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Let nand k be integers with 0 < k < n. If we define the
binomial coefficients by

(6) =

then it is not clear that these rational numbers are actually
integers. However, if we show they have the combinatorial
interpretation

(Z) = # of k-element subsets of an n-element set,

then integrality is obvious. (Here, “#” denotes cardinality.)
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The Fibonacci numbers are defined by
Fo=0, F =1, Fo=F,1+Fp2forn>2.
The first few Fibonacci numbers are
Fo=0, F =1, Fo=1, F3=2, F4=3, F5=5.

A fibotorial is
F.=FyFp_1---Fy.

A fibonomial coefficient is
(0,
ke FiFii

5\ _ A _ 53211
2)r FFL (A-DE-1-1)

Example.

In general, (i) - is always an integer and we have given a
simple combinatorial interpretation to prove this. Other (more
complicated) combinatorial interpretations have been given by
Gessel and Viennot, as well as by Benjamin and Plott.
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