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I. Group representations: A. Modules

All groups G will be finite and all vector spaces V
will be over C.

A matrix representation (rep) of a group G is a
group homomorphism

X :G—= GL4(C).

A G-module is a vector space V, dimV = d, with a
group homomorphism

p:.:G— GL(V).
This gives a linear action of G on V: gv = p(g)v.

The parameter d is called the degree or dimension
of the rep. We will freely go between matrix rep’s
and G-modules.

The group algebra is the G-module

CIGl ={)_ cg|cgeC}
9geG
with action gh =k if gh = k in G. The correspond-
ing matrix rep in the basis B={g | g € G} is called
the (left) regular rep. The corresponding matrices
X (g) are permutation matrices (cf. Cayley’'s Theo-
rem).



Ex. Every group G has the trivial rep Xt

xt"g) = (1) forall ge@.

A module for this rep is V with dimV =1 and

gv=v forallgedG,veV.

Ex. For a cyclic group G = {g,¢%,...,9" = €} any
1-dim rep would have X (g) = (¢) where

(c") = X(g") = X(e) = (1).
So c is an nth root of 1 and all such nth roots give

1-dim rep’s.

If n = 2 then the group algebra is C[G] = {c1e+cog}
with action ge = g, gg = €. SO the left reqgular rep is

X<e>=(é ‘f), X(g>=<$ é>.

Changing basis to {e¢ 4+ g,e — g} gives an equivalent

rep
Y(e)z((l) (j), Y(g)z(cl) _°1>

which is a direct sum of the rep’'s for v/1 = +1.
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If G acts on a set S then one obtains a representa-
tion by linearly extending to the vector space

C[S] ={> _ css | cs € C}.
s€S

The basis S gives a rep by permutation matrices.

EXx. Given any group G, a subgroup H < @, and a
set of all distinct left cosets

S={t1H,...,t;H}

there is an action gt;H = t;H if gt;H = {;H. The
module C[S] is called a coset rep. If H = G (resp.
H = {e}) then it's the trivial (resp. regular) rep.

Ex. The symmetric group S, acts by definition on
S={1,2,...,n}.

The corresponding module C[1, ...,n] is the defining
rep. If n =2 then (1,2)1 =2,(1,2)2 =1 so

(10 (01
Also G, has the 1-dim sign rep

+1 if 7w is even

X(r) =(sgnm) sgnm = { 1 if 7 is odd.
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B. Reducibility and Maschke’s Theorem

A submodule W of G-module V, W < V, is a sub-
space closed under GG's action. Every G-module has
trivial submodules W = {0},V. Module V is irre-
ducible (irr) or an irrep if it has no non-trivial sub-
modules. Every 1-dim module is an irrep.

Ex. The group algebra C[G] has submodule
W =C[) g

geG
since h ;8 =3%.,g. This W gives the trivial rep.

If G = &,, then we can get the sign rep with

U=C[ ) (sgnm)n].
TeGy

Ex. If G=6, and V =C(|1,...,n] then

W=C[1+2+ - +n]

IS @ submodule for the trivial rep. Consider the inner
product on V: (i,j) = J; ; (Kronekcer §). Then

WJ" :{Zczl | Zci:O}

is also a submodule and V = W @ WL with W, W+
irr. (Clear for W, not for W+.)



A G-module V is completely reducible if

Vv=wBg...e wk
where each W is irr.

Theorem 1 (Maschke) If G is finite then every
complex G-module V is completely reducible.

Proof. If V is irr, we are done. 1If not, let W
be a non-trivial submodule. Pick a basis for V
B = {vi,...,vg} with corresponding inner product
(vi,vj) = d; ;.- Now define another inner product

(v,w) = > (gv,gw)

geG
which is G-invariant:

(hv,hw) = " (ghv,ghw) = (gv,gw) = (v, w)".
geG geG
Now W (with respect to (-,-)’) is a submodule since
if ve W, we W, and g € G then
(gv,w) = (v,g"tw) = 0.
So V=W @W-= and done by induction on dimV. =

Note: 1. Maschke may not be true if |G| = oo or
the field is different from C.

2. Henceforth we can just concentrate on irreps.
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C. G-homomorphisms and Schur’s Lemma

A G-homomorphism (hom) of G-modules V,W is a
linear map 0 : V — W such that for all ge G,veV

0(gv) = gb(v).
A bijective 0 is called a G-isomorphism (iso) and
then V, W are G-equivalent (equiv), V. = W. Turn-
ing everything into matrices

TX(g)v=Y(¢)Tv for all g€ G,v e Cq
=TX(g) =Y ()T forallgeG

& rx =vT.

Ex. Let V = C[v] be the trivial rep and W = C[G]
be the group algebra. Then a G-homis 6 :V — W
defined by

o(v) = > g

geG

Ex. Let G = G5, let V = (|1, 2] be the defining rep
and W = C(le, (1,2)] be the group algebra. Then
0.V ->Whbyl—e 2—(1,2)is an &5-iso, e.g.,

0((1,2)2) = 60(1) = e = (1,2)(1,2) = (1,2)0(2).
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Lemma 2 (Schur) If V,W are irreducible modules
and @ :V — W is a G-homomorphism then either

1. 0 is a G-isomorphism or
2. 0 is the zero map.

Proof. Since 0 is a G-hom, kerf and im@ are G-
submodules of V and W, respectively. Since V,W
are irr, ker@ = {0} or V and im@ = {0} or W. If
ker = {0} and im# = W then 0 is a G-iso. Al
other cases lead to the zero map. =

Schur’'s Lemma is valid for infinite groups and arbi-
trary fields. For C more is true.

Corollary 3 If X is an irreducible matrix represen-
tation (irrep) of G over C and T commutes with X
then T = clI, c € C.

Proof. Let ¢ be an eigenvalue of T'. Then

TX =XT = (T-cl)X=X(T-cl).

By Schur, T'—cl is invertible or zero and the former
can’'t happen by the choice of ¢c. m



D. The endomorphism algebra

A G-module V has endomorphism algebra

EndV ={0:V -V | 6isa G-homomorphism}.
For a d-dim matrix representation X this becomes

End X = {T € Mat,| TX = XT)}.

To describe End X we use block matrix operations

S0
o7

Suppose that X decomposes as

ST = < ) , SQT = (Si,jT) where § = (Si,j)-

X = X(l)@X(Q) @...@X(l)
where the X are irr. Let T = (T;;) € EndX
have the same block form. Then XT = XT implies
T; ;X)) = xWT; ; so
o [0 if X2 x0U) (Schur)

b ci ;I if x @) = x() (Cor).
Renaming the irreps to collect equiv ones and letting
d; = dim X (@)

End X = {&f_; (Mm; ® I) | Mm; € Matp, Vi}.
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Otherwise put

End X = ¢F_; Maty,, .
The center Zyat,, = {cf | c € C} and so

ZEpnd x = {@,’lecilmidi | ¢; € C for all i} = Diagy,

where Diag; are the diagonal matrices in Maty.
Summarizing and taking dimensions:

Theorem 4 Let X be a matrix rep of G with
X =m XD @emx@Da@...¢ mx®

where the X are inequiv, irr and with dimensions
dim X = d;. Then

1. End X 2 @F_; Matp,,

2. Zgng x = Diagy,

3. dimX = midy + mody + - - - + mpdy,
4. dim(EndX)zm%-I—m%-l—----l—m%,

5. dim ZEndX = k.
11



E. Group characters and inner products

Matrix rep X has character (char) x : G — C where

x(g) = tr X(g).

A G-module also has a unique character since any
two bases give conjugate matrix reps.

Ex. If dimX =1 then yx is called a linear char and

x(gh) = tr X(gh) = tr X(g) tr X(h) = x(g)x(h).

Ex. If V = C[G] (regular rep) then the char is

reg — : _ _ ) |G| ifg=c¢
o) = |+ h=ny = { [ [

Ex. If V =C][1,...,n] (defining rep of &), then

v9¢T (1) = number of fixed points of .

Proposition 5 Let group G have matrix represen-
tation X with dim X = d and character .

1. x(e) = d,
2. IfK is a conjugacy class: g,h € K = x(g) = x(h),

3. IfrepY haschar¢y: X =Y =x=19. =
12



Character x is a class function since it is constant
on conjugacy classes K. Let x, = x(g9),9 € K. The
character table of G has rows indexed by the irreps
(xt" first) columns indexed by the conjugacy classes
({e} first) and entries x,. It is square.

Ex. If G = 63 then we have

~H{e {(1,2);(1,3);(2,3)} {(1,2,3);(1,3,2)}
Xtrl 1 1 1
ngn 1 -1 1
YMYS | 7 ? ?

The inner product of v,v: G — C is

K
(X, ) = g%éx(g)w(g) 1G] 2 ZI X ¥

If G-module V has char ¥ then an orthonormal basis

for V with respect to a G-invariant inner product on
V' gives matrices for zp which are unitary and

S x(@v(g™h).

geG

(X, ¥
IGI

If G = S, then g and ¢~ are conjugate and so
1
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Theorem 6 (Character relations, the 1st kind)
If x,v are irreducible characters of a group G then

X 0) = 5)(,7,&- ()

Proof sketch. Let x,v come from reps X,Y. Let
Z = (zj)and W = |G|"1 ¥ ,cc X(9)ZY (g7 1). Then
XW = WY and by Schur’'s Lemma

(o ifXx2Yy,
W_{cI if X 2VY.

Since this is true for all Z, one can get equations
relating the entries of X and Y giving (*). =

Corollary 7 Let X = @kzlmiX(i) where the X (%)

1
are pairwise inequiv with char’s x(%).

1. x = mix® + mox@ + -+ mp (B,
2. (X,X(i)> = m;,

3. (x,x) =mf+m3+ - +my,

4. X isirr & (x,x) =1 (use 3),

5. IfY has char iy then X £Y & xy =4 (use 2).m
14



Ex. Let G = 63 and V = (][1, 2, 3] (defining rep)
with char x = x9¢7. Then

x(7) = number of fixed points of =«
x(e) =3, x((1,2)) =1, x((1,2,3)) =0.
Also
x = mixt + mox39" 4+ mzx™YS  where
m;=(1-3-143-1-142-0-1)/3!=1
mo=(1-3-14+3-1(-1)+2-0-1)/3!=0.
So
Y = Xtri + m3mes.
Consider the character
= x — x"

Then v is irreducible since

(h, ) = (1-224+3-024+2(-1)2)/3! = 1.
So m3z = 1 and x™M¥Y5 =4 giving the complete table

o {er {(1,2);(1,3);(2,3)F {(1,2,3);(1,3,2)}
Xtrl 1 1 1
xS9n | 1 ~1 1
YmYs | o 0 1

Note: For general n, x9¢" — xt is irreducible.
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F. Decomposing the group algebra

Proposition 8 Let C[G] = &;m;V () where the V(¥
are a complete list of all inequiv irreps

1. m; =dimV (so all irreps occur),
2. Y(dimv)2 =g,
3. # of irreps = # of conjugacy classes K of (.

Proof sketch. 1. Let y = x®9. Then

o — >geG X(Q)X(i)(g_l) _ X(e)x(i) (€)
’ |G| |G
2. Follows from 1. 3.4 of irreps = dim Zgqq G-

= dim v,

EndC[G] = {¢v : ¢v(w) =wv} =C[G].

Now z € Zgiq) iff z = hzh™! for all h € G. So
for each conjugacy class K of G, ZC[G] has a basis
element

ZKZZk. u

ke K
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Corollary 9 1. The character table of G is square.

2. The irr characters x of G form an orthonormal
basis for the space R(G) of class functions on G.

3. (Character relations of the second kind) If K, L
are conjugacy classes of G and x is irreducible

> x X—=@5KL
=t K|

Proof. 1 and 2 follow from part 3 of the Proposition
and the character relations of the first kind.

3. The relations of the first kind also give that
the modified character table U = <\/|K|/|G|XK) has
orthonormal rows, thus orthonormal columns. =

Ex. We can find x™¥® for &3 another way. By the
Proposition, part 2,

12 4+ 12 4+ x"™W5(€)? = 31 = v ™S(e) = 2.

The other two entries are found using the relations
of the second kind. For example, taking K = {e}
and L = {(1,2),...}

0=1-1+1(-1) 42" = x™*=0.
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G. Representations of products and subgroups

If X,Y are matrix reps of GG, H respectively then the
tensor product rep of G x H is

(X ®Y)(g,h) = X(g9) @Y (h).

Proposition 10 1. XY isarepofGx H. If X,Y
are irreps then so is X ® Y.

2. As X v () run over complete lists of inequiv
irreps for G, H resp, X (z)®Y(~7) runs over a complete
list of inequiv irreps for X QY .

3. If X,Y,X®Y have characters x, v, x®y resp then
(x ® ¥)(g,h) = x(g)¥(h).

Proof of 2. Suppose that xX@ vy have chars
x(z),w(ﬂ) resp. Then inequivalence follows from

(X(i) @ ) (k) w(l)> — (X(i),x(k)><¢(j)7¢(l)>
= 04, k05,1 = 0(i,5), (k)
For list completeness, just check we have the right
number of irreps. Let k() =# of conjugacy classes.

# of irreps of G x H = k(G x H) = k(G)k(H)
=(# of irreps of G)(# of irreps of H).
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If H< G and X is a rep of G then the restriction of
X to H, X lg= X%, is
X lg (h) = X(h).

It is clear the X |y isarep, butif X isirr then X |y
need not be. For example, if X is the 2-dim irrep
of &3 and H = {¢,(1,2)} := &1 o3 = 65 then

X | y= xtri @ XS9In,

If Y is arep of H then Y(g) := 0 for g ¢ H doesn't
give a rep. But if G = w;t;H then the induction of
Y to G, Y19%=Y 1, has block matrices

Y 1Y (9) = (Y (¢t Lgt;)).

EXx. Consider 1 TG for the trivial char 1 of H. Then

_J 1 ifgeH,
1(9)_{0 if g H.

So
1(t;tgt)) =1 < t;'gt; € H < gt;H = t;H.

So 1 1C equals the coset rep C[#] in the standard
basis H = {t1H,...,t;H} and so consists of permu-
tation matrices. In general, Y TG consists of block
permutation matrices.
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Proposition 11 1. Y 1¢ js a representation of G
which may be reducible even if'Y is an irrep of H.

2. Two transversals of H give equiv induced reps.
3. IfFY,Y ¢ have chars zp v 1C resp then
Y19 () = = > (= 'ga).
|H| rxed
4. (Frobenius Reciprocity) If x is a char of G then

W19, x) = (¥, x L)
Proof of 4. We have

(1Y, x) = Y 1Y (@x(g™H)
|G| geG
1

IGIIHI

S (ztgx)x(g™h)

z,g€G
— -1 —1
|G||H| x%Gw(y)x(xy %)

1

_ —1
= |G||H| x%Gw(y)x(y )

= S w(wx(y™h)

|H| yeG
= Z P(Wxy™ ) = (@, x br).
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H. The group determinant
Indeterminates {c4|g € G} give the group matrix

[ = (cg—lh)g,hEG'
In the case G = {g,¢42,...,g" =€}, [ is a circulant.
Ex. If n = 3 with rows and cols indexed e, g, g2

Ce Cg C42 co €1 €2
[ = cg2 Ce Cg = Co Co C]
Cg cgz Ce Cl1 C2 CQ

Theorem 12 (Frobenius) If the irreps G are X,
dim X =d;, 1 <i<k, then

k

detl = [[ A% with A; := |3 XD (g)cy| irr. m
1=1 geG
Corollary 13 |c;_;] =H (co—|—01C—|----—|—cn_1C”_1).l
(=1
o €1 |_ 2 2_ B
Ex. ¢ co | = €0 ¢ = (co+ c1)(co — c1).

Open Problem. Find a combinatorial proof of the
corollary: The det counts G,, with weight wty. The
product counts F = {f : {1,...,n} — {1,...,n}}
with weight wt,. Partition 6, = ¥,;5;, F = W,F;
S.t. ZfeF wty f = 0 for certain F; and for the rest
there’s a welght preserving buectlon with the §;.
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II. Reps of &,,: A. Permutation modules

The number of irreps of &, is the number of con-
jugacy classes which is the same as the number of
partitions A = (\1,...,A;) ofn, A+ n, ie.,

X € (ZT)! is weakly decreasing and Y, \; = n.
To every A is associated a Young subgroup

OA =68, 211 X O +1, 0420} X

The corresponding coset rep M (for 1 Tg“) Is called
a permutation module. These are not wreduable
but we will find an ordering > of partitions such that

A=5 e P K, n5H
B>

where the SH are irreps and the KM multiplicities.

To conveniently describe M*: The Ferrers diagram
of A is the set of dots or cells

A= {(,5) € (ZT)? | 1 <j< N}

(4,4,2) = (2,3)
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A Young tableau of shape \ or A-tableau, written
t =t or sht = ), is a bijection

t:X—{1,2,...,n}, li 5 = t(i,7).

A tabloid, {t}, is an equivalence class of tableaux
with the same corresponding rows.

Ex. All tableaux of shape (2,1) are

12 21, 13 31, 23 32
3 3 2 2 1 1

If t is the first tableau in the list

{t}:{;z, 21}::;2.

A m € G, acts on tableau t = (¢; ;) by nt = (nt; ;)
and thus acts on tabloids. With this action

M* = C[{t} | all A-tabloids {¢}].
Ex. A = (n) gives the trivial rep
MM =C[1 2 -~ n].
A=(1,1,...,1) := (1™) gives the regular rep
M1 = 6,
A= (n—1,1) gives the defining rep (ignore 1st row)
M=) >~ 1, 2,... nl.
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B. Orderings on partitions

For partitions A = (A1,..., ;) and u = (u1,---, 4m)
of n, the dominance partial order, X\ > pu, is

forall i>1: Ap4--+XN>pr+- 4w
and the lexicographic (lex) total order, A\ > pu, is

for some i > 1: X; > p; and Aj = p; for j <.

EX.

(3,3)>(3,2,1): 3>3.34+3>3+2,...
(3,3),(4,1,1) incompinl>: 3<4,3+4+3>4+41.
(4,1,1) > (3,3): 4> 3.

(3,3) >(3,2,1): 3=3,3>2.

Proposition 14 1. XD u implies A > pu.

2. (Dominance Lemma, DL) If Vi entries of row i
of tableau s* are in different col’s of t* then A > u.

Proof. 2. Sort each column of +* so the entries in
the first ¢ rows of s* lie in the first i rows of t*.

Y i<iAj = # elements in first i rows of t*
> # elements in first i rows of s =, p;.
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C. The irreducible Specht modules

If HC G, then let

H™ = ) (sgnm)m € C[Gn].
weH

If tableau t has columns (4, ...,C)y, then let
Ct = 6¢, X+ x G, (the column group),

ke .= Cp = KC1KCs " Ky
e; := ke{t} (the polytabloid).

4 1 2
ih‘t—35 then

Ct = G343 X 6151 X G2,

KRt — 6_(374)_(175)_'_(374)(175)

= (e—(3,4))(e—-(1,5)),

_ 412 8312 452 352
°t = 375 4 5 3 1 4 1

Lemma 15 Ifn € &, and t is a tableau then

Kot = 7TI€t7T_1 and e} = mwey.
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Partition A has Specht module

S* = Cle| all A-tableaux ¢].

Ex. 1. X = (n) gives the trivial rep: Any (n)-tableau
thase,= 1 2 --- n SO

et — €54t — €4.

2. A= (1") gives the sign rep: For any t = #(1™)
mer = 16, {t} = (sgnm)ey.

3. A=(n—1,1): Abbreviate t = t* to the 2nd row

o — ik k—'—i
t — i i _.] I
s(n=11) — C[j—i|l <i<j<nl,

A G-module U is cyclic, generated by u € U if
U =Cl[gu | g € G].

Corollary 16 S* is cyclic generated by any e; € S*.

Define an &,-invariant inner product on M* by

(1t} {8}) = O} (s}
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Lemma 17 (Sign Lemma, SL) Let H < G,,.

1. n€c H=nH =H n=(sgnn)H".

2. u,ve M) = (H u,v) = (u,H V).

3. (b,c) e H= H = k(e—(b,c)) forsomek € C[Gn].

4. b,c in the same row of tableau s and (b,c) € H
= H {s} = 0.

Corollary 18 I. If sht = A\,shs = u with ki{s} = 0
then AD> u. If A= p then ri{s} = +e;.

II. (James’ Submodule Theorem) If U is a submod-
ule of M* then U D S* or U C SH+.

III. The S, ut+ n, are all inequiv &y-irreps over C.

Proof. I. b,c in the same row of s = b,c not in the
same col of t (else kt{s} =0 by SL4) = A>u (DL).
If \=u = {s} = n{t} for some = € G, and by SL1

Iﬁ:t{S} = Iﬁ:tﬂ'{t} = (sgn W)l{t{t} = +ey.

II. fueU and t =t = kpu = cey for c € C by I. If
some c#0 = e €U and S#¥ C U. Else use SL2 to
show U C SHL,
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D. The standard tableaux basis for S}
Tableau t is standard if its rows and col’'s increase.

1 3 4 . 2 3 4
Ex. 5 & IS standard; 1 s IS not.

Theorem 19 A basis for S? is
{et | t a standard \-tableau}.

Independence. A composition is a permutation of a
partition. If {¢} is a tabloid, for ¢ > 1 let

{t}y*
A’L

tabloid of all entries <1 in {t},
the shape of {t}*, a composition.

Ex. If {t} = 2> then
0 2 2 3
W= @ =1 @ =

AL =(0,1) X =(1,1) X =(2,1).
Dominance order on tabloids is

{t} > {s} <= ND>pu' Vi
Proposition 20 1. (Tabloid Dominance Lemma) If
k <1 and k is lower thanl in {t} then (k,1){t} > {t}.
2. t standard and {s} appears in ez = {t} > {s}.

3. The standard e; are independent.
28



Span. To show e; a lin comb of standard es one can
assume the col's of t increase. (Else dn € C; with
col's of =t increasing and e;; = (sgnm)e;.) If t has
row descent a > b, it suffices to find tableaux s s.t.

1. ¢ = — ) .(sgnmws)es where wst = s,

2. [s] > [t] for all s, [s] = col tabloid.

A (resp B) := entries of t below a (resp above b).
B
. a|b
=114

The s are all tableaux gotten by permuting AU B
s.t. the elements of AU B still increase in their col’s.

Ex. If t = ?, }L Z with 2 > 1 = A = {2,3},B =
{1},
1 3 5 1 2 5
1= 2 4 6 2= 3 4 6
T = (1,3,2) o = (1,2)
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E. Young’s natural representation

The matrix rep X* for S* in the standard basis is
Young's natural rep. Since (k,k+1),1 < k < n, gen-
erate S, it suffices to compute M = X ((k,k+1)).
If ¢ is standard than to find M;; we must express

(k,k + 1)e; in the standard basis.

1. If k,k+ 1 in the same col of t = (k,k+ 1) € C;

(k, k + 1)615 = —e.

2. If k,k+ 1 in the same row of t = (k,k+ 1)t has

row descent K+ 1 > k
S (k,k+ 1)e; = e; = other es with [s] > [t].

3. Else (k,k+ 1)t =t where ¢t is standard
co(kk+1)er = eyp.
Ex. If A =(2,1) then the standard tableaux are

1 3 1 2
t1 = 5 and to = 3 :
If (k,k+ 1) = (1,2) then
2 3 1 3
(1,2 =23 - 13

(1,2)es, was essentially computed last slide.

.pﬂZ”«Lm>:(‘é‘ﬁ).

30



F. The Branching and Young Rules
Partition X has inner corner (i,5) € X if

AT = A\ (4,7) is a partition,
and outer corner (i,7) & X\ if

AT = )\U(4,4) is a partition.

o o o o
EX.If A= o o then
o o
o o o o o o o
AT o o o o
o o °
e o o o
e o 0 0 o e o o o
AT e o o o o * ¢
o o
o o o o .

Theorem 21 (Branching Rule) If A+ n then
1. SM g, = @y 5,

2. SA1Gn1 @, | 5AT.
Ex. From the example above
422 ~ 3,2,2 421
S( ) lg, & s ( ) @ s ),
5(472a2) T69 = 5(57272) @ 5(47372) @ 5(4727271)
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Tableau T is called semistandard if it has strictly
increasing columns while its rows weakly increase.
The content of T, ctT, is the composition u s.t.

;= #FF of ¢'sin T.

4

Ex. T = has content © = (2,1,0,2).

1 1
2 4
The Kostka numbers are

Ky, = # of semistandard T', shape A, content .

Theorem 22 (Young’s Rule)

~ A
Mt 2 P K),S5".
A p

Ex. If u = (2,1,1) then the possible A\ > u are

Al (2,1,1) (2,2) (3,1) (4)
1 1 1 1 1 1 2 1 1 2 3
T : 2 2 3 3
3
1 1 3
2

So M(21,1) =~ g(2,1,1) g §(2,2) gy 25(3,1) g 5(4).

Note: For any u, Kuu =1= K,
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III. Combinatorics: A. Schensted’s algorithm

Let SYT(A) be the set of standard A-tableaux and
A= |SYT(\)| = dim S,

For any group with irreps V(9: s.(dim V(D)2 = |q].

If G = &6, the formula can be proved combinatorially

> () =n!
AFn

Proof. Construct the Robinson-Schensted bijection
T <R;S> (P,Q)

where T € &, and P,Q € SYT()\) for some ).

xRS0 (P,Q): Insert z € Z1 into increasing tableau

P to get increasing tableau P/, r.(P) = P/, by
1. Let?2:=1

2. If £ > every element of row ¢ of P, put it at the
end of the row and stop.

3. Else exchange z and the smallest F; ; > x. (We
say x bumps P; ;.) Seti:=i+ 1 and go to 2.

EX. Suppose x =2

P= 13 «<2 12 12 12 =ro(P).
4 5 45 «+—~3 35 35
~—4 4
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Now if @ = x71...xn then construct a sequence of

pairs (07@) — (P07QO)7" 7(Pann) — (Pa Q) by

P, = 71z, (Pr_1),

Qr = Qr_1Wk with kin sh P, \shP,_;.
= ~_12345Rs ;45 é35 o
EXLT= g 9 41 5 ] i y

(P,Q) "5° . Delete P, rayP = (P',z), by

1. Remove z := P; ; from its row and set 7 ;=7 — 1.

2. While i > 1 exchange x and the greatest R; ; <
and set ¢ .:=¢— 1.

Ex. Do the Ex on the previous page backwards.

Starting with (P, Q) we obtain the reverse sequence
(Pn,Qn),...,(Py,Qp) and m = x1...zp by

Qr—1 @ \ K
(Pk—17 :Ek) r(_z',j)Pk where Qi,j = k.
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B. Properties of Robinson-Schensted

If 7 "5 (P,Q) then the P-tableau of = is P(w) = P
and the Q-tableau of w is Q(w) = Q.

fr=x1...2pn then 7" =z, ...21.

A subsequence of mt=x1...x2pn, o C m, IS

O =Tk Thoy -+ LThy, with k1 < ko < ... < knm.

Proposition 23 1. P(x") = P(n)? (the transpose)
2. IfshP(rr) = (M\1,...,\;) then

A1 = length of a longest increasing o C ,
[ length of a longest decreasing o C .

3. If 1 °5° (P,Q) then =1 R5° (Q, P).
4. Sen [N = # of involutions in &,

Proof. 1. One can define column insertion cy(P)
and prove rgcy(P) = cyrz(P). Then

P(ﬂ'r) = Txqy Twn(@) = Tgy" Twn_1cwn(®)
= cppTay Tz, 1(0) = ... =cg, cz(0) = P(w)t.

4. By 3: 71 "5° (P, P) iff r =71, So

Z f)‘ = # of P = # of involutions .
AFn

35



When does P(w) = P(0)?
Ex. For 63: P(123) =123, P(321)=(12 3)¢,

13

12
5 :

P(213) = P(231) = 2

. P(132) = P(312) =

7,0 differ by a Knuth transposition if for x < y < z:

1. {m,o0} ={{z1...yxz...2n, ®1...y2x...2Tn}, OF
2. {m,o} ={x1...22y...xn, 1...22Yy...2Tn}.

K
Also w,0 are Knuth equivalent, = = o, if

T=T1,T0,...,Tp = O
with m;, ;1 differing by a Knuth transposition Va.

K K
Ex.213=231and132=312.

K
Theorem 24 (Knuth) P(n) = P(o) <— 7w =o0.

Proof sketch. “<" Type 1 transposition: z's (resp
z's) insertion path is weakly left (resp strictly right)
of y's so P(w) = P(c). Type 2: then =", o" differ by
type 1 and

P(x") = P(¢") = P(n)t = P(0)! = P(x) = P(0).
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C. Schutzenberger’s jeu de taquin

If ©w C XA then one has the skew diagram
AMp={0G7) | G5) €A (7)€ nl
Ex. If u=(2,1) and A = (4,4,1)

A=

If P is an increasing tableau, sh P = \/u, a backward
slide into an inner corner ¢ of u, j¢(P) = P/, is

While ¢ = (4,7) is not an inner corner of A,
exchange ¢ and the smaller of P41 ;, F; j41.

Ex. If ¢ = (1,2) then

P= 15 1e5 135 135 =j¢P).
237 237 27 27
4 4 4 4

A forward slide into outer corner d = (i,7) of A,
j4(P) = P’, exchanges d with the larger of the num-
bers P;_q j, P; j—1, €tc. until an outer corner of u is
reached. Clearly if j¢(P) = P’ vacating d then

jgic(P) =P and ;%4 (P =P
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Llet op=(n—-1,n—2,...,1). Any m = x71...2zn has
a 0p41/0n-tableau with z; in (n -3+ 1,7).

2

EX. m = 132 has tableau m = 3
1

A backward slide sequence for P = Py is

(C]_, cen ,Cl) with P,L_|_1 = ]C@(Pz) defined V:.

If |l = |u| where shP = X\/u let j(P) := j%---j°1(P).
Ex. (cont) If c1 = (2,1),¢c0 =(1,2),c3=(1,1)

2 2 2 2

1 |
13 7 13> 3 =40

Theorem 25 (Schutzenberger) j(n) = P(x).

Proof sketch. If P has rows Rq,..., R; then its row
word is p(P) = RiR;_1...Rq.
1357 .
@P_246 has p(P)=2461357.
It is easy to prove P(p(P)) = P. Furthermore if P

K
is skew and P/ = j¢(P) then p(P") £ p(P). So

K
p((m) 2 p(r) = 7 PV j(2) = P(x). m
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D. The hook formula
The hook and hooklength of (i,7) € X are

H; ; ={",5),G,3") e x| & >4,5 >34}, hij=|H, .
The arm length and leg length of the hook are

ai; = |H{G,3)ex|i >} Ly =G5 eX]i >}
Ex. In A = (42,3,1)

HQ’Q = and h2,2 = 4, a2 = 2, l2’2 = 1.

Theorem 26 (Frame-Robinson-Thrall) If we have

A n, then
f)\ — n! .
II 7
(Z,7)EA
Ex. (3,2) F 5 has hooklengths
4131
211 '
(32) — 5! __ - -
So f = 13512 — 2 which agrees with

123, 124, 125 134, 1365.
45 35 34 25 2 4
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The Novelli-Pak-Stoyanovskii Proof. Preprint:
http://www.math.harvard.edu/~pak/papers

Show n! = fA](; iy ki ; With a bijection
T +— (P, J)

where shT' = shP = shJ = X\, T is any Yound
tableau, P is standard, and

l’L]S‘] < a;j V(i,7) € A

T — (P,J): If T is standard of shape A/u and entry
z € ZT is in ¢ then j¢(T) has z moving in place of e
and terminating when it becomes standard.

Ex. If ¢ = (1,2) contains 6

T= 615 165 1
237 237 2
4 4 4

35 = j¢T).

67

Lex order A's cells ¢y > co > ... > cp. Define
T=T,...,Tn =P where Tp=j%(T_1).

Define Jy,...,Jp = J by J; = 0 and if 3% starts in
cr. = (i,7) and ends in (4¢/,3') then J, = Ji_1 except

) (e l)zl—|-1+1 for j <1<,
(Jk)z’l_{z i for | = j'.
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EXx. For spacing purposes we use 1 for —1.
Ty = 645, 645, 645, 643, 623, 123 = P.
231 213 123 125 145 456

000, 000, 000, 001, 0Ii, 0ol =
000 010 200 200 200 200

J1

(P,J) — T: To reconstruct (P,J) = (ITn,Jn),...,
(11,J1) = (1,0), assume (Ty,J;) has been con-
structed. The possible cells for ¢, = (i,7) in Ty
are

P ={G ' >4,5 >4, (J)s < 0,8 =i— (Jp) i}

Define j; for d € P by having the slide stop at c;.
(must prove well-defined) The code of j,; replaces
each move north (resp west) with N (resp W) writ-
ten in reverse order.

Ex. For cg = (1,1): P ={(1,1),(1,2),(2,3)} and
j11:0, J12:W, joz=NWW.
Lex order the codes using W < () < N. Then
T._1 = 74(Ty) where d € P has maximum code.
Also if ¢, = (4,5), d = (¢, 5) then J_; = J, except

(J ) = (Jk)i,l—l_l fOI’j<l§j’
k=174 0 for | = j.
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E. The determinantal formula

Theorem 27 (Frobenius) If (A\,...,A;) Fn then
A =nldet(1/(\; —i 4+ )N

where the determinant isl x 1l and 1/r! =0 ifr < O.

1/3!1 1/41

(3,2) —
EX. =50 40 1701

= 5.

Proof. It suffices to show the determinant equals
the hook formula. We have

Nit+l=h1+t = MN—-it+jij=hi1—-1+]
So every row of the determinant is of the form
[+ 1/(h—=2)! 1/(h—1)! 1/h1].
After factoring out [[;1/h; 1! we get rows
[--- h(h—1) h 1]
which by column operations can be turned into
[+ (h=1)(h—-2) h-1 1].

Putting [1;1/(h; 1—1)! back in we get [[; 1/h; 1 times

the det for A with its first column removed, so we're

done by induction. n
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IV. Symmetric functions: A. Bases

Let x = {x1,2o,...} and also consider C[[x]], the
corresponding formal power series algebra. Then
™ € &y, acts on f € C[[x]] by

f(x1,22,...) = f(Tr1,Tx2,.-.), ®7(m) :=m,m > n.
We say f is symmetric if
nf=f Vme Gy Vn.

Each partition A = (\q,...,);) has an associated
monomial symmetric function

A A
my = m)(x) = sz‘ll . -:cill
where the sum is over all distinct monomials that
have exponents Aq,..., ;.

EX.

2, 2 2 2 2 2 2 2
Mm(2 2 1) = TITHT3 + TIT2T3 + T1T5T3 T+ T1X5%T4 + -

The algebra of symmetric functions is
N = A(x) = C[m,].

Note: f =T[;>1(1+ z;) is symmetric but isn't in A.
We have a grading by degree

N = @nzo/\n, dimA"™ = p(n), the # of A+ n.
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Pn = mg,y = Y x; (power sum).

i>1
€n .= min) = Z Tjq =Ty, (elementary).
11<...<ip
hn =) my= >  m---x; (complete homo).
AFn 11<...<1p
Ex. p3 = ai+a3+a3+-
e3 = T1XT2T3 T+ T1X2T4 + T1XT3T4 + -+ -
hy = x{’—l—---—I—a:%xg—l—---—l—azlazzxg,—l—---
Proposition 28 We have the generating functions
1. E(t) = YXpsoen(Xt" = || (14 z;).
i>1 .
2. H(t) = Yp>oha(x)t" = || ] :
i>11— x;t
1
3. P(t) = Epzipa(x)t" = In[] .
B i>1 1 — it

If f=p,e,or hand A= (A1,..., ) let fy =1L £
Theorem 29 Three bases for A\ are

1. {ex | AFn}, 2. {hy | AFn}, 3. {p) | AF n}.

Proof. 1 = XS2. [{h)}| = p(n) so it suffices to show
every en is a polynomial in h,. But HAH))E(—t) =1
and taking the coefficient of t"*, n > 1,

n

Z (_1)khn—kek =0=ep=~h1e,_1—hoey_o>—+---
k=0
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B. Schur functions

For tableau T let xI = x¥ = gH1...zHkm where T's
content is u = (u1,...,wm). A Schur function is

sy (x) = ZXT
T

summed over all semistandard 7' of shape A. Note

EXx. T: 11 12 ... 12 13
2 2 3 2

S(21) = T2 + 2123 + -+ 2z1w003 + -+
The alternant for A= (A\q,...,Ap) is

= |z;7]
@) i 11<i i<t

Ifo=-1,l—2,...,0) then a5 = Vandermonde.
Let x* be an irr character and k, be the size of a
conjugacy classin &,. Let K, be a Kostka number.

Theorem 30 If A = (\q,...,\;) then
1. {sy | A\Fn} is a basis of \™.

2. s\ = Z,uﬁ)\ K)\,u my-

W

1
S\ = 57 2ukn ku Xf) Ppu-

a
sx(1,..,x1) = 2:;5

(Jacobi-Trudi) sy = |hx,_itjli<; e

S
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Proof of 5. (Gessel-Viennot-Lindstrom) A lattice
path in Z2 is p = s1,so,... where each s; is a unit
step N or E. Label the E steps by

N(s;) = (number of N steps preceding s;) + 1.

C o lsg
B . .3.387 s
p= . . X' = r513.

S S
2 2052 °°

82 83
S1 . .
If p is from (a,b) to (c,d) write (a,b) = (c,d). Let

si=FEe€p (a,b)g(a+n,00)

Fix (ul,...,ul),(vl,.-..,fvl) & form P = (p1,...,p1)
where for all ¢ : wy L vr; for some w € G;. Let

x” :=][xPP and sgnP :=sgnm.

V4 v3 VD U1

4. 72

— :U2333£C4,
P= 1 - .. - sgnP = sgn(1,2,3)(4)
— e __ S l — —l—]_.
' }
' 46
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Given A = (A1,...,;) pick

u; ;= (1 —1¢,0) and v; = (\;,—1+1,0) =
ha—iti = > xP and |y, ;4] =D (sgnP)x”.
Define a sign-reversing involution P «» P’ by
1. If P is non-N then P/ = P.
2. Else, let (¢,7) be the lex least pair s.t. p;Np; # 0,
and w € p; Np; be SW-most, so P’ = (P \ p;,p;) U
p;, Pj-

V4 v3 vy U1 V4 v3 vy U1
o b
l b h l
- L
—— 1 t -—»—»f l
..... T A 4 -....; :
— — —— — — l—»—bo—b—»t — — —— — — t— ————— l

| t W | t W

| . 1 . . | . 1
Ugq U3 U Uq Ugq U3 U U

All terms in the det cancel except P for non-Nn paths
which correspond to semistandard A-tableaux T.

’1)3.’({2.’1)]_ 5 5

1
T= 23
4
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C. Knuth’s algorithm
Theorem 31 (Littlewood) Ify = {y1,y>,...} then

ZSA(X)SA(Y)— 1T 1/ —zy;).

1,7>1

Proof (Knuth). Want a wt-preserving bijection

xRk (T,U)

where T,U are semistandard of the same shape,
wt(T,U) = x'yY.

Furthermore, w is a generalized permutation: a 2-
line array with entries in ZT in lex order, and

wltm = H:vjyz

where the product is over all col (; ) € .

1 112 2 .
Ex.m= , 3 3 ] o With wtm = z12523y3Y5.
The bijection is now the same as R-S.
Ex. (cont)
T, ¢, 2, 23, 233, 133, 123 =T,
2 23
u. ¢, 1, 11, 111, 111, 111 =U.
2 22

48



D. The characteristic map

Let R" = R(Gy) (class functions) and R = @,,>oR".
The characteristic map, ch : R — A, linearly extends

1
n: ukn

If x* is an irr character then ch(x*) = sy so ch is a
V.S. iSO which becomes an isometry if we define

<S)\7 SIL> — 6)\,,11,'

Finally for x, v chars of &,,5,, let

X = (x ® ¢) tSn+m

and extend linearly. Then we have

ch(x - ) (x -, p)
((x ® ¥) 1On+m p)
(x®v),pls, xa,,)

1
tml Z AKX YupAPp
AFn, pkFm

= ch(x) ch(¥).

Theorem 32 The map ch : R — A is an isomor-
phism of algebras. u
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E. The Littlewood-Richardson Rule

Word R=17r1...1rp € (Z"')” IS a lattice permutation
(Ip) if for all R, =ry...r; and all j € ZT

number of 5's > number of 5+ 1's in R;.
Such R corresponds to a standard tableau P by
if r; = 7 then put 7 in row 5 of P.

1 2 6
Ex. R=1123213¢«+3sP= 35
4 7

Theorem 33 (Littlewood-Richardson, L-R) If
S\Su = ZCKMSV
14
then CKN iIs the number of semistandard T such that
1. shT =v/X and ctT = p,

2. the reverse row word p(T)" is an Ip. |

EX. For s2)s(2,1)

T: o o 1 1, ¢ o 1, ¢ ¢ 1, e o
2 1 2 1 1 1
2 2

$S28%2,1)= 81 T s5@2 T $312) T 821

The L-R rule generalizes both the Branching Rule
(for S)\S(l)) and Young's Rule (for S(I)S(m))'
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F. The Murnagham-Nakayama Rule

A rim hook, H, is a skew shape that's a lattice path.
A rim hook tableau T' has rows and cols weakly
increasing and all z's in a rim hook for each 7 € T'.

11124
Ex. H = and T'= 22224,
33344

Rim hook H has leg length

I[(H) = (number of rows of H) — 1
and a rim hook tableau T' has sign

sanT = |] (—1)HH),
HeT

Ex. (cont) I(H) =2, sgnT = (=1)0+t1+0+2 — _1
Theorem 34 (Murnagham-Nakayama) We have

ij‘J = ngnT
T

sum over all rim hook tableaux, sh'T' = X\, ctT = u.m
Note X%ln) — {2 is a special case.

EX. For xy = X(271)

pwl o (13) (2,1) | (3)

T 12,13 11,12 |11
3 2 2 1 1

xp| 1+1=2] 1-1=0|-1
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G. Chromatic symmetric functions

A proper coloring of G = (V,E) isc:V — {1,...,t}
uwv € E = c(u) #£ c(v).

The chromatic polynomial of GG is

P(G) = P(G,t) := # of proper ¢: V — {1,...,t}.
vl

Ex. If G = ’UQA’U:g then
P(G) =[] (# of e(v)) = t(t — 1)(t - 2).

1

The chromatic symmetric function of GG is

X(G) — X(G, X) — Z acc(,ul) cee xc(vn).
proper c:V—Z+

EXx. 1

1 2
G 2L1 142 2L3
X(G) = x%xg + :clx% + - + 6zrizon3 +
Poset P has incomparability graph G = inc P with
V=P FE={uv | u,v incomparable in P}
and is 3 4+ 1-free if it has no induced {a < b < ¢, d}.

Conjecture 35 (Stanley-Stembridge) If poset P
is 34+1-free and X(inc P) = Yy cyey = ¢y € ZTU{0}.

Gasharov has proved this with ey replaced by s).
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