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Let G be a finite group acting on a finite set S . Let N be the
nonnegative integers and st : S → N be a statistic. If O ⊆ S then
we let

stO =
∑
x∈S

st x .

Call st homomesic if stO/#O is constant over all orbits O where
the hash tag is cardinality. Call st homometric if for any two orbits
O1 and O2 we have

#O1 = #O2 =⇒ stO1 = stO2.

Note that homomesy implies homometry, but not conversely.

Let (P,�) be a finite poset, A(P) be the set of antichains of P,
and I(P) be the set of (lower order) ideals of P. Let
ρ : A(P) → A(P) be rowmotion on antichains, so ρ(A) is the set
of minimal elements of the complement of the ideal generated by
A. Let ρ̂ : I(P) → I(P) be rowmotion on ideals.



A fence is a poset with elements F = {x1, x2, . . . , xn} and covers

x1 � x2 � . . .� xa � xa+1 � . . .� xb � xb+1 � · · ·

where a, b, . . . are positive integers.
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F̆ (3, 3, 2, 2)

Fences have important connections with cluster algebras,
q-analogues, unimodality, and Young diagrams. The maximal
chains of F are called segments. Elements on two segments are
called shared . All other elements are unshared . If F has s
segments then we let F = F̆ (α1, α2, . . . , αs) where for all i

αi = (# of unshared elements on segment i) + 1.



As an example of rowmotion on a fence F , consider the fence
below and A = {x1, x4, x8} indicated by squares. So ρ(A) = {x2}.
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Represent an antichain A ⊂ F using a column of 4 boxes, with the
box in row i from the top corresponding to the ith segment Si from
the left. We color the box for Si by black if Si ∩ A is an unshared
element, red if Si ∩ A is a shared element, or yellow if Si ∩ A = ∅.

ρ7→



Pasting together such colored columns, we can model any orbit of
ρ on a fence F = F̆ (α1, . . . , αs) as a tiling of a cylinder Cs of boxes
having s rows. One of the orbits in F̆ (4, 3, 4) has the following
tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If α = (α1, . . . , αs),
then an α-tiling is a tiling of Cs using yellow 1× 1 tiles, red 2× 1
tiles, and black 1× (αi − 1) tiles in row i , for 1 ≤ i ≤ s, such that
the following hold for all rows.

(a) If αi ≥ 2 and the red tiles are ignored, then the black and
yellow tiles alternate in row i .

(b) There is a red tile in a column covering rows i and i + 1 if and
only if either the next column contains two yellow tiles in
those two rows when i is odd, or the previous column contains
two yellow tiles in those two rows when i is even.



bi := the number of black tiles in row i of a tiling,

ri := the number of red tiles whose top box is in row i of a tiling,

χ(O) := the number of antichain elements in orbit O.

Lemma (EPRS)

Given an orbit O in fence F̆ (α) with corresponding α-tiling

χ(O) =
s∑

i=1

(biαi − bi + ri ).

One can also compute χx , the number of times a given element x
appears in an orbit, and derive corresponding results for ideals.

Theorem (EPRS)

1. If x is unshared and y , z are the shared elements on the same
segment Si then αiχx + χy + χz is 1-mesic.

2. For F̆ (a, b) all orbits O have size ℓ = lcm(a, b) except one O′

of size ℓ+ 1. For the orbits of size ℓ we have
χ(O) = 2ab−a−b

gcd(a,b) := m. For the other orbit χ(O′) = m + 1.



Let P∗ be the dual of poset P. Suppose P is self dual so that
P ∼= P∗. Thus there exists and order-reversing bijection
κ : P → P. Define the ideal complement of I ∈ I(P) as

I = c ◦ κ(I )

where c(S) = P − S for any S ⊆ P. Note that #I +#I = #P.
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Let

χ̂(O) = the number of ideal elements in an orbit O of ρ̂.

Theorem
Let P be self-dual with n = #P, and fix an order-reversing
bijection κ : P → P. Let I ∈ I(P).
1. If I , I ∈ O for some orbit O, then

χ̂(O)

#O
=

n

2
.

2. If I ∈ O and I ∈ O for some orbits O and O with O ≠ O,
then #O = #O and

χ̂(O ⊎O)

#(O ⊎O)
=

n

2
.

Consider the group generated by the action of ρ̂ and the map
I 7→ I . The orbits of this action will be called superorbits.

Theorem
If P is self-dual with n = #P then χ̂ is (n/2)-mesic on superorbits.



Constant α. Let α = (as) = (a, . . . , a︸ ︷︷ ︸
s

).

Conjecture

Let F = F̆ (as).

1. The statistic χ is homometric.

2. If s is odd then the statistic χ̂ is n/2-mesic where n = #F .

Toggles. Let S be a set and let T be the toggle group associated
with some family of subsets of S . The base graph of T , denoted
GT , has as vertices the toggles τx for x ∈ S , and it has an edge
τxτy if τx and τy do not commute.

Theorem
Let GT be acyclic and w ,w ′ be any two Coxeter elements of T
generating groups W ,W ′. Then any linear combination of
indicator functions χy for y ∈ S is c-mesic or homometric under
the action of W if and only if it is c-mesic or homometric,
respectively, under the action of W ′.

In particular, the base graph of the toggle group for the ideals of a
fence have an acyclic base graph, so this theorem applies.
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