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A partition of a set S is a family π of nonempty sets B1, . . . , Bk

called blocks such that ]iBi = S (disjoint union).

We write
π = B1/ . . . /Bk ` S omitting braces and commas.
Ex. π = acf/bg/de ` abcdefg.
The partition lattice is Πn = {π : π ` 12 . . . n} ordered by
B1/ . . . /Bk ≤ C1/ . . . /Cl if for each Bi there is a Cj with Bi ⊆ Cj .

If poset P has a 0̂ and a 1̂ we write µ(P) = µP(0̂, 1̂) and
similarly for other elements of I(P).
Ex. Π3, µ(0̂, π)

n 1 2 3 4 5 6
µ(Πn) 1 −1 2 −6 24 −120
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Conjecture
We have: µ(Πn) = (−1)n−1(n − 1)!.
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A simplicial complex is a finite nonempty family ∆ of finite sets
called faces such that

F ∈ ∆ and F ′ ⊆ F =⇒ F ′ ∈ ∆.

A geometric realization of ∆ has a (d − 1)-dimensional simplex
(tetrahedron) for each d-element set in ∆. The dimension of
F ∈ ∆ is dim F = #F − 1. Face F is a vertex or edge if
dim F = 0 or 1, respectively.
Example. ∆ = {∅, u, v , w , x , uv , uw , vw , wx , uvw}

dim u = 0 a vertex,
dim uv = 1, an edge
dim uvw = 2.
uvw and wx are facets.
Not pure. s
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Face F is a facet if it is containment-maximal in ∆. We say ∆
is pure of dimension d , and write dim ∆ = d , if dim F = d for all
facets F of ∆.
Note. A simplicial complex pure of dimension 1 is just a graph.
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dim u = 0 a vertex,
dim uv = 1, an edge
dim uvw = 2.
uvw and wx are facets.
Not pure. s
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Face F is a facet if it is containment-maximal in ∆. We say ∆
is pure of dimension d , and write dim ∆ = d , if dim F = d for all
facets F of ∆.

Note. A simplicial complex pure of dimension 1 is just a graph.



A simplicial complex is a finite nonempty family ∆ of finite sets
called faces such that

F ∈ ∆ and F ′ ⊆ F =⇒ F ′ ∈ ∆.

A geometric realization of ∆ has a (d − 1)-dimensional simplex
(tetrahedron) for each d-element set in ∆. The dimension of
F ∈ ∆ is dim F = #F − 1. Face F is a vertex or edge if
dim F = 0 or 1, respectively.
Example. ∆ = {∅, u, v , w , x , uv , uw , vw , wx , uvw}

dim u = 0 a vertex,
dim uv = 1, an edge
dim uvw = 2.
uvw and wx are facets.
Not pure. s
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Face F is a facet if it is containment-maximal in ∆. We say ∆
is pure of dimension d , and write dim ∆ = d , if dim F = d for all
facets F of ∆.
Note. A simplicial complex pure of dimension 1 is just a graph.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right
uw ,

vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right
uw , vw ,

wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right
uw , vw , wx ,

uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right
uw , vw , wx , uv ,

xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right
uw , vw , wx , uv , xy ,

wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right
uw , vw , wx , uv , xy , wy is a shelling.

So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right
uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.

Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.

Any sequence beginning

uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.

Any sequence beginning uw ,

vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.

Any sequence beginning uw , vw ,

xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.

Any sequence beginning uw , vw , xy

is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.

Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.

In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.
In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.

In the original shelling:

r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.

In the original shelling:
r(uw) = ∅,

r(vw) = v , r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .

s s
s

s s

�
�

�

@
@

@
@

@
@

�
�

�

v

u

w

x

y

F1

F2

F3

F4 F5

F6

F3

Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.

In the original shelling:
r(uw) = ∅, r(vw) = v ,

r(wx) = x ,
r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.

In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,

r(uv) = uv , r(xy) = y , r(wy) = wy .
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Note. A graph is shellable iff it is connected.

Given a shelling F1, . . . , Fk , the restriction of Fj is

r(Fj) = {v a vertex of Fj : Fj − v ⊆
(
∪i<jFi

)
}.



Let ∆ be pure of dimension d . We say ∆ is shellable if there is
an ordering of its facets (a shelling) F1, . . . , Fk such that for
each j ≤ k :

Fj

⋂ (
∪i<jFi

)
is a union of (d − 1)-dimensional faces of Fj .

Example. For the graph at right

uw , vw , wx , uv , xy , wy is a shelling.
So ∆ is shellable.
Any sequence beginning uw , vw , xy
is not a shelling since xy ∩ (uw ∪ vw) = ∅.

In the original shelling:
r(uw) = ∅, r(vw) = v , r(wx) = x ,
r(uv) = uv ,

r(xy) = y , r(wy) = wy .
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(
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}.
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Let Sd denote the d-sphere (sphere of dimension d).

To form
the bouquet or wedge of k spheres of dimension d , ∨kSd , take
a point of each sphere and identify the points.
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r(uw) = ∅, r(vw) = v , r(wx) = x , r(uv) = uv ,
r(xy) = y , r(wy) = wy .

If topological spaces X and Y are homeomorphic, write X ≈ Y .

Theorem
Let ∆ be a shellable simplicial complex pure of dimension d.
Then

∆ ≈ ∨kSd

where k is the number of facets satisfying r(F ) = F in a
shelling of ∆.
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Let X be a topological space and Q the rational numbers.

Let

H̃i(X ) = the i th reduced homology group of X over Q.

=

k︷ ︸︸ ︷
Q⊕ · · · ⊕Q

= ⊕kQ

where β̃i(X ) = k is the i th reduced Betti number of X and
roughly measures the number of cycles in X of dimension i
which bound a hole in X .
Example. For X = S2 we have H̃2(S2) = Q since S2 itself is a
cycle with a hole in the center. Also H̃1(S2) = 0 since any
1-dimensional cycle on S2 just bounds part of S2.
In general

H̃i(S
d) =

{
Q if i = d ,
0 if i 6= d .

Also taking wedges takes direct sums of homology groups.

Proposition

We have H̃i(∨kSd) =

{
⊕kQ if i = d,
0 if i 6= d.
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The reduced Euler characteristic of X is

χ̃(X ) =
∑
i≥−1

(−1)i β̃i(X )

= −β̃−1(X ) + β̃0(X )− β̃1(X ) + · · ·

By the previous proposition β̃i(∨kSd) =

{
k if i = d ,
0 if i 6= d .

Corollary
We have χ̃(∨kSd) = (−1)dk.
The i th face number of a simplicial complex ∆ is
fi(∆)= # of faces of dimension i = # of faces of cardinality i + 1.

Theorem
χ̃(∆) =

∑
i≥−1

(−1)i fi(X ) = −f−1(X ) + f0(X )− f1(X ) + · · ·

Example. For the graph X at right: X ≈ ∨2S1,

by the Corollary χ̃(X ) = χ̃(∨2S1) = −2.
f−1(X ) = 1 counting F = ∅,
f0(X ) = 5 counting F = u, v , w , x , y ,
f1(X ) = 6 counting F = uv , uw , vw , wx , wy , xy ,
fi(X ) = 0 for i ≥ 2,
by the Theorem χ̃(X ) = −1 + 5− 6 = −2.
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If x , y ∈ P (poset) then an x–y chain of length i in P is a
subposet C : x = x0 < x1 < . . . < xi = y .

If P is bounded, let

P = P − {0̂, 1̂}.

The order complex of a bounded P is

∆(P) = set of all chains in P.

A subset of a chain is a chain so ∆(P) is a simplicial complex.

Example. If P = C4 then

C4 = r1

r2

r3 and

∆(C4) =r2 �
�
�
�

r3A
A

A
A
r1

In general ∆(Cn) ≈ Bn−2, the (n − 2)-dimensional ball.

Example. If P = B3 then

B3 = r r r1 2 3Q
Q

Q
r12

�
�

�

Q
Q

Q
r13

�
�

�
r23

and
∆(B3) =

r2 �
�
�
�

r3A
A

A
A
r1

r
23

r12 r13

In general ∆(Bn) ≈ Sn−2.
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Lemma
In the incidence algebra of P

(ζ − δ)i(x , y) = # of x–y chains of length i.

Proof. We have (ζ − δ)(x , y) =

{
1 if x < y ,
0 else.

So

(ζ − δ)i(x , y) =
∑

x=x0,x1,...,xi=y

(ζ − δ)(x0, x1) · · · (ζ − δ)(xi−1, xi)

=
∑

x=x0<x1<...<xi=y

1 = # of x–y chains of length i .

Theorem
In a bounded poset P with 0̂ 6= 1̂: µ(P) = χ̃(∆(P)).
Proof. Using the definition of µ and the lemma,

µ(P) = ζ−1(P) = (δ + (ζ − δ))−1(P) =
∑

i≥0(−1)i(ζ − δ)i(P)

=
∑

i≥1(−1)i(# of 0̂–1̂ chains of length i in P)

=
∑

i≥1(−1)i−2(# of chains of length i − 2 in P)

=
∑

j≥−1(−1)j fj(∆(P)) = χ̃(∆(P)).
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A saturated x–y chain has the form x = x0 � x1 � . . . � xi = y .

A poset P is graded if it is bounded and all saturated 0̂–1̂
chains have the same length which we call the rank of P, rk P.
Example. Our standard posets are graded with

rk Cn = n, rk Bn = n, rk Dn =
∑

i

mi (n =
∏

i

pmi
i ), rk Πn = n−1.

Let E(P) be the edge set of the Hasse diagram of P. A labeling
` : E(P) → Q induces a labeling of saturated chains by

`(x0 � x1 � . . . � xi) = (`(x0 � x1), . . . , `(xi−1 � xi)).

Example. For Bn

let `(S � T ) = T − S,
so `(1 � 13 � 123) = (3, 2).
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Say saturated chain C has a property if `(C) has that property.

An EL-labelling of a graded poset P is ` : E → Q such that, for
each interval [x , y ] ⊆ P

1. there is a unique weakly increasing x–y chain Cxy ,

2. Cxy is lexicographically least among saturated x–y chains.

All four of our example posets have EL-labelings. We will give
the labeling and verify the two conditions for the interval [0̂, 1̂].

1. For Cn let `(i − 1 � i) = i . Then there is only one saturated
chain and `(0 � 1 � . . . � n) = (1, 2, . . . , n)

2. For Bn let `(S � T ) = T − S. There is a bijection between
saturated 0̂–1̂ chains and permutations of {1, . . . , n} given by

(x1, x2, . . . , xn) = `(0̂ � x1 � x1x2 � . . . � 1̂).

There is a unique weakly increasing permutation, (1, 2, . . . , n),
and it is lexicographically smaller than any other permutation.
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3. For Dn let `(c � d) = d/c.

If n =
∏k

i=1 pm1
i then there is a bijection between

saturated 0̂–1̂ chains and permutations of the

multiset M = {{
m1︷ ︸︸ ︷

p1, . . . , p1, . . . ,

mk︷ ︸︸ ︷
pk , . . . , pk}}.

There is a unique weakly increasing
permutation of M and it is lexicographically
smaller than any other permutation. s1@
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4. In Πn, if π = B1/ . . . /Bk and merging Bi with Bj forms σ then

`(π � σ) = max{min Bi , min Bj}

If C is a saturated 0̂–1̂ chain then `(C) is a
permutation of {2, 3, . . . , n}:
For all π, σ we have 2 ≤ `(π � σ) ≤ n.
Also #`(C) = n − 1. And if m appears

as a label, it does so at most once
since after merging it is no longer a min.
The permutation (2, . . . , n) only occurs once, namely as
`(0̂ � 12/3/ . . . /n � 123/4/ . . . /n � . . . � 1̂).
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Also #`(C) = n − 1. And if m appears

as a label, it does so at most once
since after merging it is no longer a min.
The permutation (2, . . . , n) only occurs once, namely as
`(0̂ � 12/3/ . . . /n � 123/4/ . . . /n � . . . � 1̂).

s1/2/3@
@

@
@@

�
�

�
��

s s s12/3 13/2 1/23�
�

�
��

@
@

@
@@
s123

2 3 3

3 2 2



3. For Dn let `(c � d) = d/c.
If n =
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i=1 pm1

i then there is a bijection between
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Theorem (Björner, 1980)
Let P be a graded poset. If P has an EL-labelling then ∆(P) is
shellable.

In fact, if F1, . . . , Fk is a list of the saturated 0̂− 1̂
chains in lexicographic order, then F 1, . . . , F k is a shelling of
∆(P). Furthermore

µ(P) = (−1)rk P(# of strictly decreasing Fj). (1)

Proof of (1). Using the first half of the theorem

µ(P) = χ̃(∆(P)) = (−1)dim ∆(P)(# of F j with r(F j) = F j).

The power of −1 is as desired since dim ∆(P) = rk(P)− 2. So
it suffices to show that `(Fj) is strictly decreasing iff r(F j) = F j .
“ =⇒ ” (“⇐=” is similar) Suppose `(Fj) = (x0, . . . , xn) is strictly
decreasing. We must show that given any xr ∈ F j there is Fi

with i < j and Fi ∩Fj = Fj −{xr}. Now xr−1 � xr � xr+1 is strictly
decreasing. Let xr−1 � yr � xr+1 be the weakly increasing chain
in [xr−1, xr+1]. Then Fi = Fj − {xr} ∪ {yr} is lexicographically
smaller than Fj . So i < j and Fi ∩ Fj = Fj − {xr}.
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Corollary
(a) µ(Cn) = 0 if n ≥ 2.

(b) µ(Bn) = (−1)n,

(c) µ(Dn) =

{
(−1)k if mi = 1 ∀i ,
0 if ∃i with mi ≥ 2,

where n =
∏

i pmi
i .

(d) µ(Πn) = (−1)n−1(n − 1)!

Proof. (a) For n ≥ 2, Cn has a single strictly increasing chain.
So it has no strictly decreasing chain and µ(Cn) = (−1)n ·0 = 0.
(b) The `(Fi) are in bijection with the permutations of {1, . . . , n}.
The unique strictly decreasing permutation is (n, n − 1, . . . , 1).
(c) Combine the proofs in (a) and (b)
(d) The `(Fi) are permutations of {2, . . . , n}. Suppose
`(Fi) = (n, n − 1, . . . , 2) where Fi = π0 � π1 � . . . � πn−1. Then
π1 is obtained from π0 by merging {n} with another block,
giving n − 1 choices. Next π2 is obtained from π1 by merging
the block containing n − 1 with another block, giving n − 2
choices, etc. So the total number of such Fi is (n − 1)!.
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