Pattern-avoiding polytopes and Bruhat orders I

Robert Davis and Bruce Sagan Michigan State University www.math.msu.edu/~sagan

January 8, 2017

Introduction to polytopes

Pattern-avoiding Birkhoff polytopes and weak Bruhat order

The dimension of $B_n(132, 312)$

A *polytope* is the convex hull of (smallest convex body containing) a set of points $v_1, \ldots, v_k \in \mathbb{R}^n$, written

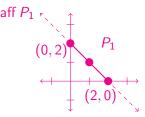
$$P = \operatorname{conv}\{v_1,\ldots,v_k\}.$$

All our polytopes will be *integral*, meaning $v_1, \ldots, v_k \in \mathbb{Z}^n$.

(1) Dimension. The affine span of P, aff P, is the smallest affine subspace containing P. The dimension of P is

 $\dim P = \dim \operatorname{aff} P.$

Ex. If $v_1 = (2,0)$ and $v_2 = (0,2)$ then $P_1 = \operatorname{conv}\{v_1, v_2\}$ is



So dim $P_1 = 1$.

(2) Volume. The *(relative) volume* of polytope *P* is

vol P = volume with respect to the lattice $\mathbb{Z}^n \cap \operatorname{aff} P$.

A simplex is $\Sigma = \operatorname{conv}\{v_1, \ldots, v_{k+1}\}$ with dim $\Sigma = k$. Call Σ unimodular if vol Σ is minimum with respect to $\mathbb{Z}^n \cap \operatorname{aff} \Sigma$. A unimodular simplex has volume vol $\Sigma = 1/(\dim \Sigma)$! The normalized volume of polytope P is

 $Vol P = (\dim P)! vol P.$

Ex. Let P_1 be as before and $P_2 = \text{conv}\{(0,0), (1,0), (0,1)\}$.

So vol $P_1 = 2$, and vol $P_2 = 1/2$. Both P_i are simplices with P_2 unimodular and P_1 not. Also Vol $P_1 = 2$ and Vol $P_2 = 1$.

(3) h^* -polynomials. The *mth dilate* of polytope *P* is

$$mP = \{mv \mid v \in P\}.$$

The Ehrhart polynomial of P is

$$\mathcal{L}_P(m) = |mP \cap \mathbb{Z}^n|.$$

Theorem (Ehrhart-Stanley)

If P is integral then $\mathcal{L}_P(m)$ is a polynomial in m and for some d

$$\sum_{m \ge 0} \mathcal{L}_{P}(m) t^{m} = \frac{\sum_{j=0}^{d} h_{j}^{*} t^{j}}{(1-t)^{\dim P+1}}$$

where $\sum_{j} h_{j}^{*} t^{j} \in \mathbb{Z}_{\geq 0}[t]$ is called the h^{*} -polynomial of P, $h^{*}(P; t)$. **Ex.** Let $P = \text{conv}\{(0,0), (1,0), (0,1), (1,1)\}.$

So $\mathcal{L}_{P}(m) = (m+1)^{2}$.

Let \mathfrak{S}_n be the *n*th symmetric group. If $\sigma = \sigma_1 \dots \sigma_n \in \mathfrak{S}_n$ and $\pi = \pi_1 \dots \pi_k \in \mathfrak{S}_k$ then σ contains the pattern π if there is a subsequence of σ order isomorphic to π . Otherwise σ avoids π . **Ex.** $\sigma = 2415376$ contains $\pi = 312$ because of the subsequence 413 but avoids $\pi = 321$ since it has no subsequence $s_i > s_j > s_k$. For any set of permutations Π , let

$$\operatorname{Av}_n(\Pi) = \{ \sigma \in \mathfrak{S}_n \mid \sigma \text{ avoids every } \pi \in \Pi \}.$$

If M_{σ} is the permutation matrix of σ then the *Birkhoff polytope* is

$$B_n = \operatorname{conv} \{ M_\sigma \mid \sigma \in \mathfrak{S}_n \} \subseteq \mathbb{R}^{n \times n}$$

(1) dim $B_n = (n-1)^2$, (2) vol B_n has only been calculated for $n \le 10$, (3) $h^*(B_n; t)$ is symmetric and unimodal. Define the Π -avoiding Birkhoff polytope by

$$B_n(\Pi) = \operatorname{conv}\{M_\sigma \mid \sigma \in \operatorname{Av}_n(\Pi)\} \subseteq B_n.$$

Here we study $B_n(132, 312)$; other Π are in our paper.

Let $Q_n(132, 312)$ be Av_n(132, 312) partially orderd by weak Bruhat order, that is, we have a cover $\pi \leq \sigma$ if for some *i*,

$$\sigma = \pi(i, i+1)$$
 where $\pi_i < \pi_{i+1}$.

Let M(n) be the poset of shifted Young diagrams contained in $(n, \ldots, 2, 1)$ ordered by inclusion.

Proposition

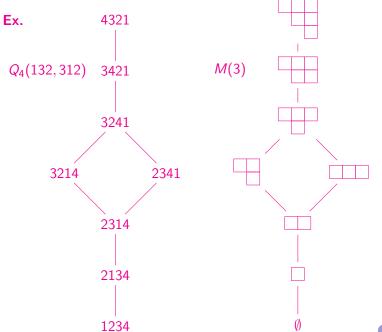
For all n we have

 $Q_n(132, 312) \cong M(n-1).$

Proof sketch. The map $\phi : Q_n(132, 312) \rightarrow M(n-1)$ given by

$$\phi(\sigma) = \operatorname{Des} \sigma$$

is an isomorphism where $Des \sigma$ is the descent set of σ .



Let $\Delta(Q_n(132, 312))$ be the order complex of all chains Γ in $Q_n(132, 312)$. Since $Q_n(132, 312) \cong M(n-1)$ which is a distributive lattice, $\Delta(Q_n(132, 312))$ is shellable. Consider the map $f : \Delta(Q_n(132, 312)) \to B_n(132, 312)$ defined by

$$f(\sigma_1 < \cdots < \sigma_k) = \operatorname{conv}\{M_{\sigma_1}, \ldots, M_{\sigma_k}\}.$$

Proposition

 $\mathcal{T}_n(132, 312) = \{ f(\Gamma) \mid \Gamma \in \Delta(Q_n(132, 312)) \}$

is a set of unimodular simplices in $B_n(132, 312)$.

Proof sketch. Induct on maximal chains using the shelling order.□

From the previous result, for Γ a maximal chain in $Q_n(132, 312)$,

dim
$$B_n(132, 312) \ge \dim \Gamma = |(n-1, \dots, 2, 1)| = \binom{n}{2}.$$

Theorem

dim
$$B_n(132, 312) = \binom{n}{2}$$
.

THANKS FOR LISTENING!

AND PLEASE STAY FOR THE NEXT TALK!