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Characters and where do we go from here?



We denote the nth symmetric group by

Sn = {σ : σ is a permutation of 1, . . . ,n}.

Given a set of permutation patterns Π we let

Sn(Π) = {σ ∈ Sn : σ avoids every π ∈ Π}.



As a child, Pattern Avoidance liked to compute cardinalities like

|Sn(Π)|.



As a teen, Pattern Avoidance took to driving and computing
generating functions in one or two variables like∑

σ∈Sn(Π)

qdesσ.



As an adult, Pattern Avoidance started leaping the Tower of
London in a single bound and working with generating
functions in infinitely many variables.



Let x = {x1, x2, . . . }. For a monomial in x we use the notation

xn1
i1

xn2
i2
. . . xnk

ik
= xN

I , I = (i1, i2, . . . , ik ), N = (n1,n2, . . . ,nk ).

Ex. x7
2 x9

5 x3
8 = x(7,9,3)

(2,5,8) which has degree 7 + 9 + 3 = 19.

The degree of xN
I is defined by deg xN

I = n1 + n2 + · · ·+ nk .
The set of formal power series over the real numbers is

R[[x]] =

f (x) =
∑
I,N

cI,NxN
I : cI,N ∈ R for all I,N

 .

It is an algebra with the usual addition, multiplication, and
scalar multiplication of series. Call f (x) ∈ R[[x]] homogeneous
of degree n and write deg f (x) = n if we have deg xN

I = n for all
monomials xN

I in f (x).

Ex. deg(x3
1 x4

3 + x2
1 x3

2 x2
4 ) = 7, but x2

1 x4
3 + x2

1 x3
2 x2

4 is not
homogeneous.



Call f (x) ∈ R[[x]] a symmetric function (SF) if whenever xN
I

appears in f (x) and there is a bijection I → J then the
monomial xN

J appears in f (x) with the same coefficient.

Ex. 5x1x2 + 5x1x3 + 5x2x3 + · · ·+ 7x2
1 x2 + 7x1x2

2 + 7x2
1 x3 + . . .

The set of symmetric functions homogeneous of degree n is

Symn = {f (x) ∈ R[[x]] : f (x) is a SF and deg f (x) = n}.

This is a vector space over R with bases indexed by partitions.
A weakly decreasing sequence of positive integers
λ = (λ1, λ2, . . . , λk ) is a partition of n, written λ ` n, if we have∑

i λi = n. The λi are called parts.

Ex. λ ` 4 : (4), (3,1), (2,2), (2,1,1), (1,1,1,1).



Given λ = (λ1, . . . , λk ) the associated monomial SF is

mλ = xλ1
1 . . . xλk

k + terms needed to make the function symmetric.

Ex. m(2,1) = x2
1 x2 + x1x2

2 + x2
1 x3 + x1x2

3 + x2
2 x3 + x2x2

3 + . . .

Clearly the mλ where λ ` n form a basis for Symn.

The Ferrers diagram of λ = (λ1, . . . , λk ) ` n is an array of
left-justified rows of boxes with λi boxes in row i . A standard
Young tableau (SYT) of shape λ is a filling, P, of the Ferrers
diagram of λ with 1, . . . ,n each used exactly once such that
rows and columns increase. A semistandard Young tableau
(SSYT) of shape λ is a filling, T , of the Ferrers diagram of λ
with positive integers such that rows weakly increase and
columns strictly increase.

Ex. (3,3,1) = , P = 1 3 6
2 5 7
4

, T = 1 1 3
2 4 4
6



SYT(λ) := {P : P is a standard Young tableau of shape λ},
SSYT(λ) := {T : T is a semistandard Young tableau of shape λ}.
A semistandard Young tableau T has associated monomial

xT =
∏

i

xnumber of i ’s in T
i .

Ex. T = 1 1 3 6
2 4 4

has xT = x2
1 x2x3x2

4 x6.

Another basis of Symn uses the Schur SFs defined by

sλ =
∑

T∈SSYT(λ)

xT .

Ex. If λ = (2,1) then

T : 1 1
2

, 1 2
2

, 1 1
3

, 1 3
3

, . . . , 1 2
3

, 1 3
2

, 1 2
4

, 1 4
2

, . . .

s(2,1) = x2
1 x2 + x1x2

2 + x2
1 x3 + x1x2

3 + . . . + 2x1x2x3 + 2x1x2x4 + . . .



Call f (x) ∈ R[[x]] a quasisymmetric function (QSF) if whenever
xN

I appears in f (x) and there is a order-preserving bijection
I → J then xN

J appears in f (x) with the same coefficient.

Ex. f (x) = 6x2
1 x2 + 6x2

1 x3 + 6x2
2 x3 + . . .

Note that symmetric functions are quasisymmetric, but not
conversely. The set of quasisymmetric functions homogeneous
of degree n is

QSymn = {f (x) ∈ R[[x]] : f (x) is a QSF and deg f (x) = n}.

This vector space over R has bases indexed by compositions.
A sequence of positive integers α = (α1, α2, . . . , αk ) is a
composition of n, written α |= n, if we have

∑
i αi = n.

Ex. α |= 3 : (3), (2,1), (1,2), (1,1,1).



Given α = (α1, . . . , αk ) the associated monomial QSF is

Mα = xα1
1 . . . xαk

k + terms to make the function quasisymmetric.

Ex. M(1,2) = x1x2
2 + x1x2

3 + x2x2
3 + . . .

Clearly the Mα where α |= n form a basis for QSymn. Also

mλ =
∑
α

Mα

where the sum is over all rearrangements α of λ.

Ex. m(2,1,1) = M(2,1,1) + M(1,2,1) + M(1,1,2)

Let [n] = {1,2, . . . ,n}. There is a bijection

{α : α |= n} ←→ {S : S ⊆ [n − 1]}

by (α1, α2, . . . , αk ) 7→ {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1}.
Ex. If n = 9 then (3,1,2,2,1) 7→ {3,4,6,8}.



Given S ⊆ [n − 1] the associated fundamental QSF is

FS =
∑

xi1xi2 . . . xin

summed over i1 ≤ i2 ≤ · · · ≤ in with ij < ij+1 if j ∈ S.

Ex. n = 3, S = {1}. Sum over xixjxk with i < j ≤ k to get
F{1} = x1x2

2 + x1x2
3 + . . . + x1x2x3 + x1x2x4 + · · ·

Standard Young tableau P with n elements has descent set

Des P = {i : i + 1 is in a lower row than i} ⊆ [n − 1].

Theorem (Gessel, 1984)
For any λ ` n

sλ =
∑

P∈SYT(λ)

FDes P .

Ex. Let λ = (3,2).

P :
1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

s(3,2) = F{3} + F{2,4} + F{2} + F{1,4} + F{1,3}.



At Permutation Patterns 2014, Alex Woo asked the question: is
there a way to combine pattern avoidance and quasisymmetric
functions? Permutation σ = a1a2 . . . an has descent set and
descent number

Desσ = {i : ai > ai+1} and desσ = |Desσ|.

Ex. 1 2 3 4 5 6

σ = 5 > 1 4 6 > 3 > 2
, Desσ = {1,4,5}, desσ = 3.

Given a set of permutations Π, define

Qn(Π) =
∑

σ∈Sn(Π)

FDesσ.

Questions to ask
(1) When is Qn(Π) symmetric?
(2) If Qn(Π) is symmetric, when does its expansion in the Schur
basis have nonnegative coefficients? This is called being Schur
nonnegative.



Theorem (S)
Suppose {123,321} 6⊆ Π ⊆ S3. TFAE
1. Qn(Π) is symmetric for all n.
2. Qn(Π) is Schur nonnegative for all n.
3. Π is an entry in the following table.
Π Qn(Π)

∅
∑

λ f λsλ
{123}

∑
c(λ)≤2 f λsλ

{321}
∑

r(λ)≤2 f λsλ
{132,213}; {132,312}; {213,231}; {231,312}

∑
λ a hook sλ

{123,132,312}; {123,213,231}; {123,231,312} s(1n) + s(2,1n−2)

{132,213,321}; {132,312,321}; {213,231,321} s(n) + s(n−1,1)

{132,213,231,312} s(n) + s(1n).

In all sums λ runs over partitions of n, f λ = |SYT(λ)|, c(λ) and
r(λ) are the number of columns and rows of λ, and 1k stands
for k copies of the part 1.



If π = a1a2 . . . am then π + ` = (a1 + `)(a2 + `) . . . (am + `).

Ex. If π = 25314 then π + 2 = 47536.

If π ∈ S` and π′ ∈ Sm then their shuffle set is

π� π′ = {σ formed from interleaving π and π′ + `}.

Ex. 21� 12 = {2134, 2314, 2341, 3214, 3241, 3421}.

Given sets of permutation Π,Π′ we let

Π� Π′ =
⋃

π∈Π,π′∈Π′

π� π′.

Theorem (Hamaker, Lewis, Pawlowski, S)
For any sets of permutations Π,Π′ and any n

Qn(Π� Π′) = Qn(Π′) +
n−1∑
k=0

Qk (Π)(s1Qn−k−1(Π′)−Qn−k (Π′)).



Theorem

Qn(Π� Π′) = Qn(Π′) +
n−1∑
k=0

Qk (Π)(s1Qn−k−1(Π′)−Qn−k (Π′)).

Corollary (HLPS)
(1) Qn(Π), Qn(Π′) are symmetric ∀n =⇒ so is Qn(Π� Π′).
(2) Qn(Π) is Schur nonnegative ∀n =⇒ so is Qn(Π�Sm) ∀m.

Proof.
(1) This follows from the previous theorem and the fact that
symmetric functions form an algebra.
(2) Since Π�Sm = Π� {1}� {1} . . .� {1}, it suffices to prove
the result for Π� {1}. But Sn(1) = ∅ for n ≥ 1. Thus in the
theorem Qn−k (Π′) = Qn−k (1) = 0 and the result follows.
This corollary explains and generalizes four of results from the
first theorem:

{123,132,312} = {12}� {1}, {123,213,231} = {1}� {12},
{213,231,321} = {21}� {1}, {132,312,321} = {1}� {21}.



Permutation π = a1a2 . . . an has complement

πc = (n + 1− a1)(n + 1− a2) . . . (n + 1− an).

Ex. If π = 35421 then πc = 31245.
Clearly Desπc = [n − 1] \ Desπ. We let Πc = {πc : π ∈ Π}.
The transpose of a partition λ is the partition λt obtained by
reflecting the Ferrers diagram of λ along the main diagonal.

Ex. If λ = (3,2) = then λt = = (2,2,1).

Theorem (HLPS)
(1) Qn(Π) is symmetric if and only if Qn(Πc) is too. In this case,

Qn(Π) =
∑
λ

cλsλ ⇐⇒ Qn(Πc) =
∑
λ

cλsλt .

(2) Qn(Π) is Schur nonnegative if and only if Qn(Πc) is too.
This cuts the work in proving the first theorem by about half.



For α = (α1, α2, . . . , αk ) |= n, the α-decomposition of π ∈ Sn is

π = π1π2 . . . πk , where |πi | = αi for all i .

The α-descent set and α-descent number of π are

Desα π =
⋃

i

Desπi and desα π = |Desα π|.

Ex. π = 514632, α = (2,3,1) =⇒ π = π1π2π3 = 51|463|2.
So π = 5 > 1 | 4 6 > 3 | 2 with Desα π = {1,4} and desα π = 2.

Integer sequence a1a2 . . . ap is comodal (complement
unimodal) if, for some m,

a1 > a2 > · · · > am < am+1 < · · · < ap.

Say π ∈ Sn is α-comodal if each πi in its α-decomposition is
comodal.
Ex. π = 615438279 is (3,2,4)-comodal: 615|43|8279. It is

not (4,1,4)-comodal: 6154|3|8279 and 6154 is not comodal.
If Π is a set of permutations then Πα denotes the α-comodal
permutations in Π.



Call Π ⊆ Sn fine if there is an Sn-character χ with, for all α,

χ(α) =
∑
π∈Πα

(−1)desα π,

where χ(α) is the value of χ on the conjugacy class indexed by
α. Examples of fine sets of permutations include
(1) unions of sets of permutations with given inversion number,
(2) unions of conjugacy classes of permutations,
(3) unions of Knuth classes of permutations.
Let

Qn(Π) =
∑
π∈Π

FDesπ.

Theorem (Adin, Roichman)
For Π ⊆ Sn: Π is fine if and only if Qn(Π) is Schur nonnegative.
Note that this is a statement about a specific value of n, while
the first theorem is a statement for all n.



Other problems to play with.
(1) Define Π and Π′ to be Q-Wilf equivalent if Qn(Π) = Qn(Π′)
for all n. What are the Q-Wilf equivalence classes in Sn?
(2) Stembridge defined an interesting subalgebra of QSymn call
the peak algebra. When is Qn(Π) in this subalgebra?
(3) Lam and Pylyavskyy have introduced multi-versions of
symmetric functions and of quasisymmetric functions. It would
be interesting to study the analogue of Qn(Π) in this context.

Play on!
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