}
N49 = {2,3,7,14,17,27,48,49,69,95,96,111,118}
N50 = {39,43,50,53,70,101,107,108,124}
N51 = {19,22,24,51,62,63,68,69,78,117,120}
N52 = {28,52,61,64,68,76,91,96}
N53 = {13,14,19,26,32,48,53,55,84}
N54 = {9,23,45,50,54,59,60,65,76,81,93}
N55 = {6,10,17,34,35,42,55,68,87}
N56 = {56,58,81,105,111,112}
N57 = {18,31,45,48,57,90,100,104,113,120,122}
N58 = {5,16,58,94,102,105,110}
N59 = {5,25,48,59,62,76,83,113,114}
N60 = {37,52,60,78,87,96,120,125}
N61 = {22,29,54,57,61,65,78,89}
N62 = {13,17,31,34,48,62,79,95,116,117,120}
N63 = {13,30,52,63,77,79,112,124}

N64 = {5,7,12,24,31,32,44,58,60,64,72,74,81,95,100}
N65 = {9,31,32,65,77,85,87,89,98,99,108}
N66 = {29,66,75,79,88,91,97,110}
N67 = {12,55,67,76,106}
N68 = {8,22,36,43,68,70,75,81,86,87,110,113,116}
N69 = {5,39,46,55,61,69,82,86,91,104,116}
N70 = {10,14,48,54,68,70,85,90}
N71 = {5,16,38,44,46,47,71,77,108,111}
N72 = {3,20,21,27,72,88,96,99,102,117}
N73 = {4,37,47,56,70,73,75,97,109,112}
N74 = {31,48,56,60,72,73,74,113}
N75 = {15,18,22,45,47,56,69,75,78,81,115,123}
N76 = {1,10,33,40,41,59,68,74,75,76,78,79}
N77 = {2,5,13,20,33,34,77,98,104,114,116,118,120}
N78 = {47,59,78,80,106}
N79 = {15,22,27,28,38,79,95,96,102}
N80 = {6,10,25,49,69,76,80,98,117,121,124}
N81 = {2,9,10,11,13,28,30,41,44,57,65,67,75,81,89,107,111}
N82 = {7,13,25,37,41,47,55,81,82,99,101}
N83 = {24,53,68,69,72,83,94,117}
N84 = {23,31,61,66,79,84,96,104,111,115}
N85 = {6,47,51,56,61,85,94,101,106,118,124}
N86 = {19,20,44,55,65,72,75,78,86,93,120}
N87 = {8,10,14,20,72,85,87,104,112}
N88 = {11,18,39,40,48,88,90,106,108}
N89 = {25,34,38,49,84,89,100,107,123}
N90 = {19,32,35,48,49,60,63,71,81,90,105,117}
N91 = {4,15,21,23,59,65,75,88,91,93,101,124}
N92 = {31,45,56,63,69,73,76,86,92,118,124}
N93 = {51,56,78,89,93,103,109}
N94 = {1,4,6,14,32,64,94,98}
N95 = {11,21,36,42,50,81,90,95,113,117}
N96 = {4,17,32,52,78,83,93,95,96,115,119,121}
N97 = {17,22,24,30,40,68,73,82,84,97,113}
N98 = {9,18,50,61,67,83,91,98,114,122}
N99 = {14,36,45,71,76,99,112,124}
N100 = {6,12,22,58,77,89,92,98,99,100,106,107,109,124}
N101 = {5,36,48,55,72,82,86,101}
N102 = {11,12,32,50,64,68,102,117,125}
N103 = {9,12,63,96,98,103,123}
N104 = {39,63,76,79,82,103,104,108,115,122}
N105 = {9,17,26,66,81,82,91,105,114}
N106 = {27,28,37,71,82,106,107,125}
N107 = {2,14,22,48,59,102,107}
N108 = {24,47,48,60,64,68,76,77,87,90,100,108,113}
N109 = {13,19,40,45,64,66,87,101,109,114}
N110 = {17,34,40,108,110}
N111 = {8,10,12,20,24,35,38,39,86,111}
N112 = {4,31,36,43,46,60,61,79,103,112}
N113 = {32,37,39,58,60,63,71,77,87,96,99,103,105,108,111,113}
N114 = {12,30,76,78,82,84,94,114,124}
N115 = {11,41,57,75,76,115,119}
N116 = {6,8,46,51,68,85,103,116,117}
N117 = {1,11,25,31,49,56,60,85,111,114,117,121}
N118 = {16,29,63,83,89,90,101,110,118}
N119 = {32,53,74,86,108,119}
N120 = {14,17,47,56,63,86,90,115,120,123,124}
N121 = {2,14,21,34,76,80,88,93,97,118,121}
N122 = {5,14,23,35,56,70,77,92,114,115,122,124}
N123 = {36,49,53,77,87,97,110,123}
N124 = {1,8,14,19,29,41,61,62,77,88,106,115,124}
N125 = {19,27,44,64,73,79,80,85,106,108,122,125}
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A10 =



N1 = {1,22,29,48,56,57,63,72,87,103,108,109,116,118,124}
N2 = {1,2,6,7,13,38,63,77,94,106}
N3 = {3,12,21,44,45,69,73,78,83,84,86,113,120,124}
N4 = {4,23,59,60}
N5 = {5,15,18,19,25,30,35,39,47,57,59,63,67,76,116}
N6 = {6,17,35,37,39,47,82,108,112,118,123}
N7 = {7,23,29,38,40,60,67,69,77,78,82,119}
N8 = {8,19,22,54,82,98,115,120}
N9 = {9,28,39,43,55,78,79,80,87,89,92,101,102,109,113,118,125}
N10 = {2,10,17,23,51,89,97,114,116,124}
N11 = {11,15,59,60,65,70,102,110,118,122}
N12 = {12,30,48,56,70,79,85,92,100}
N13 = {6,13,18,26,27,31,47,49,53,69,79,85,86,87,94,98,103,111,125}
N14 = {12,14,19,71,84,90,92,102,110,122}
N15 = {2,8,10,13,15,21,24,66,69,81,90,118,120}
N16 = {3,9,16,33,38,46,49,56,86,101,103,107,108}
N17 = {10,17,20,61,71,88,111,113,116,125}
N18 = {2,10,18,42,43,56,67,91,103,120,125}
N19 = {2,3,19,30,43,63,64,93,109,125}
N20 = {11,13,20,36,121}
N21 = {7,21,50,54,121}
N22 = {21,22,26,39,40,46,60,68,74,80,89,107}
N23 = {23,31,41,51,59,82,87,105,110,112,119,123}
N24 = {14,18,21,24,37,49,51,52,61,73,78,103}
N25 = {12,15,18,25,39,41,46,55,116}
N26 = {4,19,20,26,39,48,52,80,88,91,96,105,106,113,119,124}
N27 = {4,26,27,42,65,79,84,102,114,120}
N28 = {23,24,27,28,30,51,76,103,104,114,121}
N29 = {10,18,21,25,27,29,52,60,72,76,91,98,107}
N30 = {4,5,9,14,24,30,38,40,50,61,78,98,112}
N31 = {22,31,33,36,61,62,65,67,100,107,108,123}
N32 = {19,32,36,37,45,51,87,88,112}
N33 = {7,10,20,23,25,33,45,48,76,84,89,103,111,115,118,120}
N34 = {31,34,47,55,62,91,104}
N35 = {4,10,14,15,16,22,35,54,74,84,108}
N36 = {25,28,33,34,36,51,71,73,77,94,101,109,110}
N37 = {12,31,37,45,48,61,67,70,87}
N38 = {38,43,64,119}
N39 = {23,30,39,46,48,57,60,62,64,65,87,97,111,118}
N40 = {1,33,40,52,59,68,85,87,100}
N41 = {11,16,28,30,33,36,41,48,97,104,109,111,122}
N42 = {3,25,26,28,42,47,61,64,91}
N43 = {1,8,23,34,38,43,49,51,66,76,81,89,92,94,112,116,117,124}
N44 = {13,41,44,57,58,65,70,77,90}
N45 = {3,45,70,78,117}
N46 = {13,24,29,46,56,78,86,94,99,109,111,116,118}
N47 = {4,5,13,27,30,36,47,55,65,66,71,85,113}
N48 = {1,7,21,22,23,48,50,80,89,100,120,125}
N49 = {12,13,26,49,56,90,91,112,117,122}
N50 = {6,16,38,50,53,60,75,94,107,118,124}
N51 = {32,49,51,54,57,66,67,75,94,101,108}
N52 = {52,61,62,72,94}
N53 = {3,4,16,27,37,53,54,62,64,88,93,95,107}
N54 = {6,25,46,54,58,77,82,97,111}
N55 = {26,43,49,55,84,86,101,114,120,125}
N56 = {20,55,56,58,71,119}
N57 = {56,57,93,106}
N58 = {4,5,9,19,29,30,31,40,52,58,66,71,77,81,88,91,104,108,120,124}
N59 = {2,3,15,17,40,42,55,59,67,74,81,92,104,108,116}
N60 = {3,5,28,44,46,51,60,71,93,99,108}
N61 = {45,46,61,83,103,110}
N62 = {19,24,44,62,67,71,96,97,114}
N63 = {3,26,29,34,40,49,63,89}

N64 = {27,53,64,67}
N65 = {12,44,57,65,97,98,105,108,109,118}
N66 = {9,33,45,54,66,82,100,104}
N67 = {15,21,32,36,43,67,74,78,93,106,124}
N68 = {26,27,44,48,68,70,79,81,95,97,108,116,119}
N69 = {32,50,51,56,69,80,95,96,119,124}
N70 = {13,24,39,49,52,54,59,64,70,74,103,114}
N71 = {4,28,33,35,37,58,64,70,71,81,91}
N72 = {4,20,65,72,88,91,120,121,125}
N73 = {8,27,30,35,62,73,95,102,117}
N74 = {9,10,42,67,74,101,114}
N75 = {24,25,30,38,48,55,75,77,82,86,90,120}
N76 = {3,7,10,17,22,24,28,42,53,57,76,101}
N77 = {23,51,57,72,77,81,82,95,98,106,112,122}
N78 = {13,19,41,46,78,82,90,91,113}
N79 = {7,27,34,44,47,59,64,79,95,101}
N80 = {7,19,80,84,85,91,104}
N81 = {25,34,40,71,81,89,93,101,111}
N82 = {26,28,34,38,80,82,87,101}
N83 = {16,39,41,61,73,83,96,103,107,111}
N84 = {49,64,78,84,90,93,96,99,106,113}
N85 = {2,12,17,26,32,44,50,51,61,66,85,104,105,107,108,120}
N86 = {9,44,51,86,93,105,110,111,116,125}
N87 = {8,22,47,58,62,87,104,111}
N88 = {3,20,47,58,65,70,76,88,114,123}
N89 = {17,25,32,34,45,48,58,64,65,71,84,86,88,89,103}
N90 = {10,26,32,38,60,73,77,78,86,90,92,124}
N91 = {6,25,32,42,78,91,100,117}
N92 = {10,24,37,38,43,89,92,105}
N93 = {8,13,18,32,37,47,81,85,92,93,99,125}
N94 = {2,4,33,36,38,48,51,52,61,83,94,97,104,106,109,120}
N95 = {18,19,21,29,43,52,58,62,67,73,82,95,104,119}
N96 = {17,47,71,76,77,96,118,119,122}
N97 = {3,7,12,50,51,54,79,93,97,101,104}
N98 = {3,33,51,61,67,80,98,113}
N99 = {8,31,47,53,57,86,99,119,121}
N100 = {4,10,22,31,59,70,73,97,100}
N101 = {18,25,28,34,40,61,101,102,114}
N102 = {8,21,38,47,49,68,70,75,96,102,105,108}
N103 = {4,8,14,19,21,30,47,62,66,76,79,90,102,103,125}
N104 = {3,9,18,22,37,44,45,46,47,53,58,59,66,68,95,104,125}
N105 = {9,13,44,61,62,63,73,89,105}
N106 = {4,14,23,44,54,72,83,97,106,109,121}
N107 = {24,37,39,76,81,85,104,107,122}
N108 = {12,26,35,36,38,39,69,78,82,96,97,107,108,109}
N109 = {2,17,35,36,40,52,58,66,75,87,89,99,109,123}
N110 = {2,30,39,41,58,95,110,118}
N111 = {6,58,70,87,96,99,103,111,117}
N112 = {2,28,33,39,40,42,68,95,104,110,112}
N113 = {3,7,17,21,39,52,63,89,93,98,102,113,115,118}
N114 = {13,22,45,55,58,70,75,111,114,117}
N115 = {18,20,44,95,115,122}
N116 = {20,23,32,50,70,76,84,85,102,104,116}
N117 = {5,13,20,41,53,70,82,84,110,117,121}
N118 = {11,49,70,87,89,97,99,102,112,118}
N119 = {28,64,82,83,88,90,91,93,105,119}
N120 = {4,8,21,27,79,80,90,93,120,122}
N121 = {7,8,72,84,99,102,121}
N122 = {7,20,33,37,60,85,101,105,107,120,122}
N123 = {15,54,59,65,89,92,98,103,115,122,123}
N124 = {3,6,12,21,28,40,44,62,64,86,93,95,97,121,124,125}
N125 = {30,45,69,110,122,125}

As in the first example, we consider the evolution matrices Fj, associated

with A j for j = 1, . . . ,10. The set F =
{

Fj
}10

j=1 has now a mean density

around 0.074. Applying the Gripenberg algorithm using the spectral norm,

we obtain

ρ20(F ) = 0.996161 ≤ ρ2(F ) ≤ 0.998234 = ρ̂20(F ).

This result allows to conclude that the system will reach always a global

consensus, i.e. the solution of equation (3.12) tends to be, for t → ∞, a

vector with equal entries.

As in the first example, also this set has an evolution matrix, F4, whose

corresponding topology allow to identify a leader/sink among the agents.
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The index of this particular agent is 89. The matrix F4, which has a second

spectral radius almost equal 1, proves to be the candidate s.m.p. of the

set F . Its PageRank is a vector whose entries are all zero except the one

in position 89. Therefore, if the system of agents maintain for every time

step the topology associated to F4, the solution θ(t) of (3.12), which can be

represented by

θ(t) = Fi t−1 · . . . ·Fi1 ·Fi0θ(0) (B.3)

where ik = 4, for every k = 0, . . . , t− 1, converges to the vector of all equal

entries eθcons with θcons = θ89(0). The convergence is slow due to the second

spectral radius of F4.

If, instead, we allow the sequence of indices i = (i0, i1, . . .) to assume

at least once a value different from 4, we witness a change in the value

θcons which is, in general, radical. This phenomenon can be interpreted

as a butterfly effect : small changes either in the initial configuration θ(0)

or in the chosen sequence of evolution matrices, can determine substantial

differences in the final configuration of the system.

As an example we consider the following vector θ(0) which has mean

value equal to 0.481868 and ‖θ(0)‖∞ = 1.

θ(0)T = (0.79829 , 0.18760 , 0.49166 , 0.44732 , 0.64882 , 0.71212 , 0.75762 , 0.27710 , 0.68234 0.65764,
0.16324 , 0.11946 , 0.50030 , 0.96347 , 0.34171 , 0.58754 , 0.22468 , 0.75418 , 0.25608 , 0.50792,
0.70179 , 0.89436 , 0.96301 , 0.54934 , 0.13916 , 0.14987 , 0.25851 , 0.84398 , 0.25527 , 0.81744,
0.24447 , 0.93287 , 0.35134 , 0.19736 , 0.25206 , 0.61844 , 0.47513 , 0.35302 , 0.83405 , 0.58754,
0.55186 , 0.92075 , 0.28695 , 0.76014 , 0.75665 , 0.38192 , 0.57002 , 0.07615 , 0.05416 , 0.53286,
0.78219 , 0.93763 , 0.13041 , 0.57103 , 0.47121 , 0.01195 , 0.33843 , 0.16281 , 0.79737 , 0.31242,
0.53058 , 0.16629 , 0.60432 , 0.26399 , 0.65662 , 0.69189 , 0.75105 , 0.45229 , 0.08415 , 0.22987,
0.91688 , 0.15297 , 0.82902 , 0.54043 , 1.00000 , 0.07848 , 0.44440 , 0.10707 , 0.96563 , 0.00465,
0.77792 , 0.82047 , 0.87207 , 0.08476 , 0.40133 , 0.26088 , 0.80317 , 0.43309 , 0.91418 , 0.18255,
0.26483 , 0.14610 , 0.13660 , 0.87267 , 0.58195 , 0.55199 , 0.14552 , 0.85634 , 0.62447 , 0.35231,
0.51524 , 0.40337 , 0.07626 , 0.24085 , 0.12380 , 0.18462 , 0.24088 , 0.41889 , 0.04985 , 0.90622,
0.94845 , 0.49277 , 0.49115 , 0.33903 , 0.90355 , 0.37068 , 0.11163 , 0.78328 , 0.39125 , 0.24263,
0.40548 , 0.09683 , 0.13249 , 0.94571 , 0.95984)

we define θ (1)(t) as the solution of equation (B.3) corresponding to this

θ(0) and to the sequence of indices given by i(1)
= (4,4, . . .).

It results that θ
(1)
89 (t) = 0.914181 for every t ≥ 0 and the mean value of

θ (1)(t) is around 0.847197 for t = 500 and 0.904391 for t = 1000. The solution

is slowly converging to eθ
(1)
89 (0).

If we consider, instead, the sequence i(2)
= (4,4,7,4, . . . ,4, . . .) starting



195

always from θ(0) we obtain a new vector θ (2)(t) such that θ
(2)
89 (2) = 0.914181,

whereas θ
(2)
89 (t) = 0.512462, for every t ≥ 3, and its mean value is around

0.511357 for t = 1000: the solution is now slowly converging to eθ
(2)
89 (3).

Finally, if we consider the generic sequence

i(3)
= (1,2,8,5,1,10,1,1,5,8,4,5,1,3,3,10, . . .),

starting from the same θ(0), after 9 steps the system has almost reached a

global consensus.

In fact the mean value of the solution θ (3)(9) is around 0.496494 and its

minimum and maximum values are 0.496466 and 0.496533 and after other

7 steps the gap between the minimum and maximum value of θ (3)(16) be-

comes 4 ·10−8, while the mean value remains the same. The generic product

presents a second spectral radius which is considerably smaller than ρ2(F4).

Consider, in fact, that the family F̃ , obtained removing F4 from F ,

has F3 of F as candidate s.m.p. with ρ2(F3) = 0.517675. This result gives

us a hint to understand the rapid convergence of θ(t) for every randomly

generated sequence of indices i.

We plan to study in a future work the Lyapunov exponent and the joint

spectral subradius of the set F [90, 114].
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absolute asymptotic stability, 109

absolutely convex, 130

absolutely convex hull, 130

adjacency matrix

weighted, 71

adjacent vertices, 72

asymptotically simple, see asymptot-

ically simple, family

family, 135

authority, 91

average consensus, 89

weighted, 89

b.c.p., see balanced complex poly-

tope

b.r.p., see balanced real polytope

balanced complex polytope, 130

balanced real polytope, 129

biorthogonality

basic principle of, 7

bit size, 117

bounded, see set, bounded

butterfly effect, 88, 194

characteristic polynomial, 4

Cholesky decomposition, 105

conjugate transpose, 4

connected component, 72

strongly, 72

connected graph, see graph, con-

nected

cost, see weight

cyclic, see imprimitive, see set, cyclic

set, 134

decidable problem, 118

decomposable family, see reducible

family

defective, see nondefective matrix

defective family, 119

degree matrix, see matrix, degree

density, 84, 184

determinant, 4

digraph

componentwise weakly con-

nected, 72

simple, 71

strongly connected, 72

weakly connected, 72

weighted, 71

direct sum, 5

discrete linear inclusion, 113

Drazin inverse, 6

dynamic graph, see graph, dynamic

eigenvalue, 4

semisimple, 5

simple, 5
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eigenvector

left, 4

right, 4

ergodic matrix, 74

ergodic projector, 44

essential system of vertices, 129, 130

evolution equation, 76

evolution matrix, 77, 184, 193

F -cyclic, see set, cyclic

finite, see set, finite

finiteness conjecture, 123

finiteness property, 123

Gelfand’s formula, 106

global consensus, 73

graph, 71

algebraic, 73

connected, 72

dynamic, 77

undirected, see graph

weighted directed, see digraph,

weighted

graph Laplacian, 73

generalized, 89

imprimitive, 74

in–degree, 72

irreducible, 74

irreducible family, 120

Jordan block, 6

Jordan canonical form, 6

Laplacian

graph, see graph Laplacian

leading eigenvector, 123

Lie algebra, 115

Abelian, 115

solvable, 115

matrix

column–stochastic, 5, 74

convergent, 106

degree, 73

generalized Perron, 89

Hermitian, 103

irreducible, 92

normal, 103

Perron, 73

positive definite, 104

row–stochastic, 5, 74, 80

stochastic, 5, 74

unitary, 5, 103

matrix norm

ellipsoidal, 104

induced, 104

maximum column–sum norm,

104

maximum row–sum norm, 104

spectral norm, 104

Minkowski functional, 129

monoid

multiplicative, 109

multiplicity

algebraic, 5

geometric, 5

neighborhood, 71

neighbors, 71

network, 73
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non–algebraicity, 117

non–decomposable family, see irre-

ducible family

nondefective

weakly, 105

nondefective family, 119

nondefective matrix, 5, 105

nonsingular matrix, 5, 118

nonsingular set, see irreducible fam-

ily

norm

complex polytope, 131

extremal, 119

normalized, 105

real polytope, 129

normalized family, 119

normalized norm, see norm, normal-

ized

NP–hard, 117

operator norm, 104

optimal product, 123

orthogonal complement, 5

out–degree, 72

path, 71

Perron matrix, see matrix, Perron

Perron vector, 74

piecewise algebraic norm, 125

piecewise analytic norm, 125

polynomial–time approximable, 117

polytope norm, see norm

positive definite, see matrix, positive

definite

primitive, 74

projection, 5

reducible family, 120

s.m.p., see spectrum–maximizing

product

minimal, 123

semi–algebraic set, 117

semigroup

multiplicative, 109

set

bounded, 105

finite, 105

similarity transformation, 105

singular value decomposition, 103

singular values, 103

sink, 96, 193

spectral radius, 5, 80, 103

common, 112

generalized, 110

joint, 80, 110

mutual, 111

via inf on norms, 106, 111

via normalized norm, 107, 110

via trace, 103, 111

spectral radius of a family, 113

spectrum of a matrix, 4, 81

spectrum–maximizing product, 123

stable set, 72

minimal, 72

strong component, see connected

component, strongly

subdigraph, 72

subset

proper, 103
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teleportation parameter, 29

topology, 73

trace, 103

trajectory, 113

transpose, 4

u.a.s., see uniform asymptotic stabil-

ity

undecidable problem, 118

uniform asymptotic stability, 80, 108

vector norm

l1, see vector norm, sum norm

l2, see vector norm, Euclidean

norm

l∞, see vector norm, max norm

ellipsoidal, 104

Euclidean norm, 4

max norm, 4

sum norm, 4

vectors

orthogonal, 5

orthonormal, 5

vertex, 130

weakly defective, see nondefective,

weakly

weight, 71


