Permutation Patterns and Statistics

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan

joint work with

T. Dokos (Ohio State), T. Dwyer (U. Florida), B. Johnson (Michigan State), and K. Selsor (U. South Carolina)

April 3, 2012
Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Multiple restrictions

Future work
Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Multiple restrictions

Future work
Two sequences of distinct integers $\pi = a_1 a_2 \ldots a_k$ and $\sigma = b_1 b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$
Two sequences of distinct integers $\pi = a_1 a_2 \ldots a_k$ and $\sigma = b_1 b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic.
Two sequences of distinct integers $\pi = a_1 a_2 \ldots a_k$ and $\sigma = b_1 b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathcal{S}_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_{n \geq 0} \mathcal{S}_n$.

Two sequences of distinct integers $\pi = a_1 a_2 \ldots a_k$ and $\sigma = b_1 b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic.

Let \mathcal{S}_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_{n \geq 0} \mathcal{S}_n$. If $\pi, \sigma \in \mathcal{S}$ the σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π.

Let \mathcal{G}_n be the symmetric group of all permutations of $\{1, \ldots, n\}$.

Let $\mathcal{G} = \bigcup_{n \geq 0} \mathcal{G}_n$. If $\pi, \sigma \in \mathcal{G}$ the σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π.

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic.

Let \mathcal{S}_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_{n \geq 0} \mathcal{S}_n$. If $\pi, \sigma \in \mathcal{S}$ the σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π.

Theorem

For any $\pi \in \mathcal{S}_3$ we have $\# \text{Av}_n(\pi) = C_n$, the nth Catalan number.
Two sequences of distinct integers $\pi = a_1 a_2 \ldots a_k$ and $\sigma = b_1 b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic.

Let \mathcal{S}_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_{n \geq 0} \mathcal{S}_n$. If $\pi, \sigma \in \mathcal{S}$ the σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π.

Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

Theorem For any $\pi \in \mathcal{S}_3$ we have $\# \text{Av}_n(\pi) = C_n$, the nth Catalan number.
Two sequences of distinct integers \(\pi = a_1 a_2 \ldots a_k \) and
\(\sigma = b_1 b_2 \ldots b_k \) are **order isomorphic** if, for all \(i \) and \(j \),

\[
a_i < a_j \iff b_i < b_j.
\]

Ex. The sequences \(\pi = 132 \) and \(\sigma = 485 \) are order isomorphic.

Let \(\mathcal{S}_n \) be the **symmetric group** of all permutations of \(\{1, \ldots, n\} \) and let \(\mathcal{S} = \bigcup_{n \geq 0} \mathcal{S}_n \). If \(\pi, \sigma \in \mathcal{S} \) the \(\sigma \) **contains \(\pi \) as a pattern** if there is a subsequence \(\sigma' \) of \(\sigma \) order isomorphic to \(\pi \).

Ex. \(\sigma = 42183756 \) contains \(\pi = 132 \) because of \(\sigma' = 485 \).

We say \(\sigma \) **avoids \(\pi \)** if \(\sigma \) does not contain \(\pi \) and let

\[
\text{Av}_n(\pi) = \{ \sigma \in \mathcal{S}_n : \sigma \text{ avoids } \pi \}.
\]
Two sequences of distinct integers $\pi = a_1 a_2 \ldots a_k$ and $\sigma = b_1 b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic.

Let S_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $S = \bigcup_{n \geq 0} S_n$. If $\pi, \sigma \in S$ the σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π.

Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\text{Av}_n(\pi) = \{ \sigma \in S_n : \sigma \text{ avoids } \pi \}.$$

Ex. If $\pi \in S_k$ then $\text{Av}_k(\pi)$
Two sequences of distinct integers $\pi = a_1a_2 \ldots a_k$ and $\sigma = b_1b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic. Let \mathcal{S}_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_{n \geq 0} \mathcal{S}_n$. If $\pi, \sigma \in \mathcal{S}$ the σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π. Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\text{Av}_n(\pi) = \{ \sigma \in \mathcal{S}_n : \sigma \text{ avoids } \pi \}.$$

Ex. If $\pi \in \mathcal{S}_k$ then $\text{Av}_k(\pi) = \mathcal{S}_k - \{\pi\}$.
Two sequences of distinct integers $\pi = a_1 a_2 \ldots a_k$ and $\sigma = b_1 b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic.

Let \mathcal{S}_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_{n \geq 0} \mathcal{S}_n$. If $\pi, \sigma \in \mathcal{S}$ the σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π.

Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\text{Av}_n(\pi) = \{\sigma \in \mathcal{S}_n : \sigma \text{ avoids } \pi\}.$$

Ex. If $\pi \in \mathcal{S}_k$ then $\text{Av}_k(\pi) = \mathcal{S}_k - \{\pi\}$.

Say that π and π' are Wilf equivalent, $\pi \equiv \pi'$, if for all $n \geq 0$

$$\# \text{Av}_n(\pi) = \# \text{Av}_n(\pi').$$
Two sequences of distinct integers $\pi = a_1 a_2 \ldots a_k$ and $\sigma = b_1 b_2 \ldots b_k$ are order isomorphic if, for all i and j,

$$a_i < a_j \iff b_i < b_j.$$

Ex. The sequences $\pi = 132$ and $\sigma = 485$ are order isomorphic.

Let \mathcal{S}_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $\mathcal{S} = \bigcup_{n \geq 0} \mathcal{S}_n$. If $\pi, \sigma \in \mathcal{S}$ the σ contains π as a pattern if there is a subsequence σ' of σ order isomorphic to π.

Ex. $\sigma = 42183756$ contains $\pi = 132$ because of $\sigma' = 485$.

We say σ avoids π if σ does not contain π and let

$$\text{Av}_n(\pi) = \{\sigma \in \mathcal{S}_n : \sigma \text{ avoids } \pi\}.$$

Ex. If $\pi \in \mathcal{S}_k$ then $\text{Av}_k(\pi) = \mathcal{S}_k - \{\pi\}$.

Say that π and π' are Wilf equivalent, $\pi \equiv \pi'$, if for all $n \geq 0$

$$\# \text{Av}_n(\pi) = \# \text{Av}_n(\pi').$$

Theorem

For any $\pi \in \mathcal{S}_3$ we have $\# \text{Av}_n(\pi) = C_n$, the nth Catalan number.
The *diagram* of $\pi = a_1 \ldots a_n$ is $(1, a_1), \ldots, (n, a_n) \in \mathbb{Z}^2$.

\[132 = R_{90}(132) = 231\]

The dihedral group D_4 of symmetries of the square acts on S_n:

$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty}\}$

where R_{θ} is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

σ contains π \iff $\rho(\sigma)$ contains $\rho(\pi)$,

$\therefore \sigma$ avoids π \iff $\rho(\sigma)$ avoids $\rho(\pi)$,

$\therefore \rho(\pi) \equiv \pi$.

These Wilf equivalences are called *trivial*.
The *diagram* of $\pi = a_1 \ldots a_n$ is $(1, a_1), \ldots, (n, a_n) \in \mathbb{Z}^2$.

Ex.

132 =

![Diagram of 132]
The diagram of \(\pi = a_1 \ldots a_n \) is \((1, a_1), \ldots, (n, a_n) \in \mathbb{Z}^2\).

Ex.

\[132 = \]

The dihedral group \(D_4 \) of symmetries of the square acts on \(S_n \):

\[D_4 = \{ R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_\infty \} \]

where \(R_\theta \) is rotation counter-clockwise through \(\theta \) degrees and \(r_m \) is reflection in a line of slope \(m \).
The diagram of $\pi = a_1 \ldots a_n$ is $(1, a_1), \ldots, (n, a_n) \in \mathbb{Z}^2$.

Ex.

$132 = \begin{array}{c}
\includegraphics[width=1.5in]{square_diagram132.png}
\end{array} \quad R_{90}(132) = \begin{array}{c}
\includegraphics[width=1.5in]{square_diagram231.png}
\end{array} = 231$

The dihedral group D_4 of symmetries of the square acts on S_n:

$$D_4 = \{ R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_\infty \}$$

where R_θ is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m.
The diagram of $\pi = a_1 \ldots a_n$ is $(1, a_1), \ldots, (n, a_n) \in \mathbb{Z}^2$.

Ex.

$$132 = \begin{array}{cccc}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} \quad R_{90}(132) = \begin{array}{cccc}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} = 231$$

The dihedral group D_4 of symmetries of the square acts on \mathcal{S}_n:

$$D_4 = \{ R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty} \}$$

where R_θ is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

$$\sigma \text{ contains } \pi \iff \rho(\sigma) \text{ contains } \rho(\pi),$$
The diagram of $\pi = a_1 \ldots a_n$ is $(1, a_1), \ldots, (n, a_n) \in \mathbb{Z}^2$.

Ex.

$$132 = \begin{array}{c}
\end{array} \quad R_{90}(132) = \begin{array}{c}
\end{array} = 231$$

The dihedral group D_4 of symmetries of the square acts on S_n:

$$D_4 = \{ R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty} \}$$

where R_{θ} is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

- σ contains π \iff $\rho(\sigma)$ contains $\rho(\pi)$,
- \therefore σ avoids π \iff $\rho(\sigma)$ avoids $\rho(\pi)$.

These Wilf equivalences are called trivial.
The *diagram* of $\pi = a_1 \ldots a_n$ is $(1, a_1), \ldots, (n, a_n) \in \mathbb{Z}^2$.

Ex.

\[132 = \quad \quad \quad R_{90}(132) = \quad = 231 \]

The dihedral group D_4 of symmetries of the square acts on S_n:

\[D_4 = \{ R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_\infty \} \]

where R_θ is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

\[\sigma \text{ contains } \pi \iff \rho(\sigma) \text{ contains } \rho(\pi), \]

\[\therefore \sigma \text{ avoids } \pi \iff \rho(\sigma) \text{ avoids } \rho(\pi), \]

\[\therefore \rho(\pi) \equiv \pi. \]
The diagram of $\pi = a_1 \ldots a_n$ is $(1, a_1), \ldots, (n, a_n) \in \mathbb{Z}^2$.

Ex.

$132 = \quad \quad R_{90}(132) = \quad = 231$

The dihedral group D_4 of symmetries of the square acts on S_n:

$$D_4 = \{ R_0, R_{90}, R_{180}, R_{270}, r_0, r_1, r_{-1}, r_{\infty} \}$$

where R_θ is rotation counter-clockwise through θ degrees and r_m is reflection in a line of slope m. Note that for any $\rho \in D_4$:

σ contains π \iff $\rho(\sigma)$ contains $\rho(\pi)$,

$\therefore \sigma$ avoids π \iff $\rho(\sigma)$ avoids $\rho(\pi)$,

$\therefore \rho(\pi) \equiv \pi$.

These Wilf equivalences are called trivial.
Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Multiple restrictions

Future work
A permutation statistic is $\text{st} : S \rightarrow \{0, 1, 2, \ldots\}$.
A permutation statistic is \(st: \mathfrak{S} \to \{0, 1, 2, \ldots\} \). The inversion number of \(\pi = a_1 \ldots a_n \) is

\[
\text{inv } \pi = \#\{(i, j) : i < j \text{ and } a_i > a_j\}.
\]
A permutation statistic is \(s : \mathcal{S} \rightarrow \{0, 1, 2, \ldots\} \). The inversion number of \(\pi = a_1 \ldots a_n \) is

\[
\text{inv} \, \pi = \#\{(i, j) : i < j \text{ and } a_i > a_j\}.
\]

Ex. If \(\pi = 24135 \) then \(\text{inv} \, \pi = \#\{(1, 3), (2, 3), (2, 4)\} = 3 \).
A permutation statistic is $\text{st} : \mathfrak{S} \rightarrow \{0, 1, 2, \ldots\}$. The inversion number of $\pi = a_1 \ldots a_n$ is

$$\text{inv} \pi = \#\{(i, j) : i < j \text{ and } a_i > a_j\}.$$

Ex. If $\pi = 24135$ then $\text{inv} \pi = \#\{(1, 3), (2, 3), (2, 4)\} = 3$.

Theorem (Rodrigues)

$$\sum_{\sigma \in \mathfrak{S}_n} q^{\text{inv} \sigma} = 1(1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1}) \overset{\text{def}}{=} [n]_q!.$$
A permutation statistic is \(st : \mathcal{S} \rightarrow \{0, 1, 2, \ldots\}\). The inversion number of \(\pi = a_1 \ldots a_n\) is

\[
\text{inv } \pi = \#\{(i, j) : i < j \text{ and } a_i > a_j\}.
\]

Ex. If \(\pi = 24135\) then \(\text{inv } \pi = \#\{(1, 3), (2, 3), (2, 4)\} = 3\).

Theorem (Rodrigues)

\[
\sum_{\sigma \in \mathcal{S}_n} q^{\text{inv } \sigma} = 1(1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1}) \overset{\text{def}}{=} [n]_q!.
\]

Given \(\pi \in \mathcal{S}\) we have a corresponding inversion polynomial

\[
I_n(\pi; q) = \sum_{\sigma \in \text{Av}_n(\pi)} q^{\text{inv } \sigma}.
\]
A permutation statistic is \(\sigma : \mathcal{S} \to \{0, 1, 2, \ldots \} \). The inversion number of \(\pi = a_1 \ldots a_n \) is

\[
\text{inv} \pi = \# \{(i, j) : i < j \text{ and } a_i > a_j \}.
\]

Ex. If \(\pi = 24135 \) then \(\text{inv} \pi = \# \{(1, 3), (2, 3), (2, 4)\} = 3 \).

Theorem (Rodrigues)

\[
\sum_{\sigma \in \mathcal{S}_n} q^{\text{inv} \sigma} = 1(1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1}) \overset{\text{def}}{=} [n]_q!.
\]

Given \(\pi \in \mathcal{S} \) we have a corresponding inversion polynomial

\[
l_n(\pi; q) = \sum_{\sigma \in \text{Av}_n(\pi)} q^{\text{inv} \sigma}.
\]

Call \(\pi \) and \(\pi' \) inv-Wilf equivalent, \(\pi \overset{\text{inv}}{=} \pi' \), if \(l_n(\pi; q) = l_n(\pi'; q) \) for all \(n \geq 0 \).
A permutation statistic is \(st : \mathcal{S} \rightarrow \{0, 1, 2, \ldots \} \). The inversion number of \(\pi = a_1 \ldots a_n \) is

\[
\text{inv}\, \pi = \# \{(i, j) : i < j \text{ and } a_i > a_j\}.
\]

Ex. If \(\pi = 24135 \) then \(\text{inv}\, \pi = \# \{(1, 3), (2, 3), (2, 4)\} = 3 \).

Theorem (Rodrigues)

\[
\sum_{\sigma \in \mathcal{S}_n} q^{\text{inv}\, \sigma} = 1(1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1}) \overset{\text{def}}{=} [n]_q !.
\]

Given \(\pi \in \mathcal{S} \) we have a corresponding inversion polynomial

\[
l_n(\pi; q) = \sum_{\sigma \in \text{Av}_n(\pi)} q^{\text{inv}\, \sigma}.
\]

Call \(\pi \) and \(\pi' \) inv-Wilf equivalent, \(\pi \overset{\text{inv}}{\equiv} \pi' \), if \(l_n(\pi; q) = l_n(\pi'; q) \) for all \(n \geq 0 \). Note that this implies \(\pi \equiv \pi' \) since

\[
\# \text{Av}_n(\pi) = l_n(\pi; 1) = l_n(\pi'; 1) = \# \text{Av}_n(\pi').
\]
Note that \((i, j)\) is an inversion of \(\pi\) iff the line connecting the corresponding points in the diagram of \(\pi\) has negative slope.
Note that \((i, j)\) is an inversion of \(\pi\) iff the line connecting the corresponding points in the diagram of \(\pi\) has negative slope.

Proposition (DDJSS)

Let \(\pi \in \mathcal{S}\) and \(\rho \in D_4\). Then

\[
\operatorname{inv} \rho(\pi) = \operatorname{inv} \pi \iff \rho \in \{R_0, R_{180}, r_1, r_{-1}\}.
\]
Note that \((i, j)\) is an inversion of \(\pi\) iff the line connecting the corresponding points in the diagram of \(\pi\) has negative slope.

Proposition (DDJSS)

Let \(\pi \in \mathcal{S}\) and \(\rho \in D_4\). Then

\[
\text{inv } \rho(\pi) = \text{inv } \pi \iff \rho \in \{R_0, R_{180}, r_1, r_{-1}\}.
\]

So for \(\rho \in \{R_0, R_{180}, r_1, r_{-1}\}\) we have

\[
\rho(\pi) \overset{\text{inv}}{=} \pi.
\]
Note that \((i, j)\) is an inversion of \(\pi\) iff the line connecting the corresponding points in the diagram of \(\pi\) has negative slope.

Proposition (DDJSS)

Let \(\pi \in \mathcal{S}\) and \(\rho \in D_4\). Then

\[
\text{inv} \rho(\pi) = \text{inv} \pi \iff \rho \in \{R_0, R_{180}, r_1, r_{-1}\}.
\]

So for \(\rho \in \{R_0, R_{180}, r_1, r_{-1}\}\) we have

\[
\rho(\pi) \overset{\text{inv}}{=} \pi.
\]

The inv-Wilf equivalences in this proposition are call *trivial*.
Note that \((i, j)\) is an inversion of \(\pi\) iff the line connecting the corresponding points in the diagram of \(\pi\) has negative slope.

Proposition (DDJSS)

Let \(\pi \in \mathcal{S}\) and \(\rho \in D_4\). Then

\[
\text{inv } \rho(\pi) = \text{inv } \pi \iff \rho \in \{R_0, R_{180}, r_1, r_{-1}\}.
\]

So for \(\rho \in \{R_0, R_{180}, r_1, r_{-1}\}\) we have

\[
\rho(\pi) \equiv^{\text{inv}} \pi.
\]

The inv-Wilf equivalences in this proposition are called *trivial*.

Let \([\pi]_{\text{inv}}\) denote the inv-Wilf equivalence class of \(\pi\).
Theorem (DDJSS)

The inv-Wilf equivalence classes for \(\pi \in \mathfrak{S}_3 \) are

\[
[123]_{\text{inv}} = \{123\}, \\
[321]_{\text{inv}} = \{321\}, \\
[132]_{\text{inv}} = \{132, 213\}, \\
[231]_{\text{inv}} = \{231, 312\}.
\]

Proof.

The two equivalences follow from the proposition:

\[213 = R_{180}(132) \text{ and } 312 = R_{180}(231). \]

To see that there are no others, note that for \(\pi \in \mathfrak{S}_k \)

\[
I_k(\pi; q) = \sum_{\sigma \in \mathfrak{S}_k \setminus \{\pi\}} q^{\text{inv}\, \sigma} = [k] \cdot q^k - q^{\text{inv}\, \pi}.
\]

So if \(\pi, \pi' \in \mathfrak{S}_k \) with \(\pi_{\text{inv}} \equiv \pi'_{\text{inv}} \) then \(\text{inv}\, \pi = \text{inv}\, \pi' \).

Finally, check that any 2 classes above have differing inversion numbers.

Conjecture

All inv-Wilf equivalences are trivial.
Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in S_3$ are

\[
\begin{align*}
[123]_{\text{inv}} &= \{123\}, \\
[321]_{\text{inv}} &= \{321\}, \\
[132]_{\text{inv}} &= \{132, 213\}, \\
[231]_{\text{inv}} &= \{231, 312\}.
\end{align*}
\]

Proof. The two equivalences follow from the proposition:

\[213 = R_{180}(132) \text{ and } 312 = R_{180}(231).\]
Theorem (DDJSS)

The inv-Wilf equivalence classes for \(\pi \in S_3 \) *are*

\[
[123]_{\text{inv}} = \{123\},
\]
\[
[321]_{\text{inv}} = \{321\},
\]
\[
[132]_{\text{inv}} = \{132, 213\},
\]
\[
[231]_{\text{inv}} = \{231, 312\}.
\]

Proof. The two equivalences follow from the proposition:

\[
213 = R_{180}(132) \quad \text{and} \quad 312 = R_{180}(231).
\]

To see that there are no others, note that for \(\pi \in S_k \)

\[
l_k(\pi; q) = \sum_{\sigma \in S_k - \{\pi\}} q^{\text{inv } \sigma} = [k] q! - q^{\text{inv } \pi}.
\]
Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in S_3$ are

- $[123]_{\text{inv}} = \{123\}$,
- $[321]_{\text{inv}} = \{321\}$,
- $[132]_{\text{inv}} = \{132, 213\}$,
- $[231]_{\text{inv}} = \{231, 312\}$.

Proof. The two equivalences follow from the proposition:

$$213 = R_{180}(132) \quad \text{and} \quad 312 = R_{180}(231).$$

To see that there are no others, note that for $\pi \in S_k$

$$I_k(\pi; q) = \sum_{\sigma \in S_k - \{\pi\}} q^{\text{inv}\sigma} = [k]q! - q^{\text{inv}\pi}. $$

So if $\pi, \pi' \in S_k$ with $\pi \equiv^\text{inv} \pi'$ then $\text{inv}\pi = \text{inv}\pi'$.
Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in S_3$ are

\[
\begin{align*}
[123]_{\text{inv}} &= \{123\}, \\
[321]_{\text{inv}} &= \{321\}, \\
[132]_{\text{inv}} &= \{132, 213\}, \\
[231]_{\text{inv}} &= \{231, 312\}.
\end{align*}
\]

Proof. The two equivalences follow from the proposition:

\[
213 = R_{180}(132) \quad \text{and} \quad 312 = R_{180}(231).
\]

To see that there are no others, note that for $\pi \in S_k$

\[
l_k(\pi; q) = \sum_{\sigma \in S_k - \{\pi\}} q^{\text{inv } \sigma} = [k]_q! - q^{\text{inv } \pi}.
\]

So if $\pi, \pi' \in S_k$ with $\pi \equiv \pi'$ then $\text{inv } \pi = \text{inv } \pi'$. Finally, check that any 2 classes above have differing inversion numbers. \qed
Theorem (DDJSS)

The inv-Wilf equivalence classes for $\pi \in \mathfrak{S}_3$ are

\[
[123]_{\text{inv}} = \{123\}, \\
[321]_{\text{inv}} = \{321\}, \\
[132]_{\text{inv}} = \{132, 213\}, \\
[231]_{\text{inv}} = \{231, 312\}.
\]

Proof. The two equivalences follow from the proposition:

\[213 = R_{180}(132) \quad \text{and} \quad 312 = R_{180}(231)\]

To see that there are no others, note that for $\pi \in \mathfrak{S}_k$

\[I_k(\pi; q) = \sum_{\sigma \in \mathfrak{S}_k - \{\pi\}} q^{\text{inv}\sigma} = [k]q! - q^{\text{inv}\pi}.\]

So if $\pi, \pi' \in \mathfrak{S}_k$ with $\pi \equiv^\text{inv} \pi'$ then $\text{inv} \pi = \text{inv} \pi'$. Finally, check that any 2 classes above have differing inversion numbers. □

Conjecture

All inv-Wilf equivalences are trivial.
Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Multiple restrictions

Future work
The *major index* of $\pi = a_1 \ldots a_n$ is

$$\text{maj } \pi = \sum_{a_i > a_{i+1}} i.$$
The major index of $\pi = a_1 \ldots a_n$ is

$$\text{maj} \, \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then $\text{maj} \, \pi = 2 + 4 = 6$.

Theorem (MacMahon)

$$\sum_{\sigma \in S_n} q^{\text{maj} \, \sigma} = [n] \, q!.$$

Given $\pi \in S_n$ we have a corresponding major index polynomial

$$M_n(\pi; q) = \sum_{\sigma \in \text{Av}_n(\pi)} q^{\text{maj} \, \sigma}.$$

Call $\pi, \pi' \, \text{maj-Wilf equivalent}$, $\pi \, \text{maj} \equiv \pi'$, if $M_n(\pi; q) = M_n(\pi'; q)$ for all $n \geq 0$.

Let $[\pi] \, \text{maj}$ denote the maj-Wilf equivalence class of π.

Note: No $\rho \in D_4$ preserves the major index.
The major index of $\pi = a_1 \ldots a_n$ is

$$\text{maj} \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then $\text{maj} \pi = 2 + 4 = 6$.

Theorem (MacMahon)

$$\sum_{\sigma \in \mathcal{S}_n} q^{\text{maj} \sigma} = [n]_q!.$$
The major index of $\pi = a_1 \ldots a_n$ is

$$\text{maj } \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then $\text{maj } \pi = 2 + 4 = 6$.

Theorem (MacMahon)

$$\sum_{\sigma \in S_n} q^{\text{maj } \sigma} = [n]_q!.$$

Given $\pi \in S$ we have a corresponding major index polynomial

$$M_n(\pi; q) = \sum_{\sigma \in \text{Av}_n(\pi)} q^{\text{maj } \sigma}.$$

Note: No $\rho \in D_4$ preserves the major index.
The *major index* of $\pi = a_1 \ldots a_n$ is

$$\text{maj} \, \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then $\text{maj} \, \pi = 2 + 4 = 6$.

Theorem (MacMahon)

$$\sum_{\sigma \in \mathfrak{S}_n} q^{\text{maj} \, \sigma} = [n]_q!.$$

Given $\pi \in \mathfrak{S}$ we have a corresponding *major index polynomial*

$$M_n(\pi; q) = \sum_{\sigma \in \text{Av}_n(\pi)} q^{\text{maj} \, \sigma}.$$

Call π, π' *maj-Wilf equivalent*, $\pi \text{ maj} \equiv \pi'$, if $M_n(\pi; q) = M_n(\pi'; q)$ for all $n \geq 0$.

Let $[\pi]_{\text{maj}}$ denote the maj-Wilf equivalence class of π.

Note: No $\rho \in \mathfrak{D}_4$ preserves the major index.
The **major index** of \(\pi = a_1 \ldots a_n \) is

\[
\text{maj } \pi = \sum_{a_i > a_{i+1}} i.
\]

Ex. If \(\pi = 253614 \) then \(\text{maj } \pi = 2 + 4 = 6 \).

Theorem (MacMahon)

\[
\sum_{\sigma \in S_n} q^{\text{maj } \sigma} = [n]_q!.
\]

Given \(\pi \in \mathcal{S} \) we have a corresponding **major index polynomial**

\[
M_n(\pi; q) = \sum_{\sigma \in \text{Av}_n(\pi)} q^{\text{maj } \sigma}.
\]

Call \(\pi, \pi' \) **maj-Wilf equivalent**, \(\pi \equiv^{\text{maj}} \pi' \), if \(M_n(\pi; q) = M_n(\pi'; q) \) for all \(n \geq 0 \). Let \([\pi]_{\text{maj}}\) denote the maj-Wilf equivalence class of \(\pi \).
The *major index* of $\pi = a_1 \ldots a_n$ is

$$\text{maj } \pi = \sum_{a_i > a_{i+1}} i.$$

Ex. If $\pi = 253614$ then $\text{maj } \pi = 2 + 4 = 6$.

Theorem (MacMahon)

$$\sum_{\sigma \in \mathcal{S}_n} q^{\text{maj } \sigma} = [n]_q!.$$

Given $\pi \in \mathcal{S}$ we have a corresponding *major index polynomial*

$$M_n(\pi; q) = \sum_{\sigma \in \text{Av}_n(\pi)} q^{\text{maj } \sigma}.$$

Call π, π' *maj-Wilf equivalent*, $\pi \equiv^{\text{maj}} \pi'$, if $M_n(\pi; q) = M_n(\pi'; q)$ for all $n \geq 0$. Let $[\pi]_{\text{maj}}$ denote the maj-Wilf equivalence class of π.

Note: No $\rho \in D_4$ preserves the major index.
Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in S_3$ are

$[123]_{maj} \equiv \{123\}$,

$[321]_{maj} \equiv \{321\}$,

$[132]_{maj} \equiv \{132, 231\}$,

$[213]_{maj} \equiv \{213, 312\}$.
Theorem (DDJSS)

The maj-Wilf equivalence classes for \(\pi \in S_3 \) are

\[
\begin{align*}
[123]_{\text{maj}} & = \{123\}, \\
[321]_{\text{maj}} & = \{321\}, \\
[132]_{\text{maj}} & = \{132, 231\}, \\
[213]_{\text{maj}} & = \{213, 312\}.
\end{align*}
\]

If \(\pi = a_1 \ldots a_n \) and \(\sigma_1, \ldots, \sigma_n \in S \) then the inflation of \(\pi \) by the \(\sigma_i \) is the permutation \(\pi[\sigma_1, \ldots, \sigma_n] \) whose diagram is obtained from that of \(\pi \) by replacing the \(i \)th dot with a copy of \(\sigma_i \) for all \(i \).
Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in S_3$ are

\[
[123]_{\text{maj}} = \{123\}, \\
[321]_{\text{maj}} = \{321\}, \\
[132]_{\text{maj}} = \{132, 231\}, \\
[213]_{\text{maj}} = \{213, 312\}.
\]

If $\pi = a_1 \ldots a_n$ and $\sigma_1, \ldots, \sigma_n \in S$ then the inflation of π by the σ_i is the permutation $\pi[\sigma_1, \ldots, \sigma_n]$ whose diagram is obtained from that of π by replacing the ith dot with a copy of σ_i for all i.

Ex.

\[
132 = \begin{array}{c}
\bullet \\
\end{array} \quad 132[\sigma_1, \sigma_2, \sigma_3] = \begin{array}{c}
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\end{array} \\
\end{array}
\]

Conjecture

For all $m, n \geq 0$ we have:

\[
132[\iota_m, 1, \delta_n] \equiv_{\text{maj}} 231[\iota_m, 1, \delta_n],
\]

where $\iota_m = 12 \ldots m$ and $\delta_n = n(n-1) \ldots 1$.
Theorem (DDJSS)

The maj-Wilf equivalence classes for $\pi \in S_3$ are

$$[123]_{\text{maj}} = \{123\},$$
$$[321]_{\text{maj}} = \{321\},$$
$$[132]_{\text{maj}} = \{132, 231\},$$
$$[213]_{\text{maj}} = \{213, 312\}.$$

If $\pi = a_1 \ldots a_n$ and $\sigma_1, \ldots, \sigma_n \in S$ then the inflation of π by the σ_i is the permutation $\pi[\sigma_1, \ldots, \sigma_n]$ whose diagram is obtained from that of π by replacing the ith dot with a copy of σ_i for all i.

Ex.

$$132 = \begin{array}{c}
\begin{array}{c}
\bullet
\end{array}
\end{array}$$

$$132[\sigma_1, \sigma_2, \sigma_3] = \begin{array}{c}
\begin{array}{c}
\sigma_1
\end{array}
\begin{array}{c}
\sigma_2
\end{array}
\begin{array}{c}
\sigma_3
\end{array}
\end{array}$$

Conjecture

For all $m, n \geq 0$ we have:

$$132[\iota_m, 1, \delta_n] \equiv 231[\iota_m, 1, \delta_n],$$
where $\iota_m = 12 \ldots m$ and $\delta_n = n(n - 1) \ldots 1$.
Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Multiple restrictions

Future work
Since $\# \text{Av}_n(\pi) = C_n$ for any $\pi \in S_3$, the corresponding $I_n(\pi; q)$ and $M_n(\pi; q)$ are q-analogues of the Catalan numbers since setting $q = 1$ we recover C_n.
Since $\# \text{Av}_n(\pi) = C_n$ for any $\pi \in S_3$, the corresponding $I_n(\pi; q)$ and $M_n(\pi; q)$ are q-analogues of the Catalan numbers since setting $q = 1$ we recover C_n. The polynomials

$$C_n(q) = I_n(132; q) = I_n(213; q)$$
$$\tilde{C}_n(q) = I_n(231; q) = I_n(312; q)$$

were introduced by Carlitz and Riordan and studied by numerous authors but the others seem to be new.
Since \# \text{Av}_n(\pi) = C_n for any \pi \in \mathcal{S}_3, the corresponding \text{I}_n(\pi; q) and \text{M}_n(\pi; q) are q-analogues of the Catalan numbers since setting \(q = 1\) we recover \(C_n\). The polynomials

\[
C_n(q) = \text{I}_n(132; q) = \text{I}_n(213; q)
\]

\[
\tilde{C}_n(q) = \text{I}_n(231; q) = \text{I}_n(312; q)
\]

were introduced by Carlitz and Riordan and studied by numerous authors but the others seem to be new. For \(n \geq 1\),

\[
C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1}.
\]
Since $\# \text{Av}_n(\pi) = C_n$ for any $\pi \in S_3$, the corresponding $I_n(\pi; q)$ and $M_n(\pi; q)$ are q-analogues of the Catalan numbers since setting $q = 1$ we recover C_n. The polynomials

$$C_n(q) = I_n(132; q) = I_n(213; q)$$
$$\tilde{C}_n(q) = I_n(231; q) = I_n(312; q)$$

were introduced by Carlitz and Riordan and studied by numerous authors but the others seem to be new. For $n \geq 1$,

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1}.$$

Theorem (DDJSS)

For $n \geq 1$:

$$I_{n}(312; q) = \sum_{k=0}^{n-1} q^k I_{k}(312; q) I_{n-k-1}(312; q).$$
Since \(\# \text{Av}_n(\pi) = C_n \) for any \(\pi \in S_3 \), the corresponding \(l_n(\pi; q) \) and \(M_n(\pi; q) \) are \(q \)-analogues of the Catalan numbers since setting \(q = 1 \) we recover \(C_n \). The polynomials
\[
C_n(q) = l_n(132; q) = l_n(213; q) \\
\tilde{C}_n(q) = l_n(231; q) = l_n(312; q)
\]
were introduced by Carlitz and Riordan and studied by numerous authors but the others seem to be new. For \(n \geq 1 \),
\[
C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1}.
\]

Theorem (DDJSS)

For \(n \geq 1 \):
\[
l_n(312; q) = \sum_{k=0}^{n-1} q^k l_k(312; q) l_{n-k-1}(312; q).
\]

Conjecture

For \(n \geq 1 \):
\[
l_n(321; q) = l_{n-1}(321; q) + \sum_{k=0}^{n-2} q^{k+1} l_k(321; q) l_{n-k-1}(321; q).
\]
Divisibility properties of Catalan numbers has been a topic of recent interest: Deutsch & Sagan; Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & Sagan; Xin & Xu; Yildiz.
Divisibility properties of Catalan numbers has been a topic of recent interest: Deutsch & Sagan; Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & Sagan; Xin & Xu; Yildiz.

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \geq 0$.
Divisibility properties of Catalan numbers has been a topic of recent interest: Deutsch & Sagan; Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & Sagan; Xin & Xu; Yildiz.

Theorem

*We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \geq 0$.***

For any polynomial $f(q)$ we let

$$\langle q^i \rangle f(q) = \text{the coefficient of } q^i \text{ in } f(q).$$
Divisibility properties of Catalan numbers has been a topic of recent interest: Deutsch & Sagan; Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & Sagan; Xin & Xu; Yildiz.

Theorem

_We have that \(C_n \) is odd if and only if \(n = 2^k - 1 \) for some \(k \geq 0 \)._ For any polynomial \(f(q) \) we let

\[
\langle q^i \rangle f(q) = \text{the coefficient of } q^i \text{ in } f(q).
\]

Theorem (DDJSS)

_For all \(k \geq 0 \) we have

\[
\langle q^i \rangle l_{2^k-1}(321; q) = \begin{cases}
1 & \text{if } i = 0, \\
an \text{ even number} & \text{if } i \geq 1.
\end{cases}
\]
Divisibility properties of Catalan numbers has been a topic of recent interest: Deutsch & Sagan; Eu, Liu, & Yeh; Kauers, Krattenthaler & Müller; Konvalinka; Lin; Liu & Yeh; Postnikov & Sagan; Xin & Xu; Yildiz.

Theorem

We have that C_n is odd if and only if $n = 2^k - 1$ for some $k \geq 0$.

For any polynomial $f(q)$ we let

$$\langle q^i \rangle f(q) = \text{the coefficient of } q^i \text{ in } f(q).$$

Theorem (DDJSS)

For all $k \geq 0$ we have

$$\langle q^i \rangle l_{2^k - 1}(321; q) = \begin{cases} 1 & \text{if } i = 0, \\ \text{an even number} & \text{if } i \geq 1. \end{cases}$$

Conjecture

For all $k \geq 0$ we have

$$\langle q^i \rangle M_{2^k - 1}(321; q) = \begin{cases} 1 & \text{if } i = 0, \\ \text{an even number} & \text{if } i \geq 1. \end{cases}$$
Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

\(q\)-Catalan numbers

Multiple restrictions

Future work
If $\Pi \subseteq \mathcal{S}$ then we let

$$\text{Av}_n(\Pi) = \{ \sigma \in \mathcal{S}_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi \}.$$
If $\Pi \subseteq \mathcal{S}$ then we let

$$\text{Av}_n(\Pi) = \{ \sigma \in \mathcal{S}_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi \}.$$

Simion & Schmidt classified $\# \text{Av}_n(\Pi)$ for all $\Pi \subseteq \mathcal{S}_3$ including:

- $\# \text{Av}_n(132, 231) = 2^{n-1}$
- $\# \text{Av}_n(213, 321) = 1 + \binom{n-1}{2}$
- $\# \text{Av}_n(231, 312, 321) = F_n$ (Fibonacci numbers)

We have classified $I_n(\Pi; q)$ and $M_n(\Pi; q)$ for $\Pi \subseteq \mathcal{S}_3$.

Theorem (DDJSS)

We have

$$I_n(132, 231; q) = (1 + q)(1 + q^2) \cdots (1 + q^{n-1}),$$

$$M_n(213, 321; q) = 1 + \sum_{k=1}^{n-1} kq^k,$$

$$I_n(231, 312, 321; q) = \sum_{k=0}^{n} (n-k)q^k.$$
If $\Pi \subseteq S$ then we let

$$\text{Av}_n(\Pi) = \{\sigma \in S_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi\}.$$

Simion & Schmidt classified $\# \text{Av}_n(\Pi)$ for all $\Pi \subseteq S_3$ including:

$$\# \text{Av}_n(132, 231) = 2^{n-1},$$
If $\Pi \subseteq S$ then we let

$$\text{Av}_n(\Pi) = \{ \sigma \in S_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi \}.$$

Simion & Schmidt classified $\# \text{Av}_n(\Pi)$ for all $\Pi \subseteq S_3$ including:

- $\# \text{Av}_n(132, 231) = 2^{n-1},$
- $\# \text{Av}_n(213, 321) = 1 + \binom{n}{2},$
- $\# \text{Av}_n(231, 312, 321) = F_n$ (Fibonacci numbers).
If $\Pi \subseteq S$ then we let

$$\text{Av}_n(\Pi) = \{ \sigma \in S_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi \}.$$

Simion & Schmidt classified $\# \text{Av}_n(\Pi)$ for all $\Pi \subseteq S_3$ including:

$$\# \text{Av}_n(132, 231) = 2^{n-1},$$

$$\# \text{Av}_n(213, 321) = 1 + \binom{n}{2},$$

$$\# \text{Av}_n(231, 312, 321) = F_n \text{ (Fibonacci numbers)}.$$
If $\Pi \subseteq S$ then we let

$$\text{Av}_n(\Pi) = \{ \sigma \in S_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi \}.$$

Simion & Schmidt classified $\# \text{Av}_n(\Pi)$ for all $\Pi \subseteq S_3$ including:

$$\# \text{Av}_n(132, 231) = 2^{n-1},$$

$$\# \text{Av}_n(213, 321) = 1 + \binom{n}{2},$$

$$\# \text{Av}_n(231, 312, 321) = F_n \text{ (Fibonacci numbers)}.$$

We have classified $I_n(\Pi; q)$ and $M_n(\Pi; q)$ for $\Pi \subseteq S_3$.

\[\text{Theorem (DDJSS)}\]

We have

$$I_n(132, 231; q) = (1+q)(1+q^2)\cdots(1+q^{n-1}),$$

$$M_n(213, 321; q) = 1 + n - 1 \sum_{k=1}^{n} kq^k,$$

$$I_n(231, 312, 321; q) = \sum_{k=0}^{n} \binom{n}{k} q^k.$$

\[\text{Theorem (DDJSS)}\]
If \(\Pi \subseteq S \) then we let
\[\text{Av}_n(\Pi) = \{ \sigma \in S_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi \}. \]
Simion & Schmidt classified \(\# \text{Av}_n(\Pi) \) for all \(\Pi \subseteq S_3 \) including:
\[
\# \text{Av}_n(132, 231) = 2^{n-1}, \\
\# \text{Av}_n(213, 321) = 1 + \binom{n}{2}, \\
\# \text{Av}_n(231, 312, 321) = F_n \text{ (Fibonacci numbers)}.
\]
We have classified \(I_n(\Pi; q) \) and \(M_n(\Pi; q) \) for \(\Pi \subseteq S_3 \).

Theorem (DDJSS)

We have
\[
I_n(132, 231; q) = (1 + q)(1 + q^2) \cdots (1 + q^{n-1}),
\]
If $\Pi \subseteq S$ then we let

$$\text{Av}_n(\Pi) = \{\sigma \in S_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi\}.$$

Simion & Schmidt classified $\# \text{Av}_n(\Pi)$ for all $\Pi \subseteq S_3$ including:

\[
\# \text{Av}_n(132, 231) = 2^{n-1}, \\
\# \text{Av}_n(213, 321) = 1 + \binom{n}{2}, \\
\# \text{Av}_n(231, 312, 321) = F_n \text{ (Fibonacci numbers)}.
\]

We have classified $I_n(\Pi; q)$ and $M_n(\Pi; q)$ for $\Pi \subseteq S_3$.

Theorem (DDJSS)

We have

\[
I_n(132, 231; q) = (1 + q)(1 + q^2) \cdots (1 + q^{n-1}), \\
M_n(213, 321; q) = 1 + \sum_{k=1}^{n-1} kq^k,
\]
If $\Pi \subseteq S$ then we let
\[
\text{Av}_n(\Pi) = \{ \sigma \in S_n : \sigma \text{ avoids } \pi \text{ for all } \pi \in \Pi \}.
\]
Simion & Schmidt classified $\# \text{ Av}_n(\Pi)$ for all $\Pi \subseteq S_3$ including:
\[
\begin{align*}
\# \text{ Av}_n(132, 231) &= 2^{n-1}, \\
\# \text{ Av}_n(213, 321) &= 1 + \binom{n}{2}, \\
\# \text{ Av}_n(231, 312, 321) &= F_n \text{ (Fibonacci numbers)}.
\end{align*}
\]
We have classified $I_n(\Pi; q)$ and $M_n(\Pi; q)$ for $\Pi \subseteq S_3$.

Theorem (DDJSS)

*We have
\[
\begin{align*}
I_n(132, 231; q) &= (1 + q)(1 + q^2) \cdots (1 + q^{n-1}), \\
M_n(213, 321; q) &= 1 + \sum_{k=1}^{n-1} kq^k, \\
I_n(231, 312, 321; q) &= \sum_{k=0}^{n} \binom{n-k}{k} q^k.
\end{align*}
\]*
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions.
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions. Define

\[M(\Pi; q, x) = \sum_{n \geq 0} M_n(\Pi; q)x^n, \]
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions. Define

\[M(\Pi; q, x) = \sum_{n \geq 0} M_n(\Pi; q)x^n, \]

and

\[(x)_k = (1 - x)(1 - qx)(1 - q^2x) \ldots (1 - q^{k-1}x). \]
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions. Define

\[M(\Pi; q, x) = \sum_{n \geq 0} M_n(\Pi; q)x^n, \]

and

\[(x)_k = (1 - x)(1 - qx)(1 - q^2x) \ldots (1 - q^{k-1}x). \]

Theorem (DDJSS)

\[M(231, 321; q, x) = \sum_{k \geq 0} \frac{q^{k^2}x^{2k}}{(x)_k(x)_{k+1}}. \]
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions. Define

\[M(\Pi; q, x) = \sum_{n \geq 0} M_n(\Pi; q)x^n, \]

and

\[(x)_k = (1 - x)(1 - qx)(1 - q^2x)\ldots(1 - q^{k-1}x). \]

Theorem (DDJSS)

\[M(231, 321; q, x) = \sum_{k \geq 0} \frac{q^k x^{2k}}{(x)_k(x)_{k+1}}. \]

Proof sketch. If \(\sigma = a_1 \ldots a_n \in \text{Av}_n(231, 321) \) then \(\sigma \) is determined by its left-right maxima (lrn).
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions. Define
\[M(\Pi; q, x) = \sum_{n \geq 0} M_n(\Pi; q)x^n, \]
and
\[(x)_k = (1 - x)(1 - qx)(1 - q^2x)\ldots(1 - q^{k-1}x). \]

Theorem (DDJSS)
\[M(231, 321; q, x) = \sum_{k \geq 0} \frac{q^{k^2} x^{2k}}{(x)_k(x)_{k+1}}. \]

Proof sketch. If \(\sigma = a_1 \ldots a_n \in Av_n(231, 321) \) then \(\sigma \) is determined by its left-right maxima (lrm). The descents are exactly the lrm not immediately followed by another lrm.
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions. Define

$$M(\Pi; q, x) = \sum_{n \geq 0} M_n(\Pi; q)x^n,$$

and

$$(x)_k = (1 - x)(1 - qx)(1 - q^2x)\ldots(1 - q^{k-1}x).$$

Theorem (DDJSS)

$$M(231, 321; q, x) = \sum_{k \geq 0} \frac{q^{k^2}x^{2k}}{(x)_k(x)_{k+1}}.$$

Proof sketch. If $\sigma = a_1 \ldots a_n \in \text{Av}_n(231, 321)$ then σ is determined by its left-right maxima (lrm). The descents are exactly the lrm not immediately followed by another lrm. So we construct $w(\sigma) = b_1 \ldots b_n$ where $b_i = 1$ if a_i is an lrm and 0 otherwise.
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions. Define

\[M(\Pi; q, x) = \sum_{n \geq 0} M_n(\Pi; q)x^n, \]

and

\[(x)_k = (1 - x)(1 - qx)(1 - q^2x) \ldots (1 - q^{k-1}x). \]

Theorem (DDJSS)

\[M(231, 321; q, x) = \sum_{k \geq 0} \frac{q^{k^2}x^{2k}}{(x)_k(x)_{k+1}}. \]

Proof sketch. If \(\sigma = a_1 \ldots a_n \in Av_n(231, 321) \) then \(\sigma \) is determined by its left-right maxima (lrm). The descents are exactly the lrm not immediately followed by another lrm. So we construct \(w(\sigma) = b_1 \ldots b_n \) where \(b_i = 1 \) if \(a_i \) is an lrm and 0 otherwise. Using Foata’s 2nd fundamental bijection, we map \(w(\sigma) \) to a 0-1 sequence \(v(\sigma) \) such that \(\text{inv } v(\sigma) = \text{maj } w(\sigma) \).
For some polynomials we could not give explicit expressions and so instead gave recursions or generating functions. Define

\[M(\Pi; q, x) = \sum_{n \geq 0} M_n(\Pi; q)x^n, \]

and

\[(x)_k = (1-x)(1-qx)(1-q^2x)\ldots(1-q^{k-1}x). \]

Theorem (DDJSS)

\[M(231, 321; q, x) = \sum_{k \geq 0} \frac{q^{k^2}x^{2k}}{(x)_k(x)_{k+1}}. \]

Proof sketch. If \(\sigma = a_1 \ldots a_n \in \text{Av}_n(231, 321) \) then \(\sigma \) is determined by its left-right maxima (lrm). The descents are exactly the lrm not immediately followed by another lrm. So we construct \(w(\sigma) = b_1 \ldots b_n \) where \(b_i = 1 \) if \(a_i \) is an lrm and 0 otherwise. Using Foata’s 2nd fundamental bijection, we map \(w(\sigma) \) to a 0-1 sequence \(v(\sigma) \) such that \(\text{inv} v(\sigma) = \text{maj} w(\sigma) \). The lattice path associated with \(v(\sigma) \) defines a partition whose Durfee square decomposition gives the generating function.
Outline

Pattern containment and avoidance

Permutation statistics: inversions

Permutation statistics: major index

q-Catalan numbers

Multiple restrictions

Future work
1. What happens if one considers permutations in \mathfrak{S}_n for $n \geq 3$?
1. What happens if one considers permutations in \mathfrak{S}_n for $n \geq 3$?

2. What happens if one uses other statistics in place of inv and maj? Elizalde has studied the excedance and number of fixed points statistics.
1. What happens if one considers permutations in \mathcal{S}_n for $n \geq 3$?

2. What happens if one uses other statistics in place of inv and maj? Elizalde has studied the excedance and number of fixed points statistics.

3. What happens if one uses generalized pattern avoidance where copies of a pattern are required to have certain pairs of elements in the diagram adjacent either horizontally or vertically?
1. What happens if one considers permutations in \mathfrak{S}_n for $n \geq 3$?

2. What happens if one uses other statistics in place of inv and maj? Elizalde has studied the excedance and number of fixed points statistics.

3. What happens if one uses generalized pattern avoidance where copies of a pattern are required to have certain pairs of elements in the diagram adjacent either horizontally or vertically?

4. What happens if one looks at pattern avoidance in other combinatorial structures such as words or set partitions?
XIEXIE