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Abstract

In this paper, we discuss the development of a sublinear sparse Fourier algorithm
for high-dimensional data. In “Adaptive Sublinear Time Fourier Algorithm” by D.
Lawlor, Y. Wang and A. Christlieb (2013) [9], an efficient algorithm with empirically
O(k log k) runtime and O(k) sampling complexity for the one-dimensional sparse FFT
was developed for signals of bandwidth N , where k is the number of significant modes
such that k � N .

In this work we develop an efficient algorithm for sparse FFT for higher dimen-
sional signals, extending some of the ideas in [9]. Note a higher dimensional signal
can always be unwrapped into a one dimensional signal, but when the dimension gets
large, unwrapping a higher dimensional signal into a one dimensional array is far too
expensive to be realistic. Our approach here introduces two new concepts: “partial
unwrapping” and “tilting”. These two ideas allow us to efficiently compute the sparse
FFT of higher dimensional signals.
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1 INTRODUCTION

As the size and dimensionality of data sets in science and engineering grow larger and
larger, it is necessary to develop efficient tools to analyze them [5, 10]. One of the best
known and most frequently-used tools is the Fast Fourier Transform (FFT). However, in
the case that the bandwidth N of frequencies is large, the sampling size becomes large, as
dictated by the Shannon-Nyquist sampling theorem. Specifically, the runtime complexity
is O(N logN) and the number of samples is O(N). This issue is only exacerbated in the
d-dimensional setting, where the runtime complexity is O(NdlogNd) and the number of
samples is O(Nd) if we assume the dimension is d and the bandwidth in each dimension is
N . Due to this “curse of dimensionality”, many higher dimensional problems of interest
are beyond current computational capabilities of the traditional FFT. Moreover, in the
sparse setting where the number of significant frequencies k is small, it is computationally
wasteful to compute all Nd coefficients. In such a setting we refer to the problem as
being “sparse”. For sparse problems, the idea of sublinear sparse Fourier transforms was
introduced [3, 4, 6, 7, 8, 9, 1]. These methods greatly reduce the runtime and sampling
complexity of the FFT in the sparse setting. The methods were primarily designed for
the one dimensional setting.

The first sparse Fourier algorithm was proposed in [3]. It introduced a randomized
algorithm with O(k2logcN) runtime and O(k2logcN) samples where c is a positive number
that varies depending on the trade-off between efficiency and accuracy. An algorithm with
improved runtime O(klogcN) and samples O(klogcN) was given in [4]. The algorithms
given in [6] and [7] achieved O(klogN logN/k) runtime and gave empirical results. The
algorithms in [3, 4, 6, 7] are all randomized. The first deterministic algorithm using a
combinatorial approach was introduced in [8]. In [9], another deterministic algorithm was
given whose procedure recognizes frequencies in a similar manner to [6]. The two methods
in [9, 6] were published at the same time and both use the idea of working with two sets
of samples, one at O(k) points and the second at the same O(k) points plus a small
shift. The ratio of the FFT of the two sets of points, plus extra machinery, lead to fast
deterministic algorithms. The first deterministic algorithm [8] has O(k2log4N) runtime
and sampling complexity, and the second one [9] has O(klogk) runtime and O(k) sampling
complexity. Later, [1] introduced modified methods for noisy data with O(klogklogN/k)
runtime. Our method, discussed throughout this paper builds on the method presented
in [9].

The methods introduced in the previous paragraph are for one-dimensional data. In
[2], practical algorithms for data in two dimensions were given for the first time. In this
paper, we develop algorithms designed for higher dimensional data, which is effective
even for dimensions in the hundreds and thousands. To achieve our goal, our approach
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must address the worst case scenario presented in [2]. We can find a variety of data sets in
multiple dimensions that we want to analyze. A relatively low-dimensional example is MRI
data, which is three dimensional. However, when we designed the method in this paper,
we had much higher dimensional problems in mind, such as some astrophysical data,
e.g., the Sloan Digital Sky Survey and Large Synoptic Survey Telescope [11, 10]. They
produce tera- or peta-bytes of imaging and spectroscopic data in very high dimensions.
Due to the computational effort of a multi-dimensional FFT, spectral analysis of this high
dimensional data necessitates a multidimensional sparse fast Fourier transform. Further,
given the massive size of data sets in some current and future problems in science and
engineering, it is anticipated that the development of such an efficient algorithm will play
an important role in the analysis of these types of data.

It is not straightforward to extend one dimensional sparse Fourier transform algorithms
to multiple dimensions. We face several obstacles. First, we do not have an efficient
FFT for multidimensional problems much higher than three. Using projections onto
lower-dimensional spaces solves this problem. However, like all projection methods for
sparse FFT, one needs to match frequencies from one projection with those from another
projection. This registration problem is one of the big challenges in the one dimensional
sparse FFT. An equally difficult challenge is that different frequencies may be projected
into the same frequency (the collision problem). All projection methods for sparse FFT
primarily aim to overcome these two challenges. In higher dimensional sparse FFT, these
problems become even more challenging as now we are dealing with frequency vectors,
not just scalar frequencies.

As a first step to our goal of a high dimensional sparse FFT, this paper addresses the
case for continuous data without noise in a high dimensional setting. In a later paper
we shall present an adaptation of the algorithm for noisy data. We introduce effective
methods to address the registration and the collision problems. In particular, we introduce
a novel partial unwrapping technique that is shown to be highly effective in reducing the
registration and collision complexity while maintains the sublinear runtime efficiency. We
shall show that empirically we can achieveO(dklogk) computational complexity andO(dk)
sampling size for randomly generated test data. In Section 5, we present as examples
computational results for sparse FFT where the dimensions are 100 and 1000 respectively.
For comparison, the traditional d-dimensional FFT requires O(NdlogNd) time complexity
and O(Nd) sampling complexity, which is impossible to implement on any computers
today.
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2 PRELIMINARIES

2.1 Review of the One-Dimensional Sublinear Sparse Fourier Algorithms

The one-dimensional sublinear sparse Fourier algorithm inspiring our method was devel-
oped in [9]. We briefly introduce the idea and notation of the algorithm before developing
the multidimensional ones throughout this paper. We assume a function f : [0, 1) → C
with sparsity k as the following,

f(t) =
k∑
j=1

aje
2πiwjt (2.1)

with bandwidth N , i.e., frequency wj belongs to [−N/2, N/2) ∩ Z and corresponding
nonzero coefficient aj is in C for all j. We can consider it as a periodic function over R
instead of [0, 1). The goal of the algorithm is to recover all coefficients aj and frequencies
wj so that we can reconstruct the function f . This algorithm is called the “phase-shift”
method since it uses equi-spaced samples from the function and those at positions shifted
by a small positive number ε. To verify that the algorithm correctly finds the frequencies
in the bandwidth N , ε should be strictly no bigger than 1/N . We denote a sequence of
samples shifted by ε with sampling rate 1/p, where p is a prime number, as

fp,ε =
(
f(0 + ε), f(

1

p
+ ε), f(

2

p
+ ε), f(

3

p
+ ε), · · · , f(

p− 1

p
+ ε)

)
. (2.2)

We skip much of the details here. In a nutshell, by choosing p slightly larger than k is
enough to make the algorithm work. In [9] p is set to be roughly 5k, which is much smaller
than the Nyquist rate N . Discrete Fourier transform (DFT) is then applied to the sample
sequence fp,ε, and the h-th element of its result is the following

F(fp,ε)[h] = p
∑

wj=h( mod p)

aje
2πiεwj (2.3)

where h = 0, 1, 2, . . . , p − 1. If there is only one frequency wj congruent to h modulo
p,

F(fp,ε)[h] = paje
2πiεwj . (2.4)

By putting 0 instead of ε, we can get unshifted samples fp,0 and applying the DFT
gives

F(fp,0)[h] = paj . (2.5)

This process so far is visualized in the Figure 1. As long as there is no collision of
frequencies with modulo p, we can find frequencies and their corresponding coefficients
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by the following computation

wj =
1

2πε
Arg

(F(fp,ε)[h]

F(fp,0)[h]

)
,

aj =
1

p
F(fp,0)[h], (2.6)

where the function “Arg” gives us the argument falling into [−π, π).Note that wj should be
the only frequency congruent to h modulo p, i.e., wj has no collision with other frequencies
modulo p. The test to determine whether collision occurs or not is

|F(fp,ε)[h]|
|F(fp,0)[h]|

= 1. (2.7)

The equality above holds when there is no collision. If there is a collision, the equality does
not hold for almost all ε, i.e., the test fails to predict a collision for finite number of ε [9].
Further, it is also shown in the same paper that for any ε = a

b with a, b coprime and b ≥ N ,
equality (2.7) does not hold unless there is no collision. In practical implementations, we
choose ε to be 1/cN for some positive integer c ≥ 1 and allow some small difference τ
between the left and right sides of (2.7) where τ is very small positive number.

Figure 1: Process of 1D sublinear sparse Fourier algorithm

The above process is one loop of the algorithm with a prime number p. To explain it
from a different view, we can imagine that there are p bins. Then we sort all frequencies
into these bins according to their remainder modulo p. If there are more than one fre-
quencies in one bin, then a collision happened. If there is only one frequency, then there
is no collision. To determine whether a collision occurs, we use the above test. In the
case where the test fails, i.e., the ratio is not 1, we need to use another prime number p′.

5



Thus we re-sort the frequencies into p′ bins by their remainder modulo p′. Even if two
frequencies collide modulo p, it is likely that they do not collide modulo p′. Particularly,
the Chinese Remainder Theorem guarantees that with a finite set of prime numbers, {p`},
any frequency within the bandwidth N can be uniquely identified, given

∏
` p` ≥ N . Al-

gorithmically, for each loop, we choose a different prime number p′ and repeat equations
(2.2)-(2.7) with p replaced by p′. In this way we can recover all aj and wj in sublinear
time O(klogk) using O(k) samples. The overall code is shown in Algorithm 1 referred
from [9].

Algorithm 1 Phaseshift
1: procedure Phaseshift
2: Input:f, c, k,N, ε
3: Output:R
4: R← ∅
5: i← 1
6: while |R| < k do
7: k∗ ← k − |R|
8: p← ith prime number ≥ ck∗
9: g(t) =

∑
(w,aw)∈R awe

2πiwt

10: for h = 1→ p do
11: fp,ε[h] = f(hp )− g(hp )

12: fp,0[h] = f(hp + ε)− g(hp + ε)
13: end for
14: F(fp,ε) = FFT (fp,ε)
15: F(fp,0) = FFT (fp,0)
16: Fsort(fp,0) = SORT (F(fp,0))
17: for h = 1→ k∗ do
18: if

∣∣∣ |Fsort(fp,0)[h]||Fsort(fp,ε)[h]| − 1
∣∣∣ < ε then

19: w̃ = 1
2πεArg

(
Fsort(fp,ε)[h]
Fsort(fp,0)[h]

)
20: a = 1

pF
sort(fp,0)[h]

21: R← R ∪ (w̃, a)
22: end if
23: end for
24: prune small coefficients from R
25: i← i+ 1
26: end while
27: end procedure
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2.2 Multidimensioanl Problem Setting and Worst Case Scenario

In this section, the multidimensional problem is introduced. Let us consider a function
f : Rd → C such that

f(t) =
k∑
j=1

aje
2πiwj ·t, (2.8)

where wj ∈ ([−N/2, N/2) ∩ Z)d and aj ∈ C. That is, from (2.1), t is replaced by the
d-dimensional phase or time vector t, frequency wj is replaced by the frequency vector
wj and thus the operator between wj and t is a dot product instead of simple scalar
multiplication. We can see that this is a natural extension of the one-dimensional sparse
problem. As in the 1D setting, if we find aj and wj , we recover the function f .

However, since our time and frequency domain have changed, we cannot apply the
previous algorithm directly. If we project the frequencies onto a line, then we can apply
the former algorithm so that we can retain sublinear time complexity. Since the operator
between frequency and time vectors is a dot product, we can convert projection of fre-
quencies to that of time. For example, we consider the projection onto the first axis, that
is, we put the last d − 1 elements of time vectors as 0. If the projection is one-to-one,
i.e., there is no collision, then we can apply the algorithm in Section 2.1 to this projected
function to recover the first element of frequency vectors. If there is a collision on the
first axis, then we can try another projection onto ith axis, i = 2, 3, · · · , d, until there are
no collisions. We introduce in latter sections how to recover the corresponding remaining
d − 1 elements by extending the test to determine the occurrence of a collision in Sec-
tion 2.1. Furthermore, to reduce the chance of a collision through projections, we use an
“unwrapping method” which unwraps frequencies onto a lower dimension guaranteeing
a one-to-one projection. There is both a “full unwrapping” and a “partial unwrapping”
method, which are explained in later sections.

We shall call projections onto any one of the coordinate axes a parallel projection. The
worst case is where there is a collision for every parallel projection. This obviously happens
when a subset of frequency vectors form the vertices of a d-dimensional hypercube, but it
can happen also with other configurations that require fewer vertices. Then our method
cannot recover any of these frequency vectors via parallel projections. To resolve this
problem, we introduce tilted projections: instead of simple projection onto axes we project
frequency vectors onto tilted lines or planes so that there is no collision after the projection.
We shall call this the tilting method and provide the details in the next section. After
introducing these projection methods, we explore which combination of these methods is
likely to be optimal.
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3 TWODIMENSIONAL SUBLINEAR SPARSE FOURIER
ALGORITHM

As means of explanation, we introduce the two-dimensional case in this section and extend
this to higher dimensions in Section 4. The basic two-dimensional algorithm using a
parallel projection is introduced in Section 3.1, the full unwrapping method is introduced
in Section 3.2 and the tilting method for the worst case is discussed in Section 3.3.

Figure 2: Process of the basic algorithm in 2D

3.1 Basic Algorithm Using Parallel Projection

Our basic two-dimensional sublinear algorithm excludes certain worst case scenarios. In
most cases, we can recover frequencies in the 2-D plane by projecting them onto each
horizontal axis or vertical axis. Figure 2 is a simple illustration. Here we have three
frequency vectors where w1 and w3 are colliding with each other when they are projected
onto the horizontal axis and w1 and w2 are when they are projected onto the vertical
axis. The first step is to project the frequency vectors onto the horizontal axis and recover
w2 and its corresponding coefficient a2 only, since it is not colliding. After subtracting
w2 from the data, we project the remaining frequency vectors onto the vertical axis and
then find both w1 and w3.

Now let us consider the generalized two-dimensional basic algorithm. Assume that we
have a two-dimensional function f with sparsity k :

f(t) =

k∑
j=1

aje
2πiwj ·t, aj ∈ C, wj ∈

([
− N

2
,
N

2

)
∩ Z
)2
. (3.1)

For now, let us focus on one frequency vector with index j′ which is not collided with any
other pairs when they are projected onto the horizontal axis. To clarify put t = (t1, 0)
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with wj = (wj1, wj2) into (3.1),

f1(t1) := f(t1, 0) =
k∑
j=1

aje
2πiwj1t1 , (3.2)

which gives the same effect of parallel projection of frequency vectors. Now, we can
consider this function as a one-dimensional function f1 so that we can use the original
one dimensional sparse Fourier algorithm to find the first component of wj′ . We get
the samples f1p,0 and f1p,ε with and without shift by ε. We can find these in the form of
sequences in (2.2), apply the DFT to them, and then recover the first component of the
frequency pair and its coefficient as follows,

wj′1 =
1

2πε
Arg

(F(f1p,ε)[h]

F(f1p,0)[h]

)
,

aj′ =
1

p
F(f1p,0)[h]. (3.3)

At the same time, we need to find the second component. In (3.2), we replace 0 by ε.
Then

f2(t1) := f(t1, ε) =

k∑
j=1

aje
2πi(wj1t1+wj2ε),

F(f2p,ε)[h] = paj′e
2πiwj′2ε,

wj′2 =
1

2πε
Arg

(F(f2p,ε)[h]

F(f1p,0)[h]

)
, (3.4)

where f2p,ε are samples shifted by ε in the vertical sense with rate 1/p from the function
f2. (3.3) holds only when wj′1 is the only one congruent to h modulo p among every
first component of k frequency pairs and (3.4) holds only when the previous condition
is satisfied and wj′ = (wj′1, wj′2) does not collide with other frequency pairs from the
parallel projection.

Now we have two kinds of collisions. The first one is from taking modulo p after the
parallel projection and the second one is from the projection. Thus we need two tests.
To determine whether there are both kinds of collisions, we use similar tests as (2.7). If
there are at least two different wj1 congruent to h modulo p, then the second equality in
the following is not satisfied for almost all ε, just as (2.7),

|F(f1p,ε)[h]|
|F(f1p,0)[h]|

=
|p
∑

wj1=h( mod p) aje
2πiεwj1 |

|p
∑

wj1=h( mod p) aj |
= 1. (3.5)
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Likewise, if there is a collision from the projection, i.e., the first components wj1’s of at
least two frequency vectors are identical and the corresponding wj2’s are different, the
following second equality does not hold for almost all ε,

|F(f2p,ε)[h]|
|F(f1p,0)[h]|

=
|p
∑

wj1=h( mod p) aje
2πiεwj2 |

|p
∑

wj1=h( mod p) aj |
= 1. (3.6)

The two tests above are both satisfied only when there is no collision both from taking
modulo p and the projection. We use these for the complete recovery of the objective
frequencies.

So far we project the frequencies onto the horizontal axis. After we find the non-
collided frequencies from the first projection, we subtract a function consisting of found
frequencies and their coefficients from the original function f to get a new function. Next
we project this new function onto the vertical axis and do a similar process. The difference
is to exchange 1 and 2 in the super-indices and sub-indices respectively in (3.2) through
(3.6). Again, find the remaining non-collided frequencies, change the axis again and keep
doing this until we recover all of the frequencies.

3.2 Full Unwrapping Method

We introduce another kind of projection which is one-to-one. The full unwrapping method
uses one-to-one projections onto one-dimensional lines instead of the parallel projection
onto axes from the previous method. We consider the k pairs of frequencies (wj1, wj2),
j = 1, 2, · · · , k and transform them as follows

(wj1, wj2) → wj1 +Nwj2. (3.7)

This transformation in frequency space can be considered as the transformation in phase
or time space. That is, from the function in (3.1)

g(t) := f(t,Nt) =
k∑
j=1

aje
2πi(wj1+Nwj2)t. (3.8)

The function g(t) is a one-dimensional function with sparsity k and bandwidth bounded by
N2. We can apply the algorithm in Section 2.1 on g so that we recover k frequencies of the
form on the right side of the arrow in (3.7). Whether unwrapped or not, the coefficients
are the same, so we can find them easily. In the end we need to wrap the unwrapped
frequencies to get the original pairs. Remember that unwrapping transformation is one-
to-one. Thus we can wrap them without any collisions.
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Since the pairs of the frequencies are projected onto the one-dimensional line directly,
we call this method the “full unwrapping method”. Problem with this method occurs
when the dimension d gets large. From the above description, we see that after the one-
to-one unwrapping the total bandwidth of the two dimensional signal increases from N
in each dimension to N2. If the full unwrapping method is applied to a function in d-
dimensions, then to guarantee the one-to-one transformation the bandwidth will be Nd.
Theoretically this does not matter. However, since ε is dependent on the bandwidth, in
the case where d is large, we need to consider the limit of machine precision for practical
implementations. As a result, we need to introduce the partial unwrapping method to
prevent the bandwidth from becoming too large. The partial unwrapping method is
discussed in Section 4.

Figure 3: Worst case scenario in 2D and solving it through tilting

3.3 Tilting Method for the Worst Case

Up till now, we have assumed that we do not encounter the worst case, i.e., that we do not
encounter the case where any frequency pair has collisions from the parallel projection for
all coordinate axes. This makes the algorithm break down. The following method is for
finding those frequency pairs. Basically, we rotate axes of the frequency plane and thus
use a projection onto a one-dimension system which is a tilted line with the tilt chosen
so that there are no collisions. If the horizontal and vertical axes are rotated with angle
θ then the frequency pair wj = (wj1, wj2) can be relabeled with new coordinates as the
right side of the following

(wj1, wj2) → (cos θwj1 − sin θwj2, sin θwj1 + cos θwj2). (3.9)
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In phase-sense, this rotation can be written as

g(t̃1, t̃2) := f(cos θt̃1 + sin θt̃2,− sin θt̃1 + cos θt̃2)

=

k∑
j=1

aje
2πi{wj1(cos θt̃1+sin θt̃2)+wj2(− sin θt̃1+cos θt̃2)},

=

k∑
j=1

aje
2πi{(cos θwj1−sin θwj2)t̃1+(sin θwj1+cos θwj2)t̃2}. (3.10)

We can apply the basic algorithm in Section 3.1 to the function g to get the frequency
pairs in the form of the right side of the arrow in (3.9).

One problem we face is that the components of the projected frequency pairs should
be integers to apply the method, since we assume integer frequencies in the first place.
To guarantee injectivity for both projections, tan θ should be irrational, however, the
projected frequencies become irrational. Thus, we should try rational tan θ, and to make
them integer it is inevitable to increase the bandwidth by multiplying the least common
multiple of the denominators of sin θ and cos θ. We assume the following with integers a,
b and c

sin θ =
a

c
, cos θ =

b

c
, gcd(a, c) = gcd(b, c) = 1. (3.11)

Multiplying c to both inputs in the right-hand side of (3.10) we obtain

ĝ(t̃1, t̃2) := f(c(cos θt̃1 + sin θt̃2), c(− sin θt̃1 + cos θt̃2))

=

k∑
j=1

aje
2πi{(c cos θwj1−c sin θwj2)t̃1+(c sin θwj1+c cos θwj2)t̃2}. (3.12)

As long as there is no collision for at least one projection, the frequency pairs, (c cos θwj1−
c sin θwj2, c sin θwj1 + c cos θwj2), can be found by applying the basic algorithm in Section
3.2 on g̃. Due to machine precision the integer c should not be too large, or the band-
width gets too large resulting in failure of the algorithm. If four pairs of frequencies are at
vertices of a rectangle aligned with coordinate axes before the rotation, then they are not
aligned after the rotation with 0 < θ < π/2. Thus we can assure finding whole frequencies
whether they are in the worst case or not.

The pseudo code of the 2D tilting method is shown in Algorithm 2. The lines 14 and
15 mean that each frequency pair (wj1, wj2) is rotated by a matrix [cos − sin; sin cos]
and scaled to make the rotated components integers. Thus we first find the frequency
pairs in the form of w̃ = (coswj1− sinwj2, sinwj1 + coswj2) and after finding all of them,
we rotate them back into the original pairs with the matrix [cos sin; − sin cos] in line
39.

12



This tilting method is a straight forward way to resolve the worst case problem. We
only introduced the tilting method in the two-dimensional case, but the idea of rotating
the axes can be extended to the general d-dimensional case with some effort. On the
other hand, we may notice that the probability of this worst case is very low, especially
when the number of dimensions d is large. Its details are shown in Section 4. Thus, as
we recover the frequencies as much as possible from the basic algorithm. If we cannot
get any frequency pairs for several projection switching among each axis then, assuming
that the worst case happens, we apply the tilting method with several angles until all k
frequency pairs are found.

4 PARTIAL UNWRAPPING METHOD FOR HIGH DI-
MENSIONAL ALGORITHM

In this section we present the partial unwrapping method for a sublinear sparse Fourier
algorithm for very high dimensional data. As we have already mentioned, while full
unwrapping converts a multi-dimensional problem into a single dimensional problem, it
is severely limited in its viability when the dimension is large or when the bandwidth is
already high because of the increased bandwidth. Partial unwrapping is introduced here
to overcome this problem and other problems. In Section 4.1 we give a four dimensional
version of the algorithm using the partial unwrapping method as well as a generalize
it to d dimension. In Section 4.2, the probability of the worst case in d dimension is
analyzed.

4.1 Partial Unwrapping Method

To see the benefit of partial unwrapping we need to examine the main difficulties we may
encounter in developing sublinear sparse Fourier algorithms. For this let us consider a
hypothetical case of sparse FFT where we have k = 100 frequencies in a 20-dimensional
Fourier series distributed in [−10, 10)20. When we perform the parallel projection method,
because the bandwidth is small, there will be a lot of collisions after the projections. It
is often impossible to separate any frequency after each projection, and the task could
thus not be completed. This, ironically, is a curse of small bandwidth for sparse Fourier
algorithm. On the other hand, if we do the full unwrapping we would have increased the
bandwidth to N = 2020, which is impossible to do within reasonable accuracy because N
is too large.

However, a partial unwrapping would reap the benefit of both worlds. Let us now break
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down the 20 dimensions into 5 lower 4-dimensional subspaces, namely we write

[−10, 10)20 =
(
[−10, 10)4

)5
.

In each subspace we perform the full unwrapping, which yields bandwidth N = 204 =
160, 000 in the subspace. This bandwidth N is large enough compared with k, so when
projection method is used there is a very good probability that collision will occur only
for a small percentage of the frequencies, allowing them to be reconstructed. On the other
hand, N is not so large that the phase-shift method will incur significant error.

One of the greatest advantage of partial unwrapping is to turn the curse of dimension-
ality into the blessing of dimensionality.

Note that in the above example, the 4 dimensions that for any of the subspaces do
not have to follow the natural order. By randomizing (if necessary) the order of the
dimensions it may achieve the same goal as the tilting method would. Also note that the
dimension for each subspace needs not be uniform. For example, we can break down the
above 20-dimensional example into four 3-dimensional subspaces and two 4-dimensional
subspaces, i.e.

[−10, 10)20 =
(
[−10, 10)3

)4 × ([−10, 10)4
)2
.

This will lead to further flexibility.

4.1.1 Example of 4-D Case

Before introducing the generalized partial unwrapping algorithm for dimension d, let us
think about the simple case of 4 dimensions. We assume that k frequency vectors are in
4-dimensional space (d = 4). Then, a function f constructed from these frequency vectors
is as follows,

f(t) =

k∑
j=1

aje
2πiwj ·t, aj ∈ C, wj ∈

([
− N

2
,
N

2

)
∩ Z
)4
. (4.1)

Since 4 = 2 × 2, the frequency pairs of the two-two dimensional spaces are both un-
wrapped onto one-dimensional spaces. Here, 4 dimensions is projected onto 2 dimensions
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as follows

g(t1, t2) := f(t1, Nt1, t2, Nt2)

=
k∑
j=1

aje
2πi{(wj1+Nwj2)t1+(wj3+Nwj4)t2}

=
k∑
j=1

aje
2πi(w̃j1t1+w̃j2t2), (4.2)

where w̃j1 = wj1 +Nwj2 and w̃j2 = wj3 +Nwj4. Note that this projection is one-to-one
so as to guarantee the inverse transformation.

Now we can apply the basic projection method in Section 3.1 to this function g re-
defined as the 2-dimensional one. To make this algorithm work, w̃j = (w̃j1, w̃j2) should
not collide with any other frequency pair after the projection onto either the horizontal
or vertical axes. If not, we can consider using the tilting method. After finding all the
frequencies in the form of (w̃j1, w̃j2), it can be transformed to (wj1, wj2, wj3, wj4).

4.1.2 Generalization

We introduce the final version of the multidimensional algorithm in this section. Its pseudo
code and detailed explanation are given in Algorithm 3 and Section 5.1, respectively. We
start with a d-dimensional function f ,

f(t) =

k∑
j=1

aje
2πiwj ·t, aj ∈ C, wj ∈

([
− N

2
,
N

2

)
∩ Z
)d
. (4.3)

Let us assume that d can be divided into d1 and d2 - the case of d being a prime number will
be mentioned at the end of this section. The domain of frequencies can be considered as
([−N/2, N/2) ∩ Z)d = (([−N/2, N/2) ∩ Z)d1)d2 and ([−N/2, N/2) ∩ Z)d1 will be reduced
to one dimension, as d1 is in the 4 dimensional case. Each of the d1 elements of a frequency
vector, wj = (wj1, wj2, · · · , wjd), is unwrapped as

(wj(d1q+1), wj(d1q+2), wj(d1q+3), · · · , wj(d1q+d1))
→ wj(d1q+1) +Nwj(d1q+2) +N2wj(d1q+3) + · · ·+Nd1−1wj(d1q+d1)

=: w̃j(q+1) (4.4)

with q = 0, 1, 2, · · · , d2−1, increasing the respective bandwidth from N to Nd1 and having
injectivity. We rewrite this transformation in terms of the phase. With t = (t1, t2, · · · , td)
and put the following into t`

NR(`−1,d1)t̃Q(`,d1) (4.5)
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for all ` = 1, 2, · · · , d, where R(`−1, d1) and Q(`, d1) are the remainder from dividing `−1
by d1 and quotient from dividing ` by d1 respectively, and t̃ = (t̃1, t̃2, · · · , t̃d2) is a phase
vector in d2 dimensions after projection. Define a function g on d2 dimension as

g(̃t) := f(· · · , NR(`−1,d1)t̃Q(`,d1), · · · )

=
k∑
j=1

aje
2πi

∑d2−1
q=0

(∑d1−1
r=0 wj(d1q+r+1)N

r
)
t̃q+1 , (4.6)

where NR(`−1,d1)t̃Q(`,d1) is the `th element of the input of f . If we project frequency
vectors of g onto the mth axis, then the nth element of a frequency vector w̃j can be
found in the following computation,

gm,np,ε =
(
g(0em + εen), g(

1

p
em + εen), · · · , g(

p− 1

p
em + εen)

)
w̃jn =

1

2πε
Arg

(F(gm,np,ε )[h]

F(gm,np,0 )[h]

)
aj =

1

p
F(gm,np,0 )[h], (4.7)

where em is the m-th unit vector with length d2, i.e., all elements are zero except the
m-th one with entry 1. (4.7) holds as long as w̃jn is the only one congruent to h modulo p
among all n-th elements of the frequency vectors and w̃j does not collide with any other
frequency vector due to the projection onto the m-th axis. The test for checking whether
these conditions are satisfied is

|F(gm,np,ε )[h]|
|F(gm,np,0 )[h]|

= 1 (4.8)

for all 1 ≤ n ≤ d2. The projections onto the m-th axis, where m = 1, · · · , d2, take
turns until we recover all frequency vectors and their coefficients. After that we wrap
the unwrapped frequency vectors up from d2 to d dimension. Since the unwrapping
transformation is one-to-one, this inverse transformation is well-defined.

So far, we assumed that dimension d can be divided into two integers, d1 and d2. For
the case that d is a prime number or both d1 and d2 are so large that the unwrapped
data has a bandwidth such that ε is below the machine precision, a strategy of divide and
conquer can be applied. In that case we can think about applying partial unwrapping
method in a way that each unwrapped component has a different size of bandwidth. If d is
3, for example, then we can unwrap the first two components of the frequency vector onto
one dimension and the last one lies in the same dimension. In that case, the unwrapped
data is in two dimensions, and the bandwidth of the first component is bounded by N2

16



and that of second component is bounded by N . In this case we can choose a shift
ε < 1/N2 where N2 is the largest bandwidth. We can extend this to the general case,
so the partial unwrapping method has a variety of choices balancing the bandwidth and
machine precision.

4.2 Probability of Worst Case Scenario

In this section, we give an upper bound of the probability of the worst case assuming that
we randomly choose a partial unwrapping method. As addressed in the Section 4.1, there
is flexibility in choosing certain partial unwrapping method. Assuming a certain partial
unwrapping method and considering a stronger condition to avoid its failure, we can find
the upper bound of the probability of the worst case where there is a collision for each
parallel projection.

For simple explanation, consider a two dimensional problem. Choosing the first fre-
quency vector (w11, w12) on a two dimensional plane, if the second frequency vector,
(w21, w22), is not on the vertical line crossing (w11, 0) and the horizontal line crossing
(0, w12), then the projection method works. Then if the third frequency vector is not on
four lines, those two lines mentioned before, the vertical line crossing (w21, 0) and the
horizontal line crossing (0, w22), then again the projection method works. We keep choos-
ing next frequency vector in this way, excluding the lines containing previous frequencies.
Thus, letting such event A, the probability that the projection method fails is bounded
above by 1− P(A).

Generally, let us assume that we randomly choose a partial unwrapping, without loss of
generality, the total dimension is d = d1 +d2 + · · ·+dr where r is the number of subspaces
and d1, d2, · · · , dr are the dimensions of each subspace. That is, partially unwrapped fre-
quency vectors are in r < d dimension and each bandwidth is Nd1 , Nd2 , · · · , Ndr , respec-
tively, which is integer strictly larger than 1. Then, the failure probability of projection
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method is bounded above by

1−
k∏
j=1

P(Aj) ≤ 1−
k∏
j=1

Nd − (i− 1)(Nd1 +Nd2 + · · ·+Ndr)

Nd

= 1− 1

τ s−1
(τ − 1)!

(τ − (s− 2))!

(
τ :=

Nd

Nd1 +Nd2 + · · ·+Ndr

)
∼ 1− 1

τ s−1

√
τ − 1

τ − (s− 2)

(
τ−1
e

)τ−1(
τ−(s−2)

e

)τ−(s−2) (Sterling’s formula)

= 1− 1

es−3
(τ − 1)τ−1/2

τ s−1(τ − s+ 2))τ−s+5/2
(4.9)

where Ai is the event that we choose ith frequency not on the lines, crossing formerly
chosen frequency vectors and parallel to each coordinate axis. Noting Nd = Nd1 ×Nd2 ×
· · · ×Ndr , sparsity k is relatively small compared to Nd, and τ is large, we can see that
the upper bound above gets closer to 0 as d or N grows to infinity.

5 EMPIRICAL RESULT

The partial unwrapping method is implemented in the C language. The pseudo code of
this algorithm is shown in Algorithm 3. It is explained in detail in Section 5.1. In our
experiment, dimension d is set to 100 and 1000, d1 is 5 and d2 is 20 and 200, accordingly.
Frequency bandwidth N in each dimension is 20 and sparsity k varies as 1, 2, 22, · · · , 210.
The value of ε for shifting is set to 1/2Nd1 and the constant number c determining the
prime number p is set to 5.

We randomly choose k frequency vectors wj ∈
([
− N

2 ,
N
2

)
∩ Z
)d

and corresponding

coefficients aj = e2πiθj ∈ C from randomly chosen angles θj ∈ [0, 1) so that the magnitude
of each aj is 1. For each d and k we have 100 trials. We get the result by averaging `2

errors, the number of samples used and CPU TICKS out of 100 trials.

Since it is difficult to implement high dimensional FFT and there is no practical high
dimensional sparse Fourier transform it is hard to compare the result of ours with others,
as so far no one else was able to do FFT on this large data set. Thus we cannot help
but show ours only. From Figure 4 we can see that the average `2 errors are below 2−52.
Those errors are from all differences of frequency vectors and coefficients of the original and
recovered values. Since all frequency components are integers and thus the least difference
is 1, we can conclude that our algorithm recover the frequency vectors perfectly. Those
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errors are only from the coefficients. In Figure 5 the average sampling complexity is
shown. We can see that the logarithm of the number of samples is almost proportional to
that of sparsity. Note that the traditional FFT would show the same sampling complexity
even though sparsity k varies since it only depends on the bandwidth N and dimension
d. In Figure 6 the average CPU TICKS are shown. We can see the the logarithm of CPU
TICKS is also almost proportional to that of sparsity. Note that the traditional FFT
might show the same CPU TICKS even though sparsity k varies since it also depends on
the bandwidth N and dimension d only.

5.1 Algorithm

In this section, the explanation of Algorithm 3 is given. In [9] several versions of 1D
algorithms are shown. Among them, non-adaptive and adaptive algorithms are introduced
where the input function f is not modified throughout the whole iteration, and is modified
by subtracting the function constructed from the data in registry R, respectively. In our
multidimensional algorithm, however, the adaptive version is mandatory since excluding
the contribution of the currently recovered data is the key of our algorithm to avoid the
collision of frequencies through projections, whose simple pictorial description is given in
Figure 2. In Algorithm 3, the function g is the one constructed from the data in the
registry R.

Our algorithm begins with entering inputs, a function f , a constant number c deter-
mining p, a sparsity k, a bandwidth N of each dimension, a dimension d, factors d1 and
d2 of d and a shifting number ε < 1/N . For each iteration of the algorithm, the number
of frequencies to find is updated as k∗ = k − |R|. It stops when |R| becomes equal to the
sparsity k. The prime number p is determined depending on this new k∗ as p ≥ ck∗ and
is chosen as the next larger prime number. The lines 13 and 14 of Algorithm 3 represent
the partial unwrapping and sampling with and without shifting from the function where
the contribution of former data is excluded. After applying the FFT on each sequence,
sorting them according to the magnitude of F(fm,np,0 ), we check the ratio between the
FFT’s of the unshifted and shifted sequences to determined whether there is a collision,
either from modulo p or a parallel projection. If all tests are passed, then we find each
frequency component and corresponding coefficient for the data that passed and store
them in R. After several iterations, we find all the data and the final wrapping process
gives the original frequency vectors in d dimensions.
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Figure 4: Average `2 error

5.2 Accuracy

We assume that there is no noise on the data that we want to recover. Figure 4 shows
that we can find frequencies perfectly and the `2 error from coefficients are significantly
small. This error is what we average out over 100 trials for each d = 100, 1000 and
k = 1, 21, 22, · · · , 210 when N is fixed to 20. The horizontal axis represents the logarithm
with base 2 of k and the vertical axis represents the logarithm with base 2 of the `2 error.
It is increasing as the sparsity k is increasing since the number of nonzero coefficients
increases. The red graph in the Figure 4 shows the error when the number of dimensions
is 100 and the blue one shows the error when the number of dimensions is 1000. Thus,
we see that the errors are not substantially impacted by the dimensions.
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5.3 Sampling Complexity

Figure 5 shows the sampling complexity of our algorithm averaged out from 100 tests
for each dimension and sparsity. The horizontal axis means the logarithm with base 2
of k and the vertical axis represents the logarithm with base 2 of the total number of
samples from the randomly constructed function which are used to find all frequencies
and coefficients. The red graph in the Figure 5 shows the sampling complexity when
the number of dimensions is 100 and the blue one shows the one when the number of
dimensions is 1000. Both graphs increase as k increases. When d is large, we see that
it requires more samples since there are more frequency components to find. From the
graphs, we see that the scaling seems to be proportional to d.
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5.4 Runtime Complexity

In Figure 6, we plot the runtime complexity of the main part of our algorithm averaged
over 100 tests for each dimension and sparsity. “Main part” means that we have excluded
the time for constructing a function consisting of frequencies and coefficients and the time
associated with getting samples from it. The horizontal axis is the logarithm, base 2, of
k and the vertical axis is the logarithm, base 2, of CPU TICKS. The red curve shows the
runtime when we set the number of dimensions to 100 and the blue one shows the same
thing when the number of dimensions to 1000. Both plots increase as k increases. When
d is larger, the plots show that it takes more time to run the algorithm. From the graphs
we see that the runtime looks proportional to d.

Unfortunately, the sampling process of getting the samples from continuous functions
dominates the runtime of the whole algorithm instead of the main algorithm. To show
the runtime of our main algorithm, however, we showed CPU TICKS without sampling
process. Reducing the time for sampling is still a problem. In [8] the fully discrete Fourier
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transform is introduced that we expect to use to reduce it. Exploring how to use this will
be one part of our future work.

6 CONCLUSION

In this paper we show how to extend our deterministic 1D sublinear sparse Fourier algo-
rithm to the general d dimensional case. The method projects d dimensional frequency
vectors onto lower dimensions. In this process we encounter several obstacles. Thus
we introduced “tilting method” for the worst case problems and the “partial unwrap-
ping method” to reduce the chance of collisions and to increase the frequency bandwidth
within the limit of computation. In this way we can overcome the obstacles as well as
maintain the advantage of the 1D algorithm. In [9] the sampling complexity is O(k) and
the runtime complexity is O(klogk). Extended this estimation from our 1D algorithm,
we have O(dk) sampling complexity and a runtime complexity of O(dklogk).

Multidimensional sparse Fourier algorithms have not been discussed much so far, so
there is a lot of room for future work. The algorithms in this paper are for recovering
data from a noiseless environment only. However most of the actual data contains noise.
Thus, the next step will be developing an algorithm for noisy multidimensional data. As
mentioned in the previous section, reducing sampling time is another problem to consider.
Furthermore, algorithms for fully discrete or nonuniform data will be explored. In the
end, it is expected that we apply them to real problems like astrophysical data or MRI
data.
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Algorithm 2 2D Sparse Fourier Algorithm with Tilting Method Pseudo Code
1: procedure 2DTiltedPhaseshift
2: Input:f, c, k,N, d, ε, integers base, height, hypo
3: Output:R
4: R← ∅
5: i← 1
6: cos← base, sin← height
7: while |R| < k do
8: k∗ ← k − |R|
9: p← ith prime number ≥ ck∗

10: m← (i mod 2)+1
11: g(t) =

∑
(w,aw)∈R awe

2πiw·t

12: for n = 1→ 2 do
13: for h = 1→ p do
14: m′ ← m mod 2, m′′ ← m+ 1 mod 2, n′ ← n mod 2, n′′ ← n+ 1 mod 2
15: fm,np,ε [h] =

f((h−1p m′ + εn′) cos +(h−1p m′′ + εn′′) sin,−(h−1p m′ + εn′) sin +(h−1p m′′ + εn′′) cos)

−g(h−1p em + εen)

16: fm,np,0 [h] = f(h−1p m′ cos +h−1
p m′′ sin,−h−1p m′ sin +h−1

p m′′ cos)− g(h−1p em)
17: end for
18: F(fm,np,ε ) = FFT (fm,np,ε )
19: F(fm,np,0 ) = FFT (fm,np,0 )
20: Fsort(fm,np,0 ) = SORT (F(fm,np,0 ))
21: end for
22: for h = 1→ k do
23: `← 0
24: for n = 1→ 2 do

25: if
∣∣∣ |Fsort(fm,np,0 )[h]|
|Fsort(fm,np,ε )[h]| − 1

∣∣∣ < ε then

26: `← `+ 1
27: end if

28: w̃n = 1
2πεArg

(
Fsort(fm,np,ε )[h]

Fsort(fm,np,0 )[h]

)
29: a = 1

pF
sort(fm,np,0 )[h]

30: end for
31: if ` == 2 then
32: R← R ∪ (w̃, a)
33: end if
34: end for
35: prune small coefficients from R
36: i← i+ 1
37: end while
38: cos← base

hypo , sin← height
hypo

39: rotate each w̃ back to w using a matrix [cos sin;− sin cos] and restore it in R
40: end procedure
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Algorithm 3 Multidimensional Sparse Fourier Algorithm Pseudo Code
1: procedure MultiPhaseshift
2: Input:f, c, k,N, d, d1, d2, ε
3: Output:R
4: R← ∅
5: i← 1
6: while |R| < k do
7: k∗ ← k − |R|
8: p← ith prime number ≥ ck∗
9: m← (i mod d2) + 1

10: g(t) =
∑

(w,aw)∈R awe
2πiw·t

11: for n = 1→ d2 do
12: for h = 1→ p do
13: fm,np,ε [h] = f(

∑d1
`=1N

` h−1
p ed1(m−1)+` + ε

∑d1
`=1N

`ed1(n−1)+`)− g(h−1p em + εen)

14: fm,np,0 [h] = f(
∑d1
`=1N

` h−1
p ed1(m−1)+`)− g(h−1p em)

15: end for
16: F(fm,np,ε ) = FFT (fm,np,ε )
17: F(fm,np,0 ) = FFT (fm,np,0 )
18: Fsort(fm,np,0 ) = SORT (F(fm,np,0 ))
19: end for
20: for h = 1→ k do
21: `← 0
22: for n = 1→ d2 do

23: if
∣∣∣ |Fsort(fm,np,0 )[h]|
|Fsort(fm,np,ε )[h]| − 1

∣∣∣ < ε then

24: `← `+ 1
25: end if

26: w̃n = 1
2πεArg

(
Fsort(fm,np,ε )[h]

Fsort(fm,np,0 )[h]

)
27: a = 1

pF
sort(fm,np,0 )[h]

28: end for
29: if ` == d2 then
30: R← R ∪ (w̃, a)
31: end if
32: end for
33: prune small coefficients from R
34: i← i+ 1
35: end while
36: inverse-transform each w̃ in d2-D to w d-D and restore it in R
37: end procedure
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