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Let n and k be integers with 0 ≤ k ≤ n.

If we define the
binomial coefficients by(

n
k

)
=

n!
k !(n − k)!

,

then it is not clear that these rational numbers are actually
integers. However, if we show they have the combinatorial
interpretation(

n
k

)
= # of k -element subsets of an n-element set,

then integrality is obvious. (Here, “#” denotes cardinality.)
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The Fibonacci numbers are defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

The first few Fibonacci numbers are

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5.

A fibotorial is
F !

n = FnFn−1 · · ·F1.

A fibonomial coefficient is(
n
k

)
F
=

F !
n

F !
kF !

n−k
.

Example. (
5
2

)
F
=

F !
5

F !
2F !

3
=

5 · 3 · 2 · 1 · 1
(1 · 1)(2 · 1 · 1)

= 15.

In general,
(n

k

)
F is always an integer and we have given a

simple combinatorial interpretation to prove this. Other (more
complicated) combinatorial interpretations have been given by
Gessel and Viennot, as well as by Benjamin and Plott.
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Consider a row of n squares.

A tiling, T , is a covering of the row
with disjoint dominos (covering two squares) and monominos
(covering one square). Let Tn be the set of such tilings.
Example.

T3 : r r r r r r r r r
Note #T3 = 3 = F4.

Theorem
For n ≥ 0 we have:

#Tn = Fn+1.

Proof Induct on n. It’s easy for n = 0,1. For n ≥ 2,

#Tn = # r · · ·
n − 1� -

+ # r r · · ·
n − 2� -

= #Tn−1 +#Tn−2

= Fn + Fn−1 (by induction)
= Fn+1. �
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Lemma
For m,n ≥ 1 we have: Fm+n = FmFn+1 + Fm−1Fn

Proof idea Use Fm+n = #Tm+n−1. �

Theorem
For m,n ≥ 1 we have:(

m + n
m

)
F
= Fn+1

(
m + n − 1

m − 1

)
F
+ Fm−1

(
m + n − 1

n − 1
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F
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m
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Fm+nF !
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mFn!
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FmF !

m+n−1

F !
mF !

n
+ Fm−1

FnF !
m+n−1

F !
mF !

n
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A partition of n is a weakly decreasing sequence of positive
integers λ = (λ1, λ2, . . . , λr ) with

∑
i λi = n.

The λi are parts.
Example. Partitions of 4: (4), (3,1), (2,2), (2,1,1), (1,1,1,1).
The Ferrers diagram of λ is an array of r left-justified rows of
boxes with λi boxes in row i .

A tiling of λ is a tiling of each of
its parts; the set of these is denoted Tλ. The set of such tilings
where each part begins with a domino is denoted Dλ.
Example.

λ = (3,2,2) =

In Tλ: rr
r

rr
r r

In Dλ: rr
r

rr
r r
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Partition λ = (λ1, . . . , λr ) fits in an m × n rectangle, written
λ ⊆ m× n, if r ≤ m and λ1 ≤ n.

In this case the complement is
λ∗ = (λ∗1, . . . , λ

∗
s) where λ∗j is the length of the j th column from

the right of m × n outside of λ.
Example. λ = (3,2,2) ⊆ 3× 4 and λ∗ = (3,2).

rr
r

rr
r

rr
r

rr
r
∈ Tλ ×Dλ∗

Theorem
For m,n ≥ 0 we have(

m + n
m

)
T
= #{ (T ,T ∗) ∈ Tλ ×Dλ∗ : for all λ ⊆ m × n }.

Proof idea Double induct on m and n. Show that the right
side above satisfies the recursion for the fibonomial by
considernig two cases: tilings where λ1 = n, and tilings
where λ1 < n (which forces λ∗1 = m). �
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