# Stalking the Wild Fibonomial

Bruce Sagan
Department of Mathematics, Michigan State U.
East Lansing, MI 48824-1027, sagan@math.msu.edu
www.math.msu.edu/~sagan

and

Carla Savage
Department of Computer Science, North Carolina State U.
Raleigh, NC 27695-8206, savage@cayley.csc.ncsu.edu

August 2, 2010

**Fibonomials** 

A recursion

The combinatorial interpretation

# **Outline**

**Fibonomials** 

A recursion

The combinatorial interpretation

Let *n* and *k* be integers with  $0 \le k \le n$ .

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

then it is not clear that these rational numbers are actually integers.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

then it is not clear that these rational numbers are actually integers. However, if we show they have the combinatorial interpretation

$$\binom{n}{k}$$
 = # of *k*-element subsets of an *n*-element set,

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

then it is not clear that these rational numbers are actually integers. However, if we show they have the combinatorial interpretation

$$\binom{n}{k}$$
 = # of k-element subsets of an n-element set,

then integrality is obvious. (Here, "#" denotes cardinality.)

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0=0, \quad F_1=1, \quad F_2=1, \quad F_3=2, \quad F_4=3, \quad F_5=5.$$

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0=0, \quad F_1=1, \quad F_2=1, \quad F_3=2, \quad F_4=3, \quad F_5=5.$$

A fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1.$$

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_2 = 1$ ,  $F_3 = 2$ ,  $F_4 = 3$ ,  $F_5 = 5$ .

A fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1.$$

A fibonomial coefficient is

$$\binom{n}{k}_F = \frac{F_n^!}{F_k^! F_{n-k}^!}.$$

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0=0, \quad F_1=1, \quad F_2=1, \quad F_3=2, \quad F_4=3, \quad F_5=5.$$

A fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1.$$

A fibonomial coefficient is

$$\binom{n}{k}_F = \frac{F_n!}{F_k! F_{n-k}!}.$$

$$\binom{5}{2}_F$$

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_2 = 1$ ,  $F_3 = 2$ ,  $F_4 = 3$ ,  $F_5 = 5$ .

A fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1.$$

A fibonomial coefficient is

$$\binom{n}{k}_F = \frac{F_n!}{F_k! F_{n-k}!}.$$

$$\binom{5}{2}_{F} = \frac{F_{5}^{!}}{F_{2}^{!}F_{3}^{!}}$$

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_2 = 1$ ,  $F_3 = 2$ ,  $F_4 = 3$ ,  $F_5 = 5$ .

A fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1.$$

A fibonomial coefficient is

$$\binom{n}{k}_F = \frac{F_n^!}{F_k^! F_{n-k}^!}.$$

$$\binom{5}{2}_F = \frac{F_5^1}{F_2^1 F_3^1} = \frac{5 \cdot 3 \cdot 2 \cdot 1 \cdot 1}{(1 \cdot 1)(2 \cdot 1 \cdot 1)}$$

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_2 = 1$ ,  $F_3 = 2$ ,  $F_4 = 3$ ,  $F_5 = 5$ .

A fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1.$$

A fibonomial coefficient is

$$\binom{n}{k}_F = \frac{F_n^!}{F_k^! F_{n-k}^!}.$$

$$\binom{5}{2}_F = \frac{F_5^!}{F_2^! F_3^!} = \frac{5 \cdot 3 \cdot 2 \cdot 1 \cdot 1}{(1 \cdot 1)(2 \cdot 1 \cdot 1)} = 15.$$

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_2 = 1$ ,  $F_3 = 2$ ,  $F_4 = 3$ ,  $F_5 = 5$ .

A fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1.$$

A fibonomial coefficient is

$$\binom{n}{k}_F = \frac{F_n!}{F_k! F_{n-k}!}.$$

Example.

$$\binom{5}{2}_F = \frac{F_5^1}{F_2^1 F_3^1} = \frac{5 \cdot 3 \cdot 2 \cdot 1 \cdot 1}{(1 \cdot 1)(2 \cdot 1 \cdot 1)} = 15.$$

In general,  $\binom{n}{k}_F$  is always an integer and we have given a simple combinatorial interpretation to prove this.

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ .

The first few Fibonacci numbers are

$$F_0=0, \quad F_1=1, \quad F_2=1, \quad F_3=2, \quad F_4=3, \quad F_5=5.$$

A fibotorial is

$$F_n^! = F_n F_{n-1} \cdots F_1.$$

A fibonomial coefficient is

$$\binom{n}{k}_F = \frac{F_n^!}{F_k^! F_{n-k}^!}.$$

Example.

$$\binom{5}{2}_{E} = \frac{F_{5}^{!}}{F_{2}^{!}F_{2}^{!}} = \frac{5 \cdot 3 \cdot 2 \cdot 1 \cdot 1}{(1 \cdot 1)(2 \cdot 1 \cdot 1)} = 15.$$

In general,  $\binom{n}{k}_F$  is always an integer and we have given a simple combinatorial interpretation to prove this. Other (more complicated) combinatorial interpretations have been given by Gessel and Viennot, as well as by Benjamin and Plott.

# **Outline**

Fibonomials

A recursion

The combinatorial interpretation

Consider a row of *n* squares.

Consider a row of *n* squares. A *tiling*, *T*, is a covering of the row with disjoint dominos (covering two squares) and monominos (covering one square).

 $\mathcal{T}_3$ :

 $\mathcal{T}_3:$  • • •

T<sub>3</sub>: • • •



T<sub>3</sub>: • • •









Note 
$$\#\mathcal{T}_3 = 3 = F_4$$
.

$$\mathcal{T}_3:$$
  $\bullet$   $\bullet$ 





Note 
$$\#T_3 = 3 = F_4$$
.

# Theorem For n > 0 we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

$$\mathcal{T}_3:$$
 • •





Note 
$$\#T_3 = 3 = F_4$$
.

## **Theorem**

For  $n \ge 0$  we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

**Proof** Induct on *n*.

$$\mathcal{T}_3:$$
 • •





Note 
$$\#T_3 = 3 = F_4$$
.

## **Theorem**

For  $n \ge 0$  we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

**Proof** Induct on n. It's easy for n = 0, 1.

$$\mathcal{T}_3$$
: • •





Note 
$$\#T_3 = 3 = F_4$$
.

#### **Theorem**

For  $n \ge 0$  we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

$$\#\mathcal{T}_n$$

$$\mathcal{T}_3:$$
 • •





Note 
$$\#T_3 = 3 = F_4$$
.

#### **Theorem**

For n > 0 we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

$$\#\mathcal{T}_n = \# \boxed{ \bullet } \boxed{ \cdots }$$

$$\mathcal{T}_3:$$
 • •





Note 
$$\#T_3 = 3 = F_4$$
.

#### **Theorem**

For n > 0 we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

$$\#\mathcal{T}_n = \# \boxed{ \bullet \qquad \qquad } + \# \boxed{ \bullet \qquad } \cdots$$

$$\mathcal{T}_3:$$
 • • • •

Note 
$$\#\mathcal{T}_3 = 3 = F_4$$
.

#### **Theorem**

For  $n \ge 0$  we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

$$\#\mathcal{T}_{n} = \# \boxed{\bullet \qquad \cdots \qquad + \qquad \# \boxed{\bullet \qquad \cdots \qquad \cdots \qquad }}$$

$$= \#\mathcal{T}_{n-1}$$

$$\mathcal{T}_3:$$
 • •





Note 
$$\#T_3 = 3 = F_4$$
.

#### **Theorem**

For  $n \ge 0$  we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

$$\mathcal{T}_3:$$
 • •





Note 
$$\#\mathcal{T}_3 = 3 = F_4$$
.

#### **Theorem**

For  $n \ge 0$  we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

$$\#\mathcal{T}_{n} = \# \boxed{ \bullet \qquad \cdots \qquad } + \# \boxed{ \bullet \qquad \cdots \qquad }$$

$$= \#\mathcal{T}_{n-1} + \#\mathcal{T}_{n-2}$$

$$= F_{n} + F_{n-1} \quad \text{(by induction)}$$



Consider a row of n squares. A *tiling*, T, is a covering of the row with disjoint dominos (covering two squares) and monominos (covering one square). Let  $\mathcal{T}_n$  be the set of such tilings. Example.

$$\mathcal{T}_3:$$
 • • • •

Note 
$$\#T_3 = 3 = F_4$$
.

#### **Theorem**

For  $n \ge 0$  we have:

$$\#\mathcal{T}_n = F_{n+1}$$
.

**Proof** Induct on n. It's easy for n = 0, 1. For  $n \ge 2$ ,

$$\#\mathcal{T}_{n} = \# \boxed{ \cdot } \boxed{ \cdots } \boxed{ } + \# \boxed{ \cdot } \boxed{ \cdots } \boxed{ }$$

$$= \#\mathcal{T}_{n-1} + \#\mathcal{T}_{n-2}$$

$$= F_{n} + F_{n-1} \text{ (by induction)}$$

$$= F_{n+1}. \square$$

For  $m, n \ge 1$  we have:

$$F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$$

For 
$$m, n \ge 1$$
 we have:  $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$ 

**Proof idea** Use 
$$F_{m+n} = \#\mathcal{T}_{m+n-1}$$
.

For 
$$m, n \ge 1$$
 we have:  $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$ 

**Proof idea** Use 
$$F_{m+n} = \#\mathcal{T}_{m+n-1}$$
.

#### Theorem

For  $m, n \ge 1$  we have:

$$\binom{m+n}{m}_F = F_{n+1} \binom{m+n-1}{m-1}_F + F_{m-1} \binom{m+n-1}{n-1}_F$$

For 
$$m, n \ge 1$$
 we have:  $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$ 

**Proof idea** Use 
$$F_{m+n} = \#\mathcal{T}_{m+n-1}$$
.

#### Theorem

For  $m, n \ge 1$  we have:

$$\binom{m+n}{m}_F = F_{n+1} \binom{m+n-1}{m-1}_F + F_{m-1} \binom{m+n-1}{n-1}_F$$

**Proof** Using the definition of the fibonomials

$$\binom{m+n}{m}_F$$

For 
$$m, n \ge 1$$
 we have:  $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$ 

**Proof idea** Use 
$$F_{m+n} = \#\mathcal{T}_{m+n-1}$$
.

#### Theorem

For  $m, n \ge 1$  we have:

$$\binom{m+n}{m}_F = F_{n+1} \binom{m+n-1}{m-1}_F + F_{m-1} \binom{m+n-1}{n-1}_F$$

**Proof** Using the definition of the fibonomials

$$\binom{m+n}{m}_F = \frac{F_{m+n}F_{m+n-1}^!}{F_m^!F_n!}$$

For 
$$m, n \ge 1$$
 we have:

For 
$$m, n \ge 1$$
 we have:  $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$ 

**Proof idea** Use 
$$F_{m+n} = \#\mathcal{T}_{m+n-1}$$
.

#### **Theorem**

For m, n > 1 we have:

$${\binom{m+n}{m}}_F = F_{n+1} {\binom{m+n-1}{m-1}}_F + F_{m-1} {\binom{m+n-1}{n-1}}_F$$

**Proof** Using the definition of the fibonomials

$${\binom{m+n}{m}}_{F} = \frac{F_{m+n}F_{m+n-1}^{!}}{F_{m}^{!}F_{n}^{!}}$$

$$= F_{n+1}\frac{F_{m}F_{m+n-1}^{!}}{F_{m}^{!}F_{n}^{!}} + F_{m-1}\frac{F_{n}F_{m+n-1}^{!}}{F_{m}^{!}F_{n}^{!}} \quad \text{(Lemma)}$$

For 
$$m, n \ge 1$$
 we have:

For 
$$m, n \ge 1$$
 we have:  $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$ 

**Proof idea** Use 
$$F_{m+n} = \#\mathcal{T}_{m+n-1}$$
.

#### Theorem

For m, n > 1 we have:

$$\binom{m+n}{m}_F = F_{n+1} \binom{m+n-1}{m-1}_F + F_{m-1} \binom{m+n-1}{n-1}_F$$

Using the definition of the fibonomials

$${\binom{m+n}{m}}_{F} = \frac{F_{m+n}F_{m+n-1}^{!}}{F_{m}^{!}F_{n}!}$$

$$= F_{n+1}\frac{F_{m}F_{m+n-1}^{!}}{F_{m}^{!}F_{n}^{!}} + F_{m-1}\frac{F_{n}F_{m+n-1}^{!}}{F_{m}^{!}F_{n}^{!}} \quad \text{(Lemma)}$$

$$= F_{n+1}\binom{m+n-1}{m-1}_{F} + F_{m-1}\binom{m+n-1}{n-1}_{F}. \quad \Box$$



### **Outline**

Fibonomials

A recursion

The combinatorial interpretation

A *partition of n* is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ .

A *partition of n* is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ . The  $\lambda_i$  are *parts*.

A *partition of n* is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ . The  $\lambda_i$  are *parts*. Example. Partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

A *partition of n* is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ . The  $\lambda_i$  are *parts*. Example. Partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). The *Ferrers diagram of*  $\lambda$  is an array of r left-justified rows of boxes with  $\lambda_i$  boxes in row i.

A partition of n is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ . The  $\lambda_i$  are parts. Example. Partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). The Ferrers diagram of  $\lambda$  is an array of r left-justified rows of boxes with  $\lambda_i$  boxes in row i.

$$\lambda = (3,2,2) =$$

A partition of n is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ . The  $\lambda_i$  are parts. Example. Partitions of 4: (4), (3,1), (2,2), (2,1,1), (1,1,1,1). The Ferrers diagram of  $\lambda$  is an array of r left-justified rows of boxes with  $\lambda_i$  boxes in row r. A tiling of  $\lambda$  is a tiling of each of its parts; the set of these is denoted  $\mathcal{T}_{\lambda}$ .

$$\lambda = (3,2,2) =$$

A partition of n is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ . The  $\lambda_i$  are parts. Example. Partitions of 4: (4), (3,1), (2,2), (2,1,1), (1,1,1,1). The Ferrers diagram of  $\lambda$  is an array of r left-justified rows of boxes with  $\lambda_i$  boxes in row r. A tiling of  $\lambda$  is a tiling of each of its parts; the set of these is denoted  $\mathcal{T}_{\lambda}$ .

$$\lambda = (3,2,2) =$$



A partition of n is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ . The  $\lambda_i$  are parts. Example. Partitions of 4: (4), (3,1), (2,2), (2,1,1), (1,1,1,1). The Ferrers diagram of  $\lambda$  is an array of r left-justified rows of boxes with  $\lambda_i$  boxes in row i. A tiling of  $\lambda$  is a tiling of each of its parts; the set of these is denoted  $\mathcal{T}_{\lambda}$ . The set of such tilings where each part begins with a domino is denoted  $\mathcal{D}_{\lambda}$ . Example.

$$\lambda=(3,2,2)=$$



A partition of n is a weakly decreasing sequence of positive integers  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$  with  $\sum_i \lambda_i = n$ . The  $\lambda_i$  are parts. Example. Partitions of 4: (4), (3,1), (2,2), (2,1,1), (1,1,1,1). The Ferrers diagram of  $\lambda$  is an array of r left-justified rows of boxes with  $\lambda_i$  boxes in row i. A tiling of  $\lambda$  is a tiling of each of its parts; the set of these is denoted  $\mathcal{T}_{\lambda}$ . The set of such tilings where each part begins with a domino is denoted  $\mathcal{D}_{\lambda}$ .

$$\lambda=(3,2,2)=$$







Partition  $\lambda = (\lambda_1, \dots, \lambda_r)$  *fits in an m* × *n rectangle*, written  $\lambda \subseteq m \times n$ , if  $r \le m$  and  $\lambda_1 \le n$ .

Partition  $\lambda = (\lambda_1, \dots, \lambda_r)$  fits in an  $m \times n$  rectangle, written  $\lambda \subseteq m \times n$ , if  $r \le m$  and  $\lambda_1 \le n$ .

Example. 
$$\lambda = (3, 2, 2) \subseteq 3 \times 4$$



Example.  $\lambda = (3, 2, 2) \subseteq 3 \times 4$ 



Example.  $\lambda = (3,2,2) \subseteq 3 \times 4$  and  $\lambda^* = (3,2)$ .



Example.  $\lambda = (3,2,2) \subseteq 3 \times 4$  and  $\lambda^* = (3,2)$ .



#### **Theorem**

For  $m, n \ge 0$  we have

$$\binom{m+n}{m}_{T} = \#\{\ (T,T^*) \in \mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^*} \ : \ \textit{ for all } \lambda \subseteq m \times n \ \}.$$

Example.  $\lambda = (3,2,2) \subseteq 3 \times 4$  and  $\lambda^* = (3,2)$ .





#### **Theorem**

For m, n > 0 we have

$$\binom{m+n}{m}_{T} = \#\{\ (T,T^*) \in \mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^*} \ : \ \textit{ for all } \lambda \subseteq m \times n \ \}.$$

Example.  $\lambda = (3,2,2) \subseteq 3 \times 4$  and  $\lambda^* = (3,2)$ .





#### **Theorem**

For m, n > 0 we have

$$\binom{m+n}{m}_{T} = \#\{\ (T,T^*) \in \mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^*} \ : \ \text{ for all } \lambda \subseteq m \times n\ \}.$$

**Proof idea** Double induct on *m* and *n*.

Example. 
$$\lambda = (3, 2, 2) \subseteq 3 \times 4$$
 and  $\lambda^* = (3, 2)$ .





#### Theorem

For  $m, n \ge 0$  we have

$$\binom{m+n}{m}_{T} = \#\{\ (T,T^*) \in \mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^*} \ : \ \text{ for all } \lambda \subseteq m \times n \ \}.$$

**Proof idea** Double induct on *m* and *n*. Show that the right side above satisfies the recursion for the fibonomial by considering two cases:



Example.  $\lambda = (3,2,2) \subseteq 3 \times 4$  and  $\lambda^* = (3,2)$ .





#### **Theorem**

For m, n > 0 we have

$$\binom{m+n}{m}_{T} = \#\{\ (T,T^*) \in \mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^*} \ : \ \textit{ for all } \lambda \subseteq m \times n \ \}.$$

**Proof idea** Double induct on m and n. Show that the right side above satisfies the recursion for the fibonomial by considering two cases: tilings where  $\lambda_1 = n$ ,



Example.  $\lambda = (3,2,2) \subseteq 3 \times 4$  and  $\lambda^* = (3,2)$ .





## Theorem

For m, n > 0 we have

$$\binom{m+n}{m}_{T} = \#\{\ (T,T^*) \in \mathcal{T}_{\lambda} \times \mathcal{D}_{\lambda^*} \ : \ \textit{ for all } \lambda \subseteq m \times n \ \}.$$

**Proof idea** Double induct on m and n. Show that the right side above satisfies the recursion for the fibonomial by considering two cases: tilings where  $\lambda_1 = n$ , and tilings where  $\lambda_1 < n$  (which forces  $\lambda_1^* = m$ ).  $\square$ 

# THANKS FOR LISTENING!