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1. Central binomial coefficients

Let

ρ3(n) = remainder of n on division by 3.

Consider

n 0 1 2 3 4 5 6 7 8 9

ρ3

(
2n
n

)
1 2 0 2 1 0 0 0 0 2

Let

(n)3 = nl . . . n0, sequence of digits of n base 3.

Let

T (01) = {n : (n)3 has only zeros and ones}.

and

ω3(n) = number of ones in (n)3.

Benoit Cloitre and Reinhard Zumkeller conjectured

the following.

Theorem 1 (D & S) We have

(2n

n

)
≡





(−1)ω3(n) if n ∈ T (01),

0 else.



 (mod3)
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Theorem 2 (Lucas, 1877–8) Let p be prime and

let (n)p = nl . . . n1n0 and (k)p = kl . . . k1k0. Then

(n

k

)
≡

(nl

kl

)
· · ·

(n1

k1

)(n0

k0

)
(mod p).

Corollary 3 If there is a carry in computing the sum

(k)p + (n − k)p then

(n

k

)
≡ 0 (mod p).

Proof Let i be the right-most place where there is
a carry. So ki > ni and

(
ni
ki

)
= 0. Now use Lucas.

Theorem 1 (D & S) We have

(2n

n

)
≡





(−1)ω3(n) if n ∈ T (01),

0 else.



 (mod3)

Proof If there is a 2 in (n)3 then there is a carry in
(n)3 + (n)3 so

(
2n
n

)
≡ 0 (mod3) by the Corollary.

Otherwise n ∈ T (01). So ni = 1 iff the ith digit of
2n is 2. So by Lucas

(2n

n

)
≡

(2
1

)ω3(n)

≡ (−1)ω3(n) (mod3).
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Theorem 1 (D & S) We have

(2n

n

)
≡





(−1)ω3(n) if n ∈ T (01),

0 else.



 (mod3)

The Thue-Morse sequence is t = (t0, t1, t2, . . .) de-

fined recursively by t0 = 0 and for n ≥ 1

(t2n, . . . , t2n+1−1) = 1 − (t0, . . . , t2n−1).

So

t = (0,1,1,0,1,0,0,1, . . .)

Benoit Cloitre conjectured the following.

Theorem 4 (D & S) We have

(
ρ3(n) :

(2n

n

)
≡ 1 (mod3)

)
= t

and
(
ρ3(n) :

(2n

n

)
≡ −1 (mod3)

)
= 1 − t.

Proof This follows easily by induction using the def-

inition of t and Theorem 1.
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2. Catalan numbers

The Catalan numbers are

Cn =
1

n + 1

(2n

n

)
.

n 0 1 2 3 4 5 6 7 8

ρ2(Cn) 1 1 0 1 0 0 0 1 0

(n)2 ∅ 1 10 11 100 101 110 111 1000

The exponent of n modulo 2 is

ξ2(n) = the largest power of 2 dividing n.

Theorem 5 We have

ξ2(Cn) = ω2(n + 1) − 1.

Thus Cn is odd iff n = 2k − 1 for some k.

Proof One can prove the displayed equation using

Kummer’s Theorem. D & S give a combinatorial

proof using group actions on binary trees.

For the “Thus”: Cn is odd iff ξ2(Cn) = 0. But then

ω2(n + 1) = 1 which is iff n + 1 = 2k.
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3. Motzkin numbers

The Motzkin numbers are

Mn =
∑

k≥0

( n

2k

)
Ck.

A run in a sequence is a maximal subsequence of

consecutive, equal elements.

Define a sequence r = (r0, r1, r2, . . .) by

rn = number of elements in the first n runs of t.

Since

t = (0̂, 1̂,1, 0̂, 1̂, 0̂,0,1, . . .)

we have

r = (1,3,4,5,7, . . .).

The following theorem is implicit in a paper of Klazar

& Luca.

Theorem 6 (D & S) The Motzkin number Mn is

even if and only if either n ∈ 4r − 1 or n ∈ 4r − 2.

Proof Use induction and the description of Mn in

terms of ordered trees where each vertex has at most

2 children.
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4. Open problems

(i) Alter and Kubota have characterized the divisibil-

ity of Cn by primes and prime powers using Kummer’s

Theorem. Is it possible to find combinatorial proofs

of their results for p ≥ 3?

(ii) Explain the occurence of the sequence r in the

characterization of the parity of Mn, e.g., by proving

the result combinatorially.

(iii) D & S have characterized the residue of Mn

modulo 3 and 5. What can be said for other primes

or prime powers? The following conjecture is due in

part to Amdeberhan.

Conjecture 7 (D & S) The Motzkin number Mn is

divisible by 4 if and only if

n = (4i + 1)4j+1 − 1 or n = (4i + 3)4j+1 − 2

for nonnegative integers i, j.

Furthermore we never have Mn divisible by 8.
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n 0 1 2 3 4 5 6 7 8 9

ρ3

(
2n
n

)
1 2 0 2 1 0 0 0 0 2

(n)3 ∅ 1 2 10 11 12 20 21 22 100
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