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Comments and future work



Let G be a finite group acting on a finite set S. Let N be the
nonnegative integers and st : S — N be a statistic. If O C S then

we let
stO = Zstx.

x€eS
Call st homomesic if st O/#0 is constant over all orbits O where
the hash tag is cardinality. Call st homometric if for any two orbits
071 and O, we have

#01 = #0Oy — stO1 =stOs.

Note that homomesy implies homometry, but not conversely.

Let (P, <) be a finite poset, A(P) be the set of antichains of P,
and Z(P) be the set of (lower order) ideals of P. Let

p: A(P) — A(P) be rowmotion on antichains, so p(A) is the set
of minimal elements of the complement of the ideal generated by
A. Let p: Z(P) — Z(P) be rowmotion on ideals.



A fence is a poset with elements F = {x1,x2,...,x,} and covers
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where a, b, ... are positive integers.
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Fences have important connections with cluster algebras,
g-analogues, unimodality, and Young diagrams. The maximal
chains of F are called segments. Elements on two segments are
called shared. All other elements are unshared. If F has s
segments then we let F = I:_(al,az, ..., as) where for all i

aj = (# of unshared elements on segment i) + 1.



As an example of rowmotion on a fence F, consider the fence
below and A = {x1, xa, xg} indicated by squares. So p(A) = {x2}.

Represent an antichain A C F using a column of 4 boxes, with the
box in row i from the top corresponding to the ith segment S; from
the left. We color the box for S; by black if S; M A is an unshared
element, red if S; N A is a shared element, or yellow if S; N A = ().




Pasting together such colored columns, we can model any orbit of
pon afence F = l—!(al, ..., Q) as a tiling of a cylinder Cs of boxes
having s rows. One of the orbits in F(4,3,4) has the following
tiling where the left and right ends of the rectangle are identified.
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We can characterize these tilings as follows. If & = (aq,...,as),
then an a-tiling is a tiling of Cs using yellow 1 x 1 tiles, red 2 x 1
tiles, and black 1 x (a; — 1) tiles in row i, for 1 < i <'s, such that
the following hold for all rows.

(a) If a; > 2 and the red tiles are ignored, then the black and
yellow tiles alternate in row /.

(b) There is a red tile in a column covering rows i and i/ + 1 if and
only if either the next column contains two yellow tiles in
those two rows when i is odd, or the previous column contains
two yellow tiles in those two rows when i is even.



b; := the number of black tiles in row i of a tiling,
ri := the number of red tiles whose top box is in row i of a tiling,
X(O) := the number of antichain elements in orbit O.

Lemma (EPRS)

Given an orbit O in fence /Z_(oz) with corresponding a-tiling
S

X(0) = (bjaj — b + r;).
i=1
One can also compute Xy, the number of times a given element x
appears in an orbit, and derive corresponding results for ideals.

Theorem (EPRS)

1. If x is unshared and y, z are the shared elements on the same
segment S; then ajxx + Xy + Xz is 1-mesic.
2. For F(a, b) all orbits O have size { = lcm(a, b) except one O’

of size ¢ + 1. For the orbits of size ¢ we have

x(0) = 2;%(:;)” := m. For the other orbit x(O') = m+ 1.




Let P* be the dual of poset P. Suppose P is self dual so that
P =2 P*. Thus there exists and order-reversing bijection
k: P — P. Define the ideal complement of | € Z(P) as

I'=conr(l)
where ¢(S) = P — S for any S C P. Note that #/ + #/1 = #P.

X6

| = {x1,x2, xa, X5, X6 }

I'={x1,x, x5}



Let

~

X(O) = the number of ideal elements in an orbit O of p.

Theorem
Let P be self-dual with n = #P, and fix an order-reversing
bijection k : P — P. Let | € Z(P).

1. If 1,1 € O for some orbit O, then
XO) _n
#0O 2
2. Ifl € © and | € O for some orbits © and O with O # O,
then #0O = #0O and
OWO) n

#OWO) 2

Consider the group generated by the action of p and the map
| — I. The orbits of this action will be called superorbits.

Theorem
If P is self-dual with n = #P then X is (n/2)-mesic on superorbits.



Constant a. Let a = (2°) = (a,...,a).
Conjecture s
Let F = F(a°).
1. The statistic x is homometric.
2. If s is odd then the statistic X is n/2-mesic where n = #F.

Toggles. Let S be a set and let T be the toggle group associated
with some family of subsets of S. The base graph of T, denoted
Gy, has as vertices the toggles 7, for x € S, and it has an edge
TxTy if Tx and 7, do not commute.

Theorem

Let Gy be acyclic and w, w’ be any two Coxeter elements of T
generating groups W, W'’. Then any linear combination of
indicator functions x, fory € S is c-mesic or homometric under
the action of W if and only if it is c-mesic or homomettric,
respectively, under the action of W'.

In particular, the base graph of the toggle group for the ideals of a
fence have an acyclic base graph, so this theorem applies.
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