GROUP REPRESENTATIONS AND SYMMETRIC FUNCTIONS

Bruce E. Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu

- I. Group representations
- II. Representations of the symmetric group, \mathfrak{S}_n
- III. Associated combinatorics
- IV. Symmetric functions

Copies available at

http://www.mth.msu.edu/~sagan

References

- 1. C. W. Curtis and I. Reiner, "Representation Theory of Finite Groups and Associative Algebras," Pure and Applied Science, Vol. 11, Wiley-Interscience, New York, 1966.
- 2. G. D. James, "The Representation Theory of Symmetric Groups," Lecture Notes in Math., Vol. 682, Springer-Verlag, New York, 1978.
- 3. I. G. Macdonald, "Symmetric Functions and Hall polynomials," 2nd ed., Oxford University Press, Oxford, 1995.
- 4. B. E. Sagan, The ubiquitous Young tableau, in "Invariant Theory and Tableaux," Dennis Stanton ed., IMA Volumes in Math. and its Applications **19** (1990), 262–298.
- 5. B. E. Sagan, The symmetric group: representations, combinatorial algorithms, and symmetric functions, Wadsworth & Brooks/ Cole, Pacific Grove, 1991; 2nd ed., Springer-Verlag, New York, to appear.
- 6. R. P. Stanley, "Enumerative Combinatorics, I," Wadsworth & Brooks/Cole, Pacific Grove, 1986.

I. Group representations: A. Modules

All groups G will be finite and all vector spaces V will be over \mathbb{C} .

A matrix representation (rep) of a group G is a group homomorphism

$$X: G \to GL_d(\mathbb{C}).$$

A G-module is a vector space V, dim V=d, with a group homomorphism

$$\rho: G \to GL(V)$$
.

This gives a linear action of G on V: $g\mathbf{v} = \rho(g)\mathbf{v}$.

The parameter d is called the *degree* or *dimension* of the rep. We will freely go between matrix rep's and G-modules.

The group algebra is the G-module

$$\mathbb{C}[\mathbf{G}] = \{ \sum_{g \in G} c_g \mathbf{g} \mid c_g \in \mathbb{C} \}$$

with action $g\mathbf{h} = \mathbf{k}$ if gh = k in G. The corresponding matrix rep in the basis $\mathcal{B} = \{\mathbf{g} \mid g \in G\}$ is called the *(left) regular rep.* The corresponding matrices X(g) are permutation matrices (cf. Cayley's Theorem).

 $\underline{\mathsf{Ex.}}$ Every group G has the trivial rep X^{tri}

$$X^{\mathsf{tri}}(g) = (1)$$
 for all $g \in G$.

A module for this rep is V with dim V=1 and

$$g\mathbf{v} = \mathbf{v}$$
 for all $g \in G, \mathbf{v} \in V$.

Ex. For a cyclic group $G = \{g, g^2, \dots, g^n = \epsilon\}$ any 1-dim rep would have X(g) = (c) where

$$(c^n) = X(g^n) = X(\epsilon) = (1).$$

So c is an nth root of 1 and all such nth roots give 1-dim rep's.

If n=2 then the group algebra is $\mathbb{C}[G] = \{c_1\epsilon + c_2g\}$ with action $g\epsilon = g, gg = \epsilon$. So the left regular rep is

$$X(\epsilon) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X(g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Changing basis to $\{\epsilon + \mathbf{g}, \epsilon - \mathbf{g}\}$ gives an equivalent rep

$$Y(\epsilon) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad Y(g) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which is a direct sum of the rep's for $\sqrt{1} = \pm 1$.

If G acts on a set S then one obtains a representation by linearly extending to the vector space

$$\mathbb{C}[\mathbf{S}] = \{ \sum_{s \in S} c_s \mathbf{s} \mid c_s \in \mathbb{C} \}.$$

The basis S gives a rep by permutation matrices.

<u>Ex.</u> Given any group G, a subgroup $H \leq G$, and a set of all distinct left cosets

$$S = \{t_1 H, \dots, t_l H\}$$

there is an action $g\mathbf{t}_j\mathbf{H} = \mathbf{t}_i\mathbf{H}$ if $gt_jH = t_iH$. The module $\mathbb{C}[\mathbf{S}]$ is called a *coset rep.* If H = G (resp. $H = \{\epsilon\}$) then it's the trivial (resp. regular) rep.

Ex. The symmetric group \mathfrak{S}_n acts by definition on

$$S = \{1, 2, \dots, n\}.$$

The corresponding module $\mathbb{C}[1,\ldots,n]$ is the *defining* rep. If n=2 then (1,2)1=2,(1,2)2=1 so

$$X(\epsilon) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X((1,2)) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Also \mathfrak{S}_n has the 1-dim sign rep

$$X(\pi) = (\operatorname{sgn} \pi)$$
 $\operatorname{sgn} \pi = \begin{cases} +1 & \text{if } \pi \text{ is even} \\ -1 & \text{if } \pi \text{ is odd.} \end{cases}$

B. Reducibility and Maschke's Theorem

A submodule W of G-module V, $W \leq V$, is a subspace closed under G's action. Every G-module has trivial submodules $W = \{0\}, V$. Module V is irreducible (irr) or an irrep if it has no non-trivial submodules. Every 1-dim module is an irrep.

Ex. The group algebra $\mathbb{C}[\mathbf{G}]$ has submodule

$$W = \mathbb{C}[\sum_{g \in G} \mathbf{g}]$$

since $h \sum_{g} \mathbf{g} = \sum_{g} \mathbf{g}$. This W gives the trivial rep.

If $G = \mathfrak{S}_n$ then we can get the sign rep with

$$U = \mathbb{C}[\sum_{\pi \in \mathfrak{S}_n} (\operatorname{sgn} \pi)\pi].$$

<u>Ex.</u> If $G = \mathfrak{S}_n$ and $V = \mathbb{C}[1, \ldots, n]$ then

$$W = \mathbb{C}[1 + 2 + \dots + n]$$

is a submodule for the trivial rep. Consider the inner product on V: $\langle \mathbf{i}, \mathbf{j} \rangle = \delta_{i,j}$ (Kronekcer δ). Then

$$W^{\perp} = \{ \sum_{i} c_i \mathbf{i} \mid \sum_{i} c_i = \mathbf{0} \}$$

is also a submodule and $V=W\oplus W^{\perp}$ with W,W^{\perp} irr. (Clear for W, not for W^{\perp} .)

A G-module V is completely reducible if

$$V = W^{(1)} \oplus \cdots \oplus W^{(k)}$$

where each $W^{(i)}$ is irr.

Theorem 1 (Maschke) If G is finite then every complex G-module V is completely reducible.

Proof. If V is irr, we are done. If not, let W be a non-trivial submodule. Pick a basis for V $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_d\}$ with corresponding inner product $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{i,j}$. Now define another inner product

$$\langle \mathbf{v}, \mathbf{w} \rangle' = \sum_{g \in G} \langle g\mathbf{v}, g\mathbf{w} \rangle$$

which is G-invariant:

$$\langle h\mathbf{v}, h\mathbf{w} \rangle' = \sum_{g \in G} \langle gh\mathbf{v}, gh\mathbf{w} \rangle = \sum_{g \in G} \langle g\mathbf{v}, g\mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle'.$$

Now W^{\perp} (with respect to $\langle \cdot, \cdot \rangle'$) is a submodule since if $\mathbf{v} \in W^{\perp}, \mathbf{w} \in W$, and $g \in G$ then

$$\langle g\mathbf{v}, \mathbf{w} \rangle' = \langle \mathbf{v}, g^{-1}\mathbf{w} \rangle' = 0.$$

So $V = W \oplus W^{\perp}$ and done by induction on dim V.

Note: 1. Maschke may not be true if $|G| = \infty$ or the field is different from \mathbb{C} .

2. Henceforth we can just concentrate on irreps.

C. G-homomorphisms and Schur's Lemma

A G-homomorphism (hom) of G-modules V,W is a linear map $\theta:V\to W$ such that for all $g\in G,\mathbf{v}\in V$

$$\theta(g\mathbf{v}) = g\theta(\mathbf{v}).$$

A bijective θ is called a G-isomorphism (iso) and then V,W are G-equivalent (equiv), $V\cong W$. Turning everything into matrices

$$TX(g)\mathbf{v} = Y(g)T\mathbf{v}$$
 for all $g \in G, \mathbf{v} \in \mathbb{C}^d$
 $\Rightarrow TX(g) = Y(g)T$ for all $g \in G$
 $\stackrel{\mathsf{def}}{\Rightarrow} TX = YT$.

<u>Ex.</u> Let $V=\mathbb{C}[\mathbf{v}]$ be the trivial rep and $W=\mathbb{C}[\mathbf{G}]$ be the group algebra. Then a G-hom is $\theta:V\to W$ defined by

$$\theta(\mathbf{v}) = \sum_{g \in G} \mathbf{g}.$$

Ex. Let $G = \mathfrak{S}_2$, let $V = \mathbb{C}[1,2]$ be the defining rep and $W = \mathbb{C}[\epsilon,(1,2)]$ be the group algebra. Then $\theta:V \to W$ by $1 \mapsto \epsilon, \ 2 \mapsto (1,2)$ is an \mathfrak{S}_2 -iso, e.g.,

$$\theta((1,2)2) = \theta(1) = \epsilon = (1,2)(1,2) = (1,2)\theta(2).$$

Lemma 2 (Schur) If V, W are irreducible modules and $\theta: V \to W$ is a G-homomorphism then either

- 1. θ is a G-isomorphism or
- 2. θ is the zero map.

Proof. Since θ is a G-hom, $\ker \theta$ and $\operatorname{im} \theta$ are G-submodules of V and W, respectively. Since V,W are irr, $\ker \theta = \{0\}$ or V and $\operatorname{im} \theta = \{0\}$ or W. If $\ker \theta = \{0\}$ and $\operatorname{im} \theta = W$ then θ is a G-iso. All other cases lead to the zero map. \blacksquare

Schur's Lemma is valid for infinite groups and arbitrary fields. For $\mathbb C$ more is true.

Corollary 3 If X is an irreducible matrix representation (irrep) of G over \mathbb{C} and T commutes with X then T = cI, $c \in \mathbb{C}$.

Proof. Let c be an eigenvalue of T. Then

$$TX = XT \quad \Rightarrow \quad (T - cI)X = X(T - cI).$$

By Schur, T-cI is invertible or zero and the former can't happen by the choice of c.

D. The endomorphism algebra

A G-module V has endomorphism algebra

End $V = \{\theta : V \to V \mid \theta \text{ is a } G\text{-homomorphism}\}.$

For a d-dim matrix representation X this becomes

$$\operatorname{End} X = \{ T \in \operatorname{Mat}_d | TX = XT \}.$$

To describe $\operatorname{End} X$ we use block matrix operations

$$S \oplus T = \begin{pmatrix} S & 0 \\ \hline 0 & T \end{pmatrix}, \quad S \otimes T = (S_{i,j}T) \text{ where } S = (S_{i,j}).$$

Suppose that X decomposes as

$$X = X^{(1)} \oplus X^{(2)} \oplus \cdots \oplus X^{(l)}$$

where the $X^{(i)}$ are irr. Let $T=(T_{i,j})\in\operatorname{End} X$ have the same block form. Then XT=XT implies $T_{i,j}X^{(j)}=X^{(i)}T_{i,j}$ so

$$T_{i,j} = \begin{cases} 0 & \text{if } X^{(i)} \not\cong X^{(j)} \text{ (Schur)} \\ c_{i,j}I & \text{if } X^{(i)} \cong X^{(j)} \text{ (Cor)}. \end{cases}$$

Renaming the irreps to collect equiv ones and letting $d_i = \dim X^{(i)}$

$$X = \bigoplus_{i=1}^{k} m_i X^{(i)} \Rightarrow$$

End $X = \{ \bigoplus_{i=1}^{k} (M_{m_i} \otimes I_{d_i}) \mid M_{m_i} \in \mathsf{Mat}_{m_i} \ \forall i \}.$

Otherwise put

$$\operatorname{End} X \cong \oplus_{i=1}^k \operatorname{Mat}_{m_i}.$$

The center $Z_{\mathsf{Mat}_m} = \{cI \mid c \in \mathbb{C}\}$ and so

 $Z_{\operatorname{End}X} = \{ \oplus_{i=1}^k c_i I_{m_i d_i} \mid c_i \in \mathbb{C} \text{ for all } i \} \cong \operatorname{Diag}_k,$ where Diag_k are the diagonal matrices in Mat_k .

Summarizing and taking dimensions:

Theorem 4 Let X be a matrix rep of G with

$$X = m_1 X^{(1)} \oplus m_2 X^{(2)} \oplus \cdots \oplus m_k X^{(k)}$$

where the $X^{(i)}$ are inequiv, irr and with dimensions $\dim X^{(i)} = d_i$. Then

- 1. End $X \cong \bigoplus_{i=1}^k \mathsf{Mat}_{m_i}$,
- 2. $Z_{\operatorname{End} X} \cong \operatorname{Diag}_k$,
- 3. dim $X = m_1d_1 + m_2d_2 + \cdots + m_kd_k$,
- 4. $\dim(\operatorname{End} X) = m_1^2 + m_2^2 + \dots + m_k^2$,
- 5. dim $Z_{\text{End }X} = k$.

E. Group characters and inner products

Matrix rep X has character (char) $\chi:G\to\mathbb{C}$ where $\chi(g)=\operatorname{tr} X(g).$

A G-module also has a unique character since any two bases give conjugate matrix reps.

Ex. If dim X=1 then χ is called a *linear char* and $\chi(gh)=\operatorname{tr} X(gh)=\operatorname{tr} X(g)\operatorname{tr} X(h)=\chi(g)\chi(h).$

Ex. If $V = \mathbb{C}[G]$ (regular rep) then the char is $\chi^{\operatorname{reg}}(g) = |\{\mathbf{h} : g\mathbf{h} = \mathbf{h}\}| = \begin{cases} |G| & \text{if } g = \epsilon \\ 0 & \text{else.} \end{cases}$

<u>Ex.</u> If $V = \mathbb{C}[1, ..., \mathbf{n}]$ (defining rep of \mathfrak{S}_n), then $\chi^{\text{def}}(\pi) = \text{number of fixed points of } \pi$.

Proposition 5 Let group G have matrix representation X with dim X = d and character χ .

- 1. $\chi(\epsilon) = d$
- 2. If K is a conjugacy class: $g, h \in K \Rightarrow \chi(g) = \chi(h)$,
- 3. If rep Y has char ψ : $X \cong Y \Rightarrow \chi = \psi$.

Character χ is a class function since it is constant on conjugacy classes K. Let $\chi_K = \chi(g), g \in K$. The character table of G has rows indexed by the irreps $(\chi^{\text{tri}} \text{ first})$ columns indexed by the conjugacy classes $(\{\epsilon\} \text{ first})$ and entries χ_K . It is square.

Ex. If $G = \mathfrak{S}_3$ then we have

	$\{\epsilon\}$	$\{(1,2);(1,3);(2,3)\}$	$\{(1,2,3);(1,3,2)\}$
χ tri	1	1	1
$\chi^{\sf sgn}$	1	-1	1
χ^{mys}	?	?	?

The *inner product* of $\chi, \psi: G \to \mathbb{C}$ is

$$\langle \chi, \psi \rangle \ := \ \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)} \ = \ \frac{1}{|G|} \sum_K |K| \chi_K \overline{\psi_K}.$$

If G-module V has char ψ then an orthonormal basis for V with respect to a G-invariant inner product on V gives matrices for ψ which are unitary and

$$\langle \chi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \psi(g^{-1}).$$

If $G = \mathfrak{S}_n$ then g and g^{-1} are conjugate and so

$$\langle \chi, \psi \rangle = \frac{1}{n!} \sum_K |K| \chi_K \psi_K.$$

Theorem 6 (Character relations, the 1st kind) If χ, ψ are irreducible characters of a group G then

$$\langle \chi, \psi \rangle = \delta_{\chi, \psi}.$$
 (*)

Proof sketch. Let χ, ψ come from reps X, Y. Let $Z=(z_{i,j})$ and $W=|G|^{-1}\sum_{g\in G}X(g)ZY(g^{-1})$. Then XW=WY and by Schur's Lemma

$$W = \left\{ \begin{array}{ll} \mathbf{0} & \text{if } X \not\cong Y, \\ \mathbf{cI} & \text{if } X \cong Y. \end{array} \right.$$

Since this is true for all Z, one can get equations relating the entries of X and Y giving (*).

Corollary 7 Let $X \cong \bigoplus_{i=1}^k m_i X^{(i)}$ where the $X^{(i)}$ are pairwise inequiv with char's $\chi^{(i)}$.

1.
$$\chi = m_1 \chi^{(1)} + m_2 \chi^{(2)} + \dots + m_k \chi^{(k)}$$
,

2.
$$\langle \chi, \chi^{(i)} \rangle = m_i$$
,

3.
$$\langle \chi, \chi \rangle = m_1^2 + m_2^2 + \dots + m_k^2$$
,

4.
$$X$$
 is irr $\Leftrightarrow \langle \chi, \chi \rangle = 1$ (use 3),

5. If Y has char ψ then $X \cong Y \Leftrightarrow \chi = \psi$ (use 2).

<u>Ex.</u> Let $G = \mathfrak{S}_3$ and $V = \mathbb{C}[1, 2, 3]$ (defining rep) with char $\chi = \chi^{\text{def}}$. Then

$$\chi(\pi) =$$
 number of fixed points of π
 $\chi(\epsilon) = 3, \ \chi((1,2)) = 1, \ \chi((1,2,3)) = 0.$

Also

$$\chi = m_1 \chi^{\text{tri}} + m_2 \chi^{\text{sgn}} + m_3 \chi^{\text{mys}}$$
 where $m_1 = (1 \cdot 3 \cdot 1 + 3 \cdot 1 \cdot 1 + 2 \cdot 0 \cdot 1)/3! = 1$ $m_2 = (1 \cdot 3 \cdot 1 + 3 \cdot 1(-1) + 2 \cdot 0 \cdot 1)/3! = 0.$

So

$$\chi = \chi^{\text{tri}} + m_3 \chi^{\text{mys}}$$
.

Consider the character

$$\psi = \chi - \chi^{\text{tri}},$$

 $\psi(\epsilon) = 2, \ \psi((1,2)) = 0, \ \psi((1,2,3)) = -1.$

Then ψ is irreducible since

$$\langle \psi, \psi \rangle = (1 \cdot 2^2 + 3 \cdot 0^2 + 2(-1)^2)/3! = 1.$$

So $m_3=1$ and $\chi^{\text{mys}}=\psi$ giving the complete table

Note: For general n, $\chi^{\text{def}} - \chi^{\text{tri}}$ is irreducible.

F. Decomposing the group algebra

Proposition 8 Let $\mathbb{C}[G] = \bigoplus_i m_i V^{(i)}$ where the $V^{(i)}$ are a complete list of all inequiv irreps

- 1. $m_i = \dim V^{(i)}$ (so all irreps occur),
- 2. $\sum_{i} (\dim V^{(i)})^2 = |G|,$
- 3. # of irreps = # of conjugacy classes K of G.

Proof sketch. 1. Let $\chi = \chi^{\text{reg}}$. Then

$$m_i = \frac{\sum_{g \in G} \chi(g) \chi^{(i)}(g^{-1})}{|G|} = \frac{\chi(\epsilon) \chi^{(i)}(\epsilon)}{|G|} = \dim V^{(i)}.$$

2. Follows from 1. 3.# of irreps = dim $Z_{\operatorname{End}\mathbb{C}[G]}$.

$$\operatorname{End} \mathbb{C}[\mathbf{G}] = \{\phi_{\mathbf{V}} : \phi_{\mathbf{V}}(\mathbf{w}) = \mathbf{w}\mathbf{v}\} \cong \mathbb{C}[\mathbf{G}].$$

Now $\mathbf{z}\in Z_{\mathbb{C}[\mathbf{G}]}$ iff $\mathbf{z}=\mathbf{h}\mathbf{z}\mathbf{h}^{-1}$ for all $\mathbf{h}\in\mathbf{G}$. So for each conjugacy class K of G, $Z_{\mathbb{C}[\mathbf{G}]}$ has a basis element

$$\mathbf{z}_K = \sum_{k \in K} \mathbf{k}$$
.

Corollary 9 1. The character table of G is square.

- 2. The irr characters χ of G form an orthonormal basis for the space R(G) of class functions on G.
- 3. (Character relations of the second kind) If K, L are conjugacy classes of G and χ is irreducible

$$\sum_{\chi} \chi_K \overline{\chi_L} = \frac{|G|}{|K|} \delta_{K,L}.$$

Proof. 1 and 2 follow from part 3 of the Proposition and the character relations of the first kind.

3. The relations of the first kind also give that the modified character table $U=\left(\sqrt{|K|/|G|}\chi_K\right)$ has orthonormal rows, thus orthonormal columns. \blacksquare

 $\underline{\mathsf{Ex.}}$ We can find χ^{mys} for \mathfrak{S}_3 another way. By the Proposition, part 2,

$$1^2 + 1^2 + \chi^{\text{mys}}(\epsilon)^2 = 3! \Rightarrow \chi^{\text{mys}}(\epsilon) = 2.$$

The other two entries are found using the relations of the second kind. For example, taking $K=\{\epsilon\}$ and $L=\{(1,2),\ldots\}$

$$0 = 1 \cdot 1 + 1(-1) + 2\chi_L^{\text{mys}} \Rightarrow \chi_L^{\text{mys}} = 0.$$

G. Representations of products and subgroups

If X,Y are matrix reps of G,H respectively then the tensor product rep of $G\times H$ is

$$(X \otimes Y)(g,h) = X(g) \otimes Y(h).$$

Proposition 10 1. $X \otimes Y$ is a rep of $G \times H$. If X, Y are irreps then so is $X \otimes Y$.

- 2. As $X^{(i)}, Y^{(j)}$ run over complete lists of inequivirreps for G, H resp, $X^{(i)} \otimes Y^{(j)}$ runs over a complete list of inequivirreps for $X \otimes Y$.
- 3. If $X, Y, X \otimes Y$ have characters $\chi, \psi, \chi \otimes \psi$ resp then $(\chi \otimes \psi)(g,h) = \chi(g)\psi(h).$

Proof of 2. Suppose that $X^{(i)}, Y^{(j)}$ have chars $\chi^{(i)}, \psi^{(j)}$ resp. Then inequivalence follows from

$$\langle \chi^{(i)} \otimes \psi^{(j)}, \chi^{(k)} \otimes \psi^{(l)} \rangle = \langle \chi^{(i)}, \chi^{(k)} \rangle \langle \psi^{(j)}, \psi^{(l)} \rangle$$
$$= \delta_{i,k} \delta_{j,l} = \delta_{(i,j),(k,l)}.$$

For list completeness, just check we have the right number of irreps. Let $k(\cdot) = \#$ of conjugacy classes.

of irreps of
$$G \times H = k(G \times H) = k(G)k(H)$$

=(# of irreps of G)(# of irreps of H).

If $H \leq G$ and X is a rep of G then the *restriction* of X to H, $X \downarrow_H = X \downarrow_H^G$, is

$$X \downarrow_H (h) = X(h).$$

It is clear the $X\downarrow_H$ is a rep, but if X is irr then $X\downarrow_H$ need not be. For example, if X is the 2-dim irrep of \mathfrak{S}_3 and $H=\{\epsilon,(1,2)\}:=\mathfrak{S}_{\{1,2\}}\cong\mathfrak{S}_2$ then

$$X\downarrow_H\cong X^{\mathsf{tri}}\oplus X^{\mathsf{sgn}}.$$

If Y is a rep of H then Y(g) := 0 for $g \notin H$ doesn't give a rep. But if $G = \biguplus_i t_i H$ then the *induction* of Y to G, $Y \uparrow^G = Y \uparrow^G_H$, has block matrices

$$Y \uparrow^G (g) = (Y(t_i^{-1}gt_j)).$$

 $\underline{\mathsf{Ex.}}$ Consider $1 \uparrow^G$ for the trivial char 1 of H. Then

$$1(g) = \begin{cases} 1 & \text{if } g \in H, \\ 0 & \text{if } g \not\in H. \end{cases}$$

So

$$1(t_i^{-1}gt_j) = 1 \iff t_i^{-1}gt_j \in H \iff gt_jH = t_iH.$$

So $1 \uparrow^G$ equals the coset rep $\mathbb{C}[\mathcal{H}]$ in the standard basis $\mathcal{H} = \{\mathbf{t}_1\mathbf{H}, \dots, \mathbf{t}_l\mathbf{H}\}$ and so consists of permutation matrices. In general, $Y \uparrow^G$ consists of block permutation matrices.

Proposition 11 1. $Y \uparrow^G$ is a representation of G which may be reducible even if Y is an irrep of H.

- 2. Two transversals of H give equiv induced reps.
- 3. If $Y, Y \uparrow^G$ have chars $\psi, \psi \uparrow^G$ resp then

$$\psi \uparrow^G (g) = \frac{1}{|H|} \sum_{x \in G} \psi(x^{-1}gx).$$

4. (Frobenius Reciprocity) If χ is a char of G then $\langle \psi \uparrow^G, \chi \rangle = \langle \psi, \chi \downarrow_H \rangle$.

Proof of 4. We have

$$\begin{split} \langle \psi \uparrow^G, \chi \rangle &= \frac{1}{|G|} \sum_{g \in G} \psi \uparrow^G (g) \chi(g^{-1}) \\ &= \frac{1}{|G||H|} \sum_{x,g \in G} \psi(x^{-1}gx) \chi(g^{-1}) \\ &= \frac{1}{|G||H|} \sum_{x,y \in G} \psi(y) \chi(xy^{-1}x^{-1}) \\ &= \frac{1}{|G||H|} \sum_{x,y \in G} \psi(y) \chi(y^{-1}) \\ &= \frac{1}{|H|} \sum_{y \in G} \psi(y) \chi(y^{-1}) \\ &= \frac{1}{|H|} \sum_{y \in H} \psi(y) \chi(y^{-1}) = \langle \psi, \chi \downarrow_H \rangle. \end{split}$$

H. The group determinant

Indeterminates $\{c_g|g\in G\}$ give the group matrix

$$\Gamma = (c_{g^{-1}h})_{g,h \in G}.$$

In the case $G = \{g, g^2, \dots, g^n = \epsilon\}$, Γ is a *circulant*. <u>Ex.</u> If n = 3 with rows and cols indexed ϵ, g, g^2

$$\Gamma = \begin{pmatrix} c_{\epsilon} & c_{g} & c_{g^{2}} \\ c_{g^{2}} & c_{\epsilon} & c_{g} \\ c_{g} & c_{g^{2}} & c_{\epsilon} \end{pmatrix} := \begin{pmatrix} c_{0} & c_{1} & c_{2} \\ c_{2} & c_{0} & c_{1} \\ c_{1} & c_{2} & c_{0} \end{pmatrix}.$$

Theorem 12 (Frobenius) If the irreps G are $X^{(i)}$, $\dim X^{(i)} = d_i$, $1 \le i \le k$, then

$$\det \Gamma = \prod_{i=1}^k \Delta_i^{d_i} \text{ with } \Delta_i := \left| \sum_{g \in G} X^{(i)}(g) c_g \right| \text{ irr. } \blacksquare$$

Corollary 13
$$|c_{j-i}| = \prod_{\zeta^n=1} (c_0 + c_1 \zeta + \dots + c_{n-1} \zeta^{n-1}). \blacksquare$$

$$\underline{\mathsf{Ex}}. \begin{vmatrix} c_0 & c_1 \\ c_1 & c_0 \end{vmatrix} = c_0^2 - c_1^2 = (c_0 + c_1)(c_0 - c_1).$$

Open Problem. Find a combinatorial proof of the corollary: The det counts \mathfrak{S}_n with weight wt_1 . The product counts $\mathcal{F} = \{f: \{1,\ldots,n\} \to \{1,\ldots,n\}\}$ with weight wt_2 . Partition $\mathfrak{S}_n = \uplus_i S_i, \ \mathcal{F} = \uplus_j F_j$ s.t. $\sum_{f \in F_j} \operatorname{wt}_2 f = 0$ for certain F_j and for the rest there's a weight preserving bijection with the S_i .

II. Reps of \mathfrak{S}_n : A. Permutation modules

The number of irreps of \mathfrak{S}_n is the number of conjugacy classes which is the same as the number of partitions $\lambda = (\lambda_1, \dots, \lambda_l)$ of n, $\lambda \vdash n$, i.e.,

 $\lambda \in (\mathbb{Z}^+)^l$ is weakly decreasing and $\sum_i \lambda_i = n$.

To every λ is associated a Young subgroup

$$\mathfrak{S}_{\lambda} = \mathfrak{S}_{\{1,\dots,\lambda_1\}} \times \mathfrak{S}_{\{\lambda_1+1,\dots,\lambda_1+\lambda_2\}} \times \cdots$$

The corresponding coset rep M^{λ} (for $1 \uparrow_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{n}}$) is called a *permutation module*. These are not irreducible, but we will find an ordering > of partitions such that

$$M^{\lambda} = S^{\lambda} \oplus \bigoplus_{\mu > \lambda} K_{\mu\lambda} S^{\mu}$$

where the S^{μ} are irreps and the $K_{\mu\lambda}$ multiplicities.

To conveniently describe M^{λ} : The *Ferrers diagram* of λ is the set of dots or cells

$$\lambda = \{(i, j) \in (\mathbb{Z}^+)^2 \mid 1 \le j \le \lambda_i\}.$$

<u>Ex.</u>

A Young tableau of shape λ or λ -tableau, written $t=t^{\lambda}$ or sh $t=\lambda$, is a bijection

$$t: \lambda \to \{1, 2, \dots, n\}, \quad t_{i,j} := t(i, j).$$

A tabloid, $\{t\}$, is an equivalence class of tableaux with the same corresponding rows.

Ex. All tableaux of shape (2,1) are

If t is the first tableau in the list

$$\{t\} = \left\{ \begin{array}{ccc} 1 & 2, & 2 & 1 \\ 3 & & 3 \end{array} \right\} := \frac{\overline{1 \ 2}}{\underline{3}}.$$

A $\pi \in \mathfrak{S}_n$ acts on tableau $t = (t_{i,j})$ by $\pi t = (\pi t_{i,j})$ and thus acts on tabloids. With this action

$$M^{\lambda} = \mathbb{C}[\{\mathbf{t}\} \mid \text{all } \lambda\text{-tabloids } \{t\}].$$

 $\underline{\mathsf{Ex.}}\ \lambda = (n)$ gives the trivial rep

$$M^{(n)} = \mathbb{C}[\overline{1} \ \underline{2} \ \cdots \ \underline{n}].$$

 $\lambda=(1,1,\ldots,1):=(1^n)$ gives the regular rep $M^{(1^n)}\cong \mathbb{C}[\mathfrak{S}_n].$

$$\lambda=(n-1,1)$$
 gives the defining rep (ignore 1st row)
$$M^{(n-1,1)}\cong \mathbb{C}[1,2,\ldots,\mathbf{n}].$$

B. Orderings on partitions

For partitions $\lambda = (\lambda_1, \dots, \lambda_l)$ and $\mu = (\mu_1, \dots, \mu_m)$ of n, the dominance partial order, $\lambda \trianglerighteq \mu$, is

for all $i \geq 1$: $\lambda_1 + \dots + \lambda_i \geq \mu_1 + \dots + \mu_i$ and the *lexicographic (lex) total order*, $\lambda > \mu$, is for some $i \geq 1$: $\lambda_i > \mu_i$ and $\lambda_j = \mu_j$ for j < i.

<u>Ex.</u>

$$(3,3) \triangleright (3,2,1)$$
: $3 \ge 3,3+3>3+2,...$
 $(3,3),(4,1,1)$ incomp in \ge : $3 < 4,3+3>4+1.$
 $(4,1,1) > (3,3)$: $4 > 3.$
 $(3,3) > (3,2,1)$: $3 = 3,3>2.$

Proposition 14 1. $\lambda \trianglerighteq \mu$ implies $\lambda \trianglerighteq \mu$.

- 2. (Dominance Lemma, DL) If $\forall i$ entries of row i of tableau s^{μ} are in different col's of t^{λ} then $\lambda \trianglerighteq \mu$.
- **Proof.** 2. Sort each column of t^{λ} so the entries in the first i rows of s^{μ} lie in the first i rows of t^{λ} .

 $\sum_{j \leq i} \lambda_j = \#$ elements in first i rows of t^{λ} $\geq \#$ elements in first i rows of $s^{\mu} = \sum_{j \leq i} \mu_j$.

C. The irreducible Specht modules

If $H \subseteq \mathfrak{S}_n$ then let

$$H^- = \sum_{\pi \in H} (\operatorname{sgn} \pi) \pi \in \mathbb{C}[\mathfrak{S}_n].$$

If tableau t has columns C_1, \ldots, C_m then let

$$C_t := \mathfrak{S}_{C_1} \times \cdots \times \mathfrak{S}_{C_m}$$
 (the column group),

$$\kappa_t := C_t^- = \kappa_{C_1} \kappa_{C_2} \cdots \kappa_{C_m},$$

 $\mathbf{e}_t := \kappa_t\{\mathbf{t}\}$ (the polytabloid).

$$\underline{\text{Ex.}}$$
 If $t = \begin{pmatrix} 4 & 1 & 2 \\ 3 & 5 \end{pmatrix}$ then

$$C_t = \mathfrak{S}_{\{3,4\}} \times \mathfrak{S}_{\{1,5\}} \times \mathfrak{S}_{\{2\}},$$

$$\kappa_t = \epsilon - (3,4) - (1,5) + (3,4)(1,5)$$

$$= (\epsilon - (3,4))(\epsilon - (1,5)),$$

Lemma 15 If $\pi \in \mathfrak{S}_n$ and t is a tableau then

$$\kappa_{\pi t} = \pi \kappa_t \pi^{-1}$$
 and $e_{\pi t} = \pi e_t$.

Partition λ has Specht module

$$S^{\lambda} = \mathbb{C}[\mathbf{e}_t | \text{ all } \lambda\text{-tableaux } t].$$

 $\underline{\text{Ex.}}$ 1. $\lambda = \underline{(n)}$ gives the trivial rep: Any (n)-tableau t has $\mathbf{e}_t = \overline{\mathbf{1}} \ \mathbf{2} \ \cdots \ \mathbf{n}$ so

$$\pi \mathbf{e}_t = \mathbf{e}_{\pi t} = \mathbf{e}_t$$
.

- 2. $\lambda=(1^n)$ gives the sign rep: For any $t=t^{(1^n)}$ $\pi \mathbf{e}_t=\pi\mathfrak{S}_n^-\{\mathbf{t}\}=(\operatorname{sgn}\pi)\mathbf{e}_t.$
- 3. $\lambda = (n-1,1)$: Abbreviate $t = t^{\lambda}$ to the 2nd row

$$\mathbf{e}_{t} = \frac{\overline{\mathbf{i} \cdots \mathbf{k}}}{\underline{\mathbf{j}}} - \frac{\overline{\mathbf{j} \cdots \mathbf{k}}}{\underline{\mathbf{i}}} = \mathbf{j} - \mathbf{i},$$

$$S^{(n-1,1)} = \mathbb{C}[\mathbf{j} - \mathbf{i}|1 \le i < j \le n],$$

$$= \{\sum_{i=1}^{n} c_{i} \mathbf{i}|\sum_{i=1}^{n} c_{i} = 0\}.$$

A G-module U is cyclic, generated by $\mathbf{u} \in U$ if $U = \mathbb{C}[q\mathbf{u} \mid q \in G].$

Corollary 16 S^{λ} is cyclic generated by any $\mathbf{e}_t \in S^{\lambda}$.

Define an \mathfrak{S}_n -invariant inner product on M^λ by

$$\langle \{\mathbf{t}\}, \{\mathbf{s}\} \rangle = \delta_{\{t\}, \{s\}}.$$

Lemma 17 (Sign Lemma, SL) Let $H \leq \mathfrak{S}_n$.

- 1. $\pi \in H \Rightarrow \pi H^- = H^- \pi = (\operatorname{sgn} \pi) H^-$.
- 2. $\mathbf{u}, \mathbf{v} \in M^{\lambda} \Rightarrow \langle H^{-}\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, H^{-}\mathbf{v} \rangle$.
- 3. $(b,c) \in H \Rightarrow H^- = k(\epsilon (b,c))$ for some $k \in \mathbb{C}[\mathfrak{S}_n]$.
- 4. b, c in the same row of tableau s and $(b, c) \in H$ $\Rightarrow H^{-}\{s\} = 0$.

Corollary 18 I. If $\operatorname{sh} t = \lambda, \operatorname{sh} s = \mu$ with $\kappa_t\{\mathbf{s}\} \neq 0$ then $\lambda \trianglerighteq \mu$. If $\lambda = \mu$ then $\kappa_t\{\mathbf{s}\} = \pm \mathbf{e}_t$.

- II. (James' Submodule Theorem) If U is a submodule of M^{μ} then $U \supseteq S^{\mu}$ or $U \subseteq S^{\mu \perp}$.
- III. The S^{μ} , $\mu \vdash n$, are all inequiv \mathfrak{S}_n -irreps over \mathbb{C} .

Proof. I. b,c in the same row of $s\Rightarrow b,c$ not in the same col of t (else $\kappa_t\{s\}=0$ by SL4) $\Rightarrow \lambda \trianglerighteq \mu$ (DL). If $\lambda = \mu \Rightarrow \{s\} = \pi\{t\}$ for some $\pi \in \mathfrak{S}_n$ and by SL1

$$\kappa_t\{\mathbf{s}\} = \kappa_t \pi\{\mathbf{t}\} = (\operatorname{sgn} \pi)\kappa_t\{\mathbf{t}\} = \pm \mathbf{e}_t.$$

II. If $\mathbf{u} \in U$ and $t = t^{\mu} \Rightarrow \kappa_t \mathbf{u} = c\mathbf{e}_t$ for $c \in \mathbb{C}$ by I. If some $c \neq 0 \Rightarrow \mathbf{e}_t \in U$ and $S^{\mu} \subseteq U$. Else use SL2 to show $U \subseteq S^{\mu \perp}$.

D. The standard tableaux basis for S^{λ}

Tableau t is standard if its rows and col's increase.

Theorem 19 A basis for S^{λ} is

$$\{\mathbf{e}_t \mid t \text{ a standard } \lambda\text{-tableau}\}.$$

Independence. A composition is a permutation of a partition. If $\{t\}$ is a tabloid, for $i \geq 1$ let

$$\{t\}^i$$
 = tabloid of all entries $\leq i$ in $\{t\}$, λ^i = the shape of $\{t\}^i$, a composition.

$$\underline{\text{Ex.}} \text{ If } \{t\} = \overline{\frac{2 \ 3}{1}} \text{ then }$$

$$\{t\}^1 = \frac{\overline{\emptyset}}{1}$$
 $\{t\}^2 = \frac{\overline{2}}{1}$ $\{t\}^3 = \frac{\overline{2}}{1}$ $\lambda^1 = \overline{(0,1)}$ $\lambda^2 = \overline{(1,1)}$ $\lambda^3 = \overline{(2,1)}$.

Dominance order on tabloids is

$$\{t\} \trianglerighteq \{s\} \iff \lambda^i \trianglerighteq \mu^i \quad \forall i.$$

Proposition 20 1. (Tabloid Dominance Lemma) If k < l and k is lower than l in $\{t\}$ then $(k, l)\{t\} \triangleright \{t\}$.

- 2. t standard and $\{s\}$ appears in $e_t \Rightarrow \{t\} \supseteq \{s\}$.
- 3. The standard e_t are independent.

Span. To show e_t a lin comb of standard e_s one can assume the col's of t increase. (Else $\exists \pi \in C_t$ with col's of πt increasing and $e_{\pi t} = (\operatorname{sgn} \pi) e_t$.) If t has row descent a > b, it suffices to find tableaux s s.t.

- 1. $\mathbf{e}_t = -\sum_s (\operatorname{sgn} \pi_s) \mathbf{e}_s$ where $\pi_s t = s$,
- 2. $[s] \triangleright [t]$ for all s, [s] = col tabloid.

A (resp B) := entries of t below a (resp above b).

The s are all tableaux gotten by permuting $A \cup B$ s.t. the elements of $A \cup B$ still increase in their col's.

Ex. If
$$t = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 4 & 6 \end{pmatrix}$$
 with $2 > 1 \Rightarrow A = \{2,3\}, B = \{1\},$

$$s_1 = \begin{cases} 1 & 3 & 5 \\ 2 & 4 & 6 \end{cases}$$
 $s_2 = \begin{cases} 1 & 2 & 5 \\ 3 & 4 & 6 \end{cases}$
 $\pi_1 = (1, 3, 2)$ $\pi_2 = (1, 2)$
 $e_t = -(e_{s_1} - e_{s_2}).$

E. Young's natural representation

The matrix rep X^{λ} for S^{λ} in the standard basis is Young's natural rep. Since $(k, k+1), 1 \leq k < n$, generate \mathfrak{S}_n it suffices to compute $M = X^{\lambda}((k, k+1))$. If t is standard than to find $M_{t,t}$ we must express $(k, k+1)\mathbf{e}_t$ in the standard basis.

- 1. If k, k+1 in the same col of $t \Rightarrow (k, k+1) \in C_t$ $\therefore (k, k+1)e_t = -e_t$.
- 2. If k, k+1 in the same row of $t \Rightarrow (k, k+1)t$ has row descent k+1>k

$$(k, k+1)e_t = e_t \pm \text{ other } e_s \text{ with } [s] \triangleright [t].$$

3. Else (k, k+1)t = t' where t' is standard $(k, k+1)e_t = e_{t'}$.

Ex. If $\lambda = (2,1)$ then the standard tableaux are

$$t_1 = \frac{1}{2} \quad \text{and} \quad t_2 = \frac{1}{3} \quad 2$$
.

If (k, k + 1) = (1, 2) then

$$(1,2)e_{t_1} = \frac{\boxed{2} \ 3}{\boxed{1}} - \boxed{\frac{1}{2}} = -e_{t_1}.$$

 $(1,2)e_{t_2}$ was essentially computed last slide.

$$\therefore X^{(2,1)}((1,2)) = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}.$$

F. The Branching and Young Rules

Partition λ has inner corner $(i,j) \in \lambda$ if

$$\lambda^- = \lambda \setminus (i, j)$$
 is a partition,

and outer corner $(i,j) \not\in \lambda$ if

$$\lambda^+ = \lambda \cup (i, j)$$
 is a partition.

$$\underline{\mathsf{Ex.}} \ \mathsf{If} \ \lambda = \bullet \quad \bullet \quad \mathsf{then}$$

$$\lambda^-$$
:

$$\lambda^+$$
:

Theorem 21 (Branching Rule) If $\lambda \vdash n$ then

1.
$$S^{\lambda} \downarrow_{\mathfrak{S}_{n-1}} \cong \bigoplus_{\lambda^{-}} S^{\lambda^{-}},$$

2.
$$S^{\lambda} \uparrow^{\mathfrak{S}_{n+1}} \cong \bigoplus_{\lambda^+} S^{\lambda^+}$$
.

Ex. From the example above

$$S^{(4,2,2)}\downarrow_{\mathfrak{S}_{7}} \cong S^{(3,2,2)} \oplus S^{(4,2,1)},$$

 $S^{(4,2,2)}\uparrow^{\mathfrak{S}_{9}} \cong S^{(5,2,2)} \oplus S^{(4,3,2)} \oplus S^{(4,2,2,1)}.$

Tableau T is called *semistandard* if it has strictly increasing columns while its rows weakly increase. The *content* of T, ct T, is the composition μ s.t.

$$\mu_i = \# \text{ of } i \text{'s in } T.$$

Ex.
$$T = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 4 \end{bmatrix}$$
 has content $\mu = (2, 1, 0, 2)$.

The Kostka numbers are

 $K_{\lambda\mu}=$ # of semistandard T, shape λ , content μ .

Theorem 22 (Young's Rule)

$$M^{\mu} \cong \bigoplus_{\lambda \rhd \mu} K_{\lambda \mu} S^{\lambda}.$$

<u>Ex.</u> If $\mu = (2,1,1)$ then the possible $\lambda \supseteq \mu$ are

So
$$M^{(2,1,1)} \cong S^{(2,1,1)} \oplus S^{(2,2)} \oplus 2S^{(3,1)} \oplus S^{(4)}$$
.

Note: For any μ , $K_{\mu\mu} = 1 = K_{(n)\mu}$.

III. Combinatorics: A. Schensted's algorithm

Let SYT(λ) be the set of standard λ -tableaux and

$$f^{\lambda} := |\operatorname{SYT}(\lambda)| = \dim S^{\lambda}.$$

For any group with irreps $V^{(i)}$: $\sum_i (\dim V^{(i)})^2 = |G|$. If $G = \mathfrak{S}_n$ the formula can be proved combinatorially

$$\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$$

Proof. Construct the Robinson-Schensted bijection

$$\pi \stackrel{\mathsf{R-S}}{\longleftrightarrow} (P,Q)$$

where $\pi \in \mathfrak{S}_n$ and $P, Q \in \mathsf{SYT}(\lambda)$ for some λ .

 $\pi \overset{\mathsf{R}-\mathsf{S}}{\to} (P,Q)$: Insert $x \in \mathbb{Z}^+$ into increasing tableau P to get increasing tableau P', $r_x(P) = P'$, by

- 1. Let i := 1
- 2. If x > every element of row i of P, put it at the end of the row and stop.
- 3. Else exchange x and the smallest $P_{i,j} > x$. (We say x bumps $P_{i,j}$.) Set i := i+1 and go to 2.

Ex. Suppose x = 2

Now if $\pi = x_1 \dots x_n$ then construct a sequence of pairs $(\emptyset, \emptyset) = (P_0, Q_0), \dots, (P_n, Q_n) = (P, Q)$ by

$$\begin{array}{rcl} P_k & = & r_{x_k}(P_{k-1}), \\ Q_k & = & Q_{k-1} \uplus k \text{ with } k \text{ in sh } P_k \setminus \text{sh } P_{k-1}. \end{array}$$

$$(P,Q) \stackrel{\mathsf{R}-\mathsf{S}}{\to} \pi$$
: Delete $P_{i,j}$, $r_{(i,j)}^{-1}P = (P',x)$, by

- 1. Remove $x := P_{i,j}$ from its row and set i := i 1.
- 2. While $i \ge 1$ exchange x and the greatest $R_{i,j} < x$ and set i := i 1.

Ex. Do the Ex on the previous page backwards.

Starting with (P,Q) we obtain the reverse sequence $(P_n,Q_n),\ldots,(P_0,Q_0)$ and $\pi=x_1\ldots x_n$ by

$$\begin{array}{rcl} Q_{k-1} &=& Q_k \setminus k \\ (P_{k-1},x_k) &=& r_{(i,j)}^{-1}P_k \quad \text{where} \quad Q_{i,j} = k. \end{array}$$

B. Properties of Robinson-Schensted

If $\pi \overset{\mathsf{R}-\mathsf{S}}{\to} (P,Q)$ then the P-tableau of π is $P(\pi) = P$ and the Q-tableau of π is $Q(\pi) = Q$.

If
$$\pi = x_1 \dots x_n$$
 then $\pi^r = x_n \dots x_1$.

A subsequence of $\pi = x_1 \dots x_n$, $\sigma \subseteq \pi$, is

$$\sigma = x_{k_1}, x_{k_2}, \dots, x_{k_m}$$
 with $k_1 < k_2 < \dots < k_m$.

Proposition 23 1. $P(\pi^r) = P(\pi)^t$ (the transpose)

- 2. If sh $P(\pi) = (\lambda_1, \dots, \lambda_l)$ then
 - $\lambda_1 = \text{length of a longest increasing } \sigma \subseteq \pi,$ $l = \text{length of a longest decreasing } \sigma \subseteq \pi.$
- 3. If $\pi \stackrel{\mathsf{R}-\mathsf{S}}{\to} (P,Q)$ then $\pi^{-1} \stackrel{\mathsf{R}-\mathsf{S}}{\to} (Q,P)$.
- 4. $\sum_{\lambda \vdash n} f^{\lambda} = \#$ of involutions in \mathfrak{S}_n .

Proof. 1. One can define column insertion $c_y(P)$ and prove $r_x c_y(P) = c_y r_x(P)$. Then

$$P(\pi^r) = r_{x_1} \cdots r_{x_n}(\emptyset) = r_{x_1} \cdots r_{x_{n-1}} c_{x_n}(\emptyset) = c_{x_n} r_{x_1} \cdots r_{x_{n-1}}(\emptyset) = \dots = c_{x_n} \cdots c_{x_1}(\emptyset) = P(\pi)^t.$$

4. By 3:
$$\pi \stackrel{\mathsf{R}-\mathsf{S}}{\to} (P,P)$$
 iff $\pi = \pi^{-1}$. So
$$\sum_{\lambda \vdash n} f^{\lambda} = \# \text{ of } \mathsf{P} = \# \text{ of involutions } \pi.$$

When does $P(\pi) = P(\sigma)$?

Ex. For
$$\mathfrak{S}_3$$
: $P(123) = 1 \ 2 \ 3$, $P(321) = (1 \ 2 \ 3)^t$,

$$P(213) = P(231) = {1 \atop 2}^{3}, P(132) = P(312) = {1 \atop 3}^{2}.$$

 π, σ differ by a *Knuth transposition* if for x < y < z:

1.
$$\{\pi,\sigma\} = \{x_1 \dots yxz \dots x_n, x_1 \dots yzx \dots x_n\}, \text{ or }$$

2.
$$\{\pi,\sigma\} = \{x_1 \dots zxy \dots x_n, x_1 \dots xzy \dots x_n\}.$$

Also π, σ are Knuth equivalent, $\pi \stackrel{\mathsf{K}}{\cong} \sigma$, if

$$\pi = \pi_1, \pi_2, \ldots, \pi_k = \sigma$$

with π_i, π_{i+1} differing by a Knuth transposition $\forall i$.

Ex. 2 1 3 $\stackrel{\mathsf{K}}{=}$ 2 3 1 and 1 3 2 $\stackrel{\mathsf{K}}{=}$ 3 1 2.

Theorem 24 (Knuth)
$$P(\pi) = P(\sigma) \iff \pi \stackrel{\mathsf{K}}{\cong} \sigma$$
.

Proof sketch. " \Leftarrow " Type 1 transposition: x's (resp z's) insertion path is weakly left (resp strictly right) of y's so $P(\pi) = P(\sigma)$. Type 2: then π^r, σ^r differ by type 1 and

$$P(\pi^r) = P(\sigma^r) \Rightarrow P(\pi)^t = P(\sigma)^t \Rightarrow P(\pi) = P(\sigma).$$

C. Schützenberger's jeu de taquin

If $\mu \subseteq \lambda$ then one has the *skew diagram*

$$\lambda/\mu = \{(i,j) \mid (i,j) \in \lambda, \ (i,j) \notin \mu\}.$$

<u>Ex.</u> If $\mu = (2,1)$ and $\lambda = (4,4,1)$

If P is an increasing tableau, sh $P = \lambda/\mu$, a backward slide into an inner corner c of μ , $j^c(P) = P'$, is

While c = (i, j) is not an inner corner of λ , exchange c and the smaller of $P_{i+1,j}, P_{i,j+1}$.

 $\underline{\mathsf{Ex.}}$ If c=(1,2) then

A forward slide into outer corner d=(i,j) of λ , $j_d(P)=P'$, exchanges d with the larger of the numbers $P_{i-1,j}, P_{i,j-1}$, etc. until an outer corner of μ is reached. Clearly if $j^c(P)=P'$ vacating d then

$$j_d j^c(P) = P$$
 and $j^c j_d(P') = P'$.

Let $\delta_n=(n-1,n-2,\ldots,1)$. Any $\pi=x_1\ldots x_n$ has a δ_{n+1}/δ_n -tableau with x_j in (n-j+1,j).

Ex.
$$\pi=132$$
 has tableau $\pi=$ 3 .

A backward slide sequence for $P = P_1$ is

$$(c_1,\ldots,c_l)$$
 with $P_{i+1}=j^{c_i}(P_i)$ defined $\forall i$.

If $l = |\mu|$ where sh $P = \lambda/\mu$ let $j(P) := j^{c_l} \cdots j^{c_1}(P)$. Ex. (cont) If $c_1 = (2,1), c_2 = (1,2), c_3 = (1,1)$

$$\pi = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 13 \end{bmatrix}, \begin{bmatrix} 2 \\ 13 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} = j(\pi).$$

Theorem 25 (Schützenberger) $j(\pi) = P(\pi)$.

Proof sketch. If P has rows R_1, \ldots, R_l then its row word is $\rho(P) = R_l R_{l-1} \ldots R_1$.

Ex.
$$P = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 \end{pmatrix}$$
 has $\rho(P) = 2 & 4 & 6 & 1 & 3 & 5 & 7$.

It is easy to prove $P(\rho(P))=P$. Furthermore if P is skew and $P'=j^c(P)$ then $\rho(P')\stackrel{\mathsf{K}}{\cong} \rho(P)$. So

$$\rho(j(\pi)) \stackrel{\mathsf{K}}{\cong} \rho(\pi) = \pi \stackrel{\mathsf{apply}P}{\Rightarrow} j(\pi) = P(\pi). \blacksquare$$

D. The hook formula

The hook and hooklength of $(i,j) \in \lambda$ are

$$H_{i,j} = \{(i',j), (i,j') \in \lambda \mid i' \geq i, j' \geq j\}, h_{i,j} = |H_{i,j}|.$$

The arm length and leg length of the hook are

$$a_{i,j} = |\{(i,j') \in \lambda \mid j' > j\}|, \ l_{i,j} = |\{(i',j) \in \lambda \mid i' > i\}|.$$

<u>Ex.</u> In $\lambda = (4^2, 3, 1)$

Theorem 26 (Frame-Robinson-Thrall) *If we have* $\lambda \vdash n$, then

$$f^{\lambda} = \frac{n!}{\prod_{(i,j)\in\lambda} h_{i,j}}.$$

Ex. $(3,2) \vdash 5$ has hooklengths

So $f^{(3,2)} = \frac{5!}{4 \cdot 3 \cdot 2 \cdot 1^2} = 5$ which agrees with

The Novelli-Pak-Stoyanovskii Proof. Preprint: http://www.math.harvard.edu/~pak/papers

Show $n! = f^{\lambda} \prod_{(i,j)} h_{i,j}$ with a bijection

$$T \longleftrightarrow (P, J)$$

where $\operatorname{sh} T = \operatorname{sh} P = \operatorname{sh} J = \lambda$, T is any Young tableau, P is standard, and

$$-l_{i,j} \leq J_{i,j} \leq a_{i,j} \qquad \forall (i,j) \in \lambda.$$

 $T \to (P,J)$: If T is standard of shape λ/μ and entry $x \in \mathbb{Z}^+$ is in c then $j^c(T)$ has x moving in place of \bullet and terminating when it becomes standard.

Ex. If c = (1,2) contains 6

Lex order λ 's cells $c_1 > c_2 > \ldots > c_n$. Define

$$T = T_1, \dots, T_n = P$$
 where $T_k = j^{c_k}(T_{k-1})$.

Define $J_1, \ldots, J_n = J$ by $J_1 = 0$ and if j^{c_k} starts in $c_k = (i, j)$ and ends in (i', j') then $J_k = J_{k-1}$ except

$$(J_k)_{i,l} = \begin{cases} (J_{k-1})_{i,l+1} + 1 & \text{for } j \leq l < j', \\ i - i' & \text{for } l = j'. \end{cases}$$

Ex. For spacing purposes we use $\overline{1}$ for -1.

$$T_1 = 645, 645, 645, 643, 623, 123 = P.$$
 $231 213 123 125 145 456$
 $J_1 = 000, 000, 000, 00\overline{1}, 0\overline{1}\overline{1}, 00\overline{1} = J.$
 $000 010 200 200 200 200$

(P,J)
ightarrow T: To reconstruct $(P,J)=(T_n,J_n),\ldots,$ $(T_1,J_1)=(T,0),$ assume (T_k,J_k) has been constructed. The possible cells for $c_k=(i,j)$ in T_k are

$$\mathcal{P} = \{(i', j') | i' \ge i, j' \ge j, (J_k)_{i,j'} \le 0, i' = i - (J_k)_{i,j'} \}.$$

Define j_d for $d \in \mathcal{P}$ by having the slide stop at c_k . (must prove well-defined) The *code* of j_d replaces each move north (resp west) with N (resp W) written in reverse order.

Ex. For
$$c_6=(1,1)$$
: $\mathcal{P}=\{(1,1),(1,2),(2,3)\}$ and $j_{1,1}:\emptyset,\quad j_{1,2}:W,\quad j_{2,3}=NWW.$

Lex order the codes using $W < \emptyset < N$. Then

 $T_{k-1} = j_d(T_k)$ where $d \in \mathcal{P}$ has maximum code.

Also if $c_k = (i, j)$, d = (i', j') then $J_{k-1} = J_k$ except

$$(J_{k-1})_{i,l} = \begin{cases} (J_k)_{i,l-1} - 1 & \text{for } j < l \leq j' \\ 0 & \text{for } l = j. \end{cases}$$

E. The determinantal formula

Theorem 27 (Frobenius) If $(\lambda_1, \ldots, \lambda_l) \vdash n$ then

$$f^{\lambda} = n! \det(1/(\lambda_i - i + j)!)$$

where the determinant is $l \times l$ and 1/r! = 0 if r < 0.

Ex.
$$f^{(3,2)} = 5! \begin{vmatrix} 1/3! & 1/4! \\ 1/1! & 1/2! \end{vmatrix} = 5.$$

Proof. It suffices to show the determinant equals the hook formula. We have

$$\lambda_i + l = h_{i,1} + i \quad \Rightarrow \quad \lambda_i - i + j = h_{i,1} - l + j.$$

So every row of the determinant is of the form

$$[\cdots 1/(h-2)! 1/(h-1)! 1/h!]$$
.

After factoring out $\prod_i 1/h_{i,1}!$ we get rows

$$[\cdots h(h-1) \quad h \quad 1]$$

which by column operations can be turned into

$$[\cdots (h-1)(h-2) \quad h-1 \quad 1].$$

Putting $\prod_i 1/(h_{i,1}-1)!$ back in we get $\prod_i 1/h_{i,1}$ times the det for λ with its first column removed, so we're done by induction.

IV. Symmetric functions: A. Bases

Let $\mathbf{x} = \{x_1, x_2, \ldots\}$ and also consider $\mathbb{C}[[\mathbf{x}]]$, the corresponding formal power series algebra. Then $\pi \in \mathfrak{S}_n$ acts on $f \in \mathbb{C}[[\mathbf{x}]]$ by

$$\pi f(x_1, x_2, \ldots) = f(x_{\pi 1}, x_{\pi 2}, \ldots), \ \pi(m) := m, m > n.$$

We say f is symmetric if

$$\pi f = f, \quad \forall \pi \in \mathfrak{S}_n, \forall n.$$

Each partition $\lambda = (\lambda_1, \dots, \lambda_l)$ has an associated monomial symmetric function

$$m_{\lambda} = m_{\lambda}(\mathbf{x}) = \sum x_{i_1}^{\lambda_1} \cdots x_{i_l}^{\lambda_l}$$

where the sum is over all distinct monomials that have exponents $\lambda_1, \ldots, \lambda_l$.

Ex.

$$m_{(2,2,1)} = x_1^2 x_2^2 x_3 + x_1^2 x_2 x_3^2 + x_1 x_2^2 x_3^2 + x_1^2 x_2^2 x_4 + \cdots$$

The algebra of symmetric functions is

$$\Lambda = \Lambda(\mathbf{x}) = \mathbb{C}[m_{\lambda}].$$

Note: $f = \prod_{i \geq 1} (1 + x_i)$ is symmetric but isn't in Λ . We have a grading by degree

$$\Lambda = \bigoplus_{n>0} \Lambda^n$$
, dim $\Lambda^n = p(n)$, the # of $\lambda \vdash n$.

$$\begin{split} p_n &:= m_{(n)} = \sum_{i \geq 1} x_i^n \text{ (power sum)}. \\ e_n &:= m_{(1^n)} = \sum_{i_1 < \ldots < i_n} x_{i_1} \cdots x_{i_n} \text{ (elementary)}. \\ h_n &:= \sum_{\lambda \vdash n} m_\lambda = \sum_{i_1 \leq \ldots \leq i_n} x_{i_1} \cdots x_{i_n} \text{ (complete homo)}. \end{split}$$

Proposition 28 We have the generating functions

1.
$$E(t) := \sum_{n\geq 0} e_n(\mathbf{x}) t^n = \prod_{i>1} (1+x_i t).$$

2.
$$H(t) := \sum_{n\geq 0} h_n(\mathbf{x}) t^n = \prod_{i>1}^{-} \frac{1}{1-x_i t}$$

3.
$$P(t) := \sum_{n \geq 1} p_n(\mathbf{x}) t^n = \ln \prod_{i > 1} \frac{1}{1 - x_i t}$$

If f = p, e, or h and $\lambda = (\lambda_1, \dots, \lambda_l)$ let $f_{\lambda} = \prod_i f_{\lambda_i}$.

Theorem 29 Three bases for Λ^n are

1.
$$\{e_{\lambda} \mid \lambda \vdash n\}$$
, 2. $\{h_{\lambda} \mid \lambda \vdash n\}$, 3. $\{p_{\lambda} \mid \lambda \vdash n\}$.

Proof. $1 \Rightarrow XS2$. $|\{h_{\lambda}\}| = p(n)$ so it suffices to show every e_n is a polynomial in h_k . But H(t)E(-t) = 1 and taking the coefficient of t^n , $n \ge 1$,

$$\sum_{k=0}^{n} (-1)^k h_{n-k} e_k = 0 \Rightarrow e_n = h_1 e_{n-1} - h_2 e_{n-2} + \cdots$$

B. Schur functions

For tableau T let $\mathbf{x}^T = \mathbf{x}^{\mu} = x^{\mu_1} \cdots x^{\mu_m}$ where T's content is $\mu = (\mu_1, \dots, \mu_m)$. A Schur function is

$$s_{\lambda}(\mathbf{x}) = \sum_{T} \mathbf{x}^{T}$$

summed over all semistandard T of shape λ . Note $s_{(n)} = h_n$ and $s_{(1^n)} = e_n$.

Ex.
$$T: 1 1 1 2 \dots 12 13 \dots$$

 $s_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + \dots + 2x_1 x_2 x_3 + \dots$

The alternant for $\lambda = (\lambda_1, \dots, \lambda_l)$ is

$$a_{\lambda} = |x_i^{\lambda_j}|_{1 \le i, j \le l}.$$

If $\delta=(l-1,l-2,\ldots,0)$ then $a_{\delta}=$ Vandermonde. Let χ^{λ} be an irr character and k_{μ} be the size of a conjugacy class in \mathfrak{S}_{n} . Let $K_{\lambda\mu}$ be a Kostka number.

Theorem 30 If $\lambda = (\lambda_1, \dots, \lambda_l)$ then

- 1. $\{s_{\lambda} \mid \lambda \vdash n\}$ is a basis of Λ^n .
- 2. $s_{\lambda} = \sum_{\mu \leq \lambda} K_{\lambda \mu} m_{\mu}$.
- 3. $s_{\lambda} = \frac{1}{n!} \sum_{\mu \vdash n} k_{\mu} \chi_{\mu}^{\lambda} p_{\mu}$.
- 4. $s_{\lambda}(x_1,\ldots,x_l)=\frac{a_{\lambda+\delta}}{a_{\delta}}$.
- 5. (Jacobi-Trudi) $s_{\lambda} = |h_{\lambda_i i + j}|_{1 \le i, j \le l}$.

Proof of 5. (Gessel-Viennot-Lindström) A *lattice* path in \mathbb{Z}^2 is $p=s_1,s_2,\ldots$ where each s_i is a unit step N or E. Label the E steps by

 $N(s_i) = (\text{number of } N \text{ steps preceding } s_i) + 1.$

If p is from (a,b) to (c,d) write $(a,b) \stackrel{p}{\rightarrow} (c,d)$. Let

$$\mathbf{x}^p := \prod_{s_i = E \in p} x_{N(s_i)} \quad \Rightarrow \quad h_n = \sum_{(a,b) \xrightarrow{p} (a+n,\infty)} \mathbf{x}^p.$$

Fix $(u_1,\ldots,u_l),(v_1,\ldots,v_l)$ & form $\mathcal{P}=(p_1,\ldots,p_l)$ where for all $i:u_i\stackrel{p_i}{\to}v_{\pi i}$ for some $\pi\in\mathfrak{S}_l$. Let

$$\mathbf{x}^{\mathcal{P}} := \prod_{i} \mathbf{x}^{p_i}$$
 and $\operatorname{sgn} \mathcal{P} := \operatorname{sgn} \pi$.

Given $\lambda = (\lambda_1, \dots, \lambda_l)$ pick

$$u_i := (1 - i, 0)$$
 and $v_i := (\lambda_i - i + 1, \infty) \Rightarrow$
 $h_{\lambda_i - i + j} = \sum_{u_j \stackrel{p}{ o} v_i} \mathbf{x}^p$ and $|h_{\lambda_i - i + j}| = \sum_{\mathcal{P}} (\operatorname{sgn} \mathcal{P}) \mathbf{x}^{\mathcal{P}}.$

Define a sign-reversing involution $\mathcal{P} \stackrel{\iota}{\longleftrightarrow} \mathcal{P}'$ by

- 1. If \mathcal{P} is non- \cap then $\mathcal{P}' = \mathcal{P}$.
- 2. Else, let (i,j) be the lex least pair s.t. $p_i \cap p_j \neq \emptyset$, and $w \in p_i \cap p_j$ be SW-most, so $\mathcal{P}' = (\mathcal{P} \setminus p_i, p_j) \cup p_i', p_j'$.

All terms in the det cancel except \mathcal{P} for non- \cap paths which correspond to semistandard λ -tableaux T.

C. Knuth's algorithm

Theorem 31 (Littlewood) If $y = \{y_1, y_2, ...\}$ then

$$\sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) = \prod_{i,j \geq 1} 1/(1 - x_i y_j).$$

Proof (Knuth). Want a wt-preserving bijection

$$\pi \overset{\mathsf{R}-\mathsf{S}-\mathsf{K}}{\longleftrightarrow} (T, U)$$

where T, U are semistandard of the same shape,

$$wt(T, U) = \mathbf{x}^T \mathbf{y}^U.$$

Furthermore, π is a generalized permutation: a 2-line array with entries in \mathbb{Z}^+ in lex order, and

wt
$$\pi = \prod x_j y_i$$

where the product is over all col $\left(\begin{array}{c}i\\j\end{array}
ight)\in\pi.$

The bijection is now the same as R-S.

Ex. (cont)

$$T_i: \phi, 2, 23, 233, 133, 123 = T,$$
 $U_i: \phi, 1, 11, 11, 111, 111, 111 = U.$

D. The characteristic map

Let $R^n = R(\mathfrak{S}_n)$ (class functions) and $R = \bigoplus_{n \geq 0} R^n$. The *characteristic map*, ch : $R \to \Lambda$, linearly extends

$$\operatorname{ch}(\chi) := \frac{1}{n!} \sum_{\mu \vdash n} k_{\mu} \chi_{\mu} p_{\mu} \quad \text{where} \quad \chi \in R^{n}.$$

If χ^{λ} is an irr character then $\mathrm{ch}(\chi^{\lambda}) = s_{\lambda}$ so ch is a v.s. iso which becomes an isometry if we define

$$\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda, \mu}.$$

Finally for χ, ψ chars of $\mathfrak{S}_n, \mathfrak{S}_m$ let

$$\chi \cdot \psi = (\chi \otimes \psi) \uparrow^{\mathfrak{S}_{n+m}}$$

and extend linearly. Then we have

$$\mathsf{ch}(\chi \cdot \psi) \; = \; \langle \chi \cdot \psi, p \rangle$$

$$= \; \langle (\chi \otimes \psi) \uparrow^{\mathfrak{S}_{n+m}}, p \rangle$$

$$= \; \langle (\chi \otimes \psi), p \downarrow_{\mathfrak{S}_{n} \times \mathfrak{S}_{m}} \rangle$$

$$= \; \frac{1}{n!m!} \sum_{\lambda \vdash n, \; \mu \vdash m} k_{\lambda} k_{\mu} \chi_{\lambda} \psi_{\mu} p_{\lambda} p_{\mu}$$

$$= \; \mathsf{ch}(\chi) \, \mathsf{ch}(\psi).$$

Theorem 32 The map ch : $R \to \Lambda$ is an isomorphism of algebras.

E. The Littlewood-Richardson Rule

Word $R = r_1 \dots r_n \in (\mathbb{Z}^+)^n$ is a lattice permutation (Ip) if for all $R_i = r_1 \dots r_i$ and all $j \in \mathbb{Z}^+$

number of j's \geq number of j + 1's in R_i .

Such R corresponds to a standard tableau P by

if $r_i = j$ then put i in row j of P.

Theorem 33 (Littlewood-Richardson, L-R) If

$$s_{\lambda}s_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} s_{\nu}$$

then $c_{\lambda\mu}^{\nu}$ is the number of semistandard T such that 1. sh $T=\nu/\lambda$ and ct $T=\mu$,

2. the reverse row word $\rho(T)^r$ is an Ip.

<u>Ex.</u> For $s_{(2)}s_{(2,1)}$

The L-R rule generalizes both the Branching Rule (for $s_{\lambda}s_{(1)}$) and Young's Rule (for $s_{(l)}s_{(m)}$).

F. The Murnagham-Nakayama Rule

A $rim\ hook,\ H$, is a skew shape that's a lattice path. A $rim\ hook\ tableau\ T$ has rows and cols weakly increasing and all i's in a rim hook for each $i\in T$.

Rim hook H has $leg\ length$

 $l(H) = ({\sf number\ of\ rows\ of\ } H) - 1$ and a rim hook tableau T has sign

$$\operatorname{sgn} T = \prod_{H \in T} (-1)^{l(H)}.$$

Ex. (cont)
$$l(H) = 2$$
, $\operatorname{sgn} T = (-1)^{0+1+0+2} = -1$.

Theorem 34 (Murnagham-Nakayama) We have

$$\chi^{\lambda}_{\mu} = \sum_{T} \operatorname{sgn} T$$

sum over all rim hook tableaux, sh $T = \lambda$, ct $T = \mu$.

Note $\chi_{(1^n)}^{\lambda} = f^{\lambda}$ is a special case.

$$\underline{\text{Ex.}}$$
 For $\chi = \chi^{(2,1)}$

G. Chromatic symmetric functions

A proper coloring of G = (V, E) is $c : V \to \{1, ..., t\}$ $uv \in E \implies c(u) \neq c(v)$.

The chromatic polynomial of G is

$$P(G)=P(G,t):=\#$$
 of proper $c:V o\{1,\ldots,t\}.$ v_1
 $Ex.$ If $G=v_2 oldsymbol{} v_3$ then
$$P(G)=\prod (\# \text{ of } c(v_i))=t(t-1)(t-2).$$

The chromatic symmetric function of G is

$$X(G) = X(G, \mathbf{x}) = \sum_{\text{proper } c: V \to \mathbb{Z}^+} x_{c(v_1)} \cdots x_{c(v_n)}.$$

Poset P has incomparability graph G = inc P with

 $V = P, \quad E = \{uv \mid u, v \text{ incomparable in } P\}$ and is $\mathbf{3+1}$ -free if it has no induced $\{a < b < c, d\}$.

Conjecture 35 (Stanley-Stembridge) If poset P is 3+1-free and $X(\operatorname{inc} P) = \sum_{\lambda} c_{\lambda} e_{\lambda} \Rightarrow c_{\lambda} \in \mathbb{Z}^+ \cup \{0\}$.

Gasharov has proved this with e_{λ} replaced by s_{λ} .

Acknowledgment. I would like to thank Shalom Eliahou for carefully reading these slides and pointin out a number of errata.