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Abstract

Simion (J. Combin. Theory Ser. A 94 (1994) 270) conjectured the unimodality of a sequence

counting lattice paths in a grid with a Ferrers diagram removed from the northwest corner.

Recently, Hildebrand (J. Combin. Theory Ser. A 97 (2002) 108) and then Wang (A simple

proof of a conjecture of Simion, J. Combin. Theory Ser. A 100 (2002) 399) proved the stronger

result that this sequence is actually log concave. Both proofs were mainly algebraic in nature.

We give two combinatorial proofs of this theorem.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In this note we present two injective proofs of a strengthening of a conjecture of
Simion [8]. To describe the result, let l ¼ ðl1; l2;y; lkÞ be the Ferrers diagram of a
partition viewed as a set of squares in English notation. (See any of the texts [1,7,9]
for definitions of terms that we do not define here.) The shape l will be fixed for the
rest of this paper.

Consider a grid with the vertices labeled ði; jÞ for i; jX0 as in Fig. 1. Place l in the
northwest corner of this array so that its squares coincide with those of the grid.

A northeastern lattice path is a lattice path on the grid in which each step goes one
unit to the north or one unit to the east. Let Nlðm; nÞ ¼ Nðm; nÞ be the number of
northeastern lattice paths from ðm; 0Þ to ð0; nÞ that do not go inside l (although they
may touch its southeastern boundary), and let Nðm; nÞ be the set of such paths. In
particular, Nðm; nÞ ¼ 0 if either the starting or ending point is inside l:
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Simion [8] conjectured that for all m; nX0 the sequence

Nð0;m þ nÞ;Nð1;m þ n � 1Þ;y;Nðm þ n; 0Þ

is unimodal. Lattice path techniques for proving unimodality were investigated by
Sagan [6], but the conjecture remained open at that point. Recently, Hildebrand [4]
proved the stronger result that this sequence is actually log concave by mostly
algebraic means. Shortly thereafter, Wang [10] simplified Hildebrand’s proof using
results about Polya frequency sequences. In the present work, we will give two
injective proofs of the strong version of Simion’s conjecture. The one in Sections 3
and 4 employs ideas from Hildebrand’s proof while the one in Section 5 is more
direct. Our injections come from a method of Lindström [5], later popularized by
Gessel and Viennot [2,3], that can be used to prove total positivity results for
matrices. For an exposition, see Sagan’s book [7, pp. 158–163].

We end this section by reiterating the statement of the main theorem for easy

reference. Notice that when l ¼ | it specializes to the well-known result that the rows
of Pascal’s triangle are log concave.

Theorem 1 (The Strong Simion Conjecture). Let l be the Ferrers diagram of a

partition and let Nðm; nÞ be the number of northeastern lattice paths in the grid

from ðm; 0Þ to ð0; nÞ which do not intersect the interior of l: Then for all m; nX0
the sequence

Nð0;m þ nÞ;Nð1;m þ n � 1Þ;y;Nðm þ n; 0Þ

is log concave.

2. A decomposition of the problem

This preliminary part of the first proof is from [4]. We include it so that
our exposition will be self-contained. We need to prove that for all m; n40

(1,0)        (1,1)     (1,2)     (1,3)

(0,0)        (0,1)    (0,2)     (0,3)

Fig. 1. Labeling our points in the grid.
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we have

Nðm � 1; n þ 1ÞNðm þ 1; n � 1ÞpNðm; nÞ2:

To prove this, it suffices to show that for all l and all mXl01; nXl1 (where l0 is the

conjugate or transpose of l) we have

Nðm � 1; n þ 1ÞNðm þ 1; nÞpNðm; nÞNðm; n þ 1Þ:

Then, using the fact that the previous inequality holds for all partitions and that
Nlðm; nÞ ¼ Nl0 ðn;mÞ; we also have

Nðm þ 1; n � 1ÞNðm; n þ 1ÞpNðm; nÞNðm þ 1; nÞ:

Now multiplying the last two inequalities together and simplifying gives the first.
The second inequality can be proved by demonstrating another pair of

inequalities, namely

Nðm; n þ 1ÞNðm þ 1; nÞpNðm; nÞNðm þ 1; n þ 1Þ ð1Þ

and

Nðm � 1; n þ 1ÞNðm þ 1; n þ 1ÞpNðm; n þ 1Þ2: ð2Þ

Multiplying these two inequalities together and cancelling gives the desired result.

3. Proof of (1)

In this section, we prove that (1) holds by constructing an injection

C : Nðm; n þ 1Þ �Nðm þ 1; nÞ-Nðm; nÞ �Nðm þ 1; n þ 1Þ:

Consider a path pair ðp; qÞANðm; n þ 1Þ �Nðm þ 1; nÞ: Then p and q must
intersect. Let C be their first (most southwestern) intersection point. Say that C splits
p into parts p1 and p2; and splits q into parts q1 and q2: Then the concatenation of p1

and q2 is a path in Nðm; nÞ; and the concatenation of q1 and p2 is a path in
Nðm þ 1; n þ 1Þ: So define Cðp; qÞ ¼ ðp1q2; q1p2Þ ¼ ðp0; q0Þ: It is easy to see that the
image of C is exactly all ðp0; q0ÞANðm; nÞ �Nðm þ 1; n þ 1Þ such that p0 and q0

intersect. It is also simple to verify that if Cðp; qÞ ¼ ðp0; q0Þ; then applying the same
algorithm to ðp0; q0Þ recovers ðp; qÞ: So C is injective. See Fig. 2 for an example.

CC

p

q

p’

q’

Fig. 2. Action of C:
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4. Proof of (2)

In this section, we construct an injection

F : Nðm � 1; nÞ �Nðm þ 1; nÞ-Nðm; nÞ2;

thus proving (2).
Let ðp; qÞANðm � 1; nÞ �Nðm þ 1; nÞ: If P ¼ ði; jÞ and Q ¼ ðk; jÞ are vertices

with the same second coordinate, then define the vertical distance from P to Q to be
dvðP;QÞ ¼ k � i: Now the vertical distance from a point of p to a point of q starts at
2 for their initial vertices and ends at 0 for their final ones. Since vertical distance can
change by at most one with a step of a path, there must be some vertical distance
equal to 1. Let PAp and QAq be the first (most southwest) pair of points with
dvðP;QÞ ¼ 1:

Let p1 and p2 be the portions of p before and after P; respectively, and similarly for
q: Now let

Fðp; qÞ ¼ ðp0
1q2; q0

1p2Þ;

where p0
1 is p1 moved south one unit and q0

1 is q1 moved north one unit. Since P and

Q are the first pair of points at vertical distance one, q0
1 will not go inside l and the

concatenations are valid paths in Nðm; nÞ: This proves that F is well defined.
We now prove that F is injective by showing that given any ðp0; q0Þ in the image of

F; there is a unique pair ðp; qÞ mapping onto it. Since ðp0; q0Þ is in F’s image, there
must be a pair of points P0Ap0 and Q0Aq0 with dvðP0;Q0Þ ¼ �1: Furthermore, if we
pick P0;Q0 to be the first such pair, then by the definition of F we must have P0 ¼ Q

and Q0 ¼ P: It follows that p; q are uniquely determined by moving the portion of p0

up to P0 north one unit and the portion of q0 up to Q0 south one unit. This proves
injectivity and completes the first proof of the Strong Simion Conjecture. For an
example with l ¼ ð2; 1Þ and ðm; nÞ ¼ ð5; 3Þ; see Fig. 3. &

5. A more direct proof

The reader may wonder if we can do away with splitting our problem into two
parts, that is, inequalities (1) and (2). The answer is yes, and the necessary injection is

p’1

q

Q

P
p

q’1

p2

q2

Fig. 3. Action of F:
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just a modification F of the map F: This will give us a second, completely
combinatorial, proof of our main theorem.

Take a path pair ðp; qÞANðm � 1; n þ 1Þ �Nðm þ 1; n � 1Þ: Notice that p and q

must intersect. So before the first intersection there must be a first pair of points PAp

and QAq with dvðP;QÞ ¼ 1: Similarly, after the last intersection there must be a last

pair of points PAp and QAq with dhðP;QÞ ¼ �1 where dh is horizontal distance

which is defined analogously. Let P and P divide p into subpaths p1; p2; p3 and use
the same notation for q: Then define

Fðp; qÞ ¼ ðp0
1q2p00

3; q0
1p2q00

3Þ;
where p0

1 is p1 moved south one unit, p00
3 is p3 moved west one unit, and q0

1; q00
3 are

defined in the analogous way but moving in the opposite directions. It is a simple job

to verify that F is well defined and injective just as we did with F:
This completes the second proof of Theorem 1. &

We have two final remarks. First of all, it is clear from the geometry of the
situation that if l is self-conjugate then the sequence in Theorem 1 is also symmetric,
but this does not hold in general. One might also wonder if this sequence has the
stronger property that the associated polynomial generating function has only real
zeros. This is not always true as can be seen by taking l ¼ ð1Þ and m þ n ¼ 4: In this

case, the associated polynomial is xð3x2 þ 5x þ 3Þ which has two complex roots. It
might be interesting to determine for which shapes the real zero property holds.
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