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Abstract

Ascent sequences play a key role in the combinatorics of Fishburn structures.
Difference ascent sequences are a natural generalization obtained by replacing
ascents with d-ascents. We have recently extended the so-called hat map to
difference ascent sequences, and self-modified difference ascent sequences are
the fixed points under this map. We characterize self-modified difference as-
cent sequences and enumerate them in terms of certain generalized Fibonacci
polynomials. Furthermore, we describe the corresponding subset of d-Fishburn
permutations.

1 Introduction

Let n be a nonnegative integer and let α : [n] → [n] be an endofunction, where
[n] = {1, 2, . . . , n}. For succinctness, we may identify α with the word α = a1 . . . an,
where ai = α(i) for each i ∈ [n]. An index i ∈ [n] is an ascent of α if i = 1 or i ≥ 2
and ai > ai−1. We define the ascent set of α by

Ascα = {i ∈ [n] | i is an ascent of α}

and we let ascα = #Ascα denote the number of ascent in α. Our conventions differ
from some others in the literature in that we are taking the indices of ascent tops,
rather than bottoms, and that the first position is always an ascent.

We call α an ascent sequence of length n if for all i ∈ [n] we have

ai ≤ 1 + asc(a1 . . . ai−1).

In particular, a1 ≤ 1 + asc ϵ = 1, where ϵ denotes the empty sequence. Since the
entries of α are positive integers, this forces a1 = 1. We let

A = {α | α is an ascent sequence}.
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As an example, the ascent sequences of length 3 are

111, 112, 121, 122, 123.

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes, and Kitaev
in 2010 [BMCDK10]. They played a crucial role in the enumeration of interval orders.
In particular, the number of ascent sequences of length n is given by the nth Fish-
burn number (A022493 in the OEIS [OEI]), which is also the number of unlabeled
interval orders of size n. Since then, ascent sequences have also been studied in their
own right [CDD+13, DS11, MS14, KR17, CCEPG22, GK23, BP15, CMS14, Yan14,
FJL+20, JS23]. Different variants and generalizations of ascent sequences have been
proposed. Of particular interest to us are the weak ascent sequences [BCD23] and,
more generally, the difference ascent sequences recently introduced by Dukes and
Sagan [DS24].

Let d be a nonnegative integer. An index i ∈ [n] is a d-ascent if i = 1 or i ≥ 2 and

ai > ai−1 − d.

As with ordinary ascents, we define the d-ascent set of α by

Ascd α = {i ∈ [n] | i is a d-ascent of α}.

and we let ascd α = #Ascd α denote the number of d-ascent in α. Note that a 0-
ascent is simply an ascent, while a 1-ascent (ai > ai−1 − 1 or equivalently ai ≥ ai−1)
is what is called a weak ascent.

We call α a d-ascent sequence if for all i ∈ [n] we have

ai ≤ 1 + ascd(a1 . . . ai−1).

Once again, the above restriction forces a1 = 1. Let

Ad,n = {α | α is a d-ascent sequences of length n}

and
Ad =

⊎
n≥0

Ad,n .

Clearly, for d = 0 we recover the set of ascent sequences, while for d = 1 we obtain
the set of weak ascent sequences of Bényi, Claesson, and Dukes [BCD23].

Given an ascent sequence α we can form the corresponding modified ascent se-
quence [BMCDK10] as follows: Scan the ascents of α from left to right; at each
step, every element strictly to the left of and weakly larger than the current ascent
is incremented by one. More formally, let

M(α, j) = α+, where α+(i) = ai +

{
1 if i < j and ai ≥ aj ,
0 otherwise,

and extend the definition of M to multiple indices j1,j2,. . . ,jk by

M(α, j1, j2, . . . , jk) = M
(
M(α, j1, . . . , jk−1), jk

)
.
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Then
α̂ = M(α,Ascα),

where in this context Ascα is the ascent list (rather than set) of α. For example,
consider α = 121242232. The ascent set of α is {1, 2, 4, 5, 8}; the ascent list is formed
by listing those entries is increasing order, Ascα = (1, 2, 4, 5, 8), and we compute α̂ as
follows, where at each stage the entry governing the modification is underlined while
the entries which are modified are bold:

α = 121242232

M(α, 1) = 121242232

M(α, 1, 2) = 121242232

M(α, 1, 2, 4) = 131242232

M(α, 1, 2, 4, 5) = 131242232

M(α, 1, 2, 4, 5, 8) = 141252232 = α̂

Let
Â = {α̂ | α ∈ A}.

The construction described above can easily be inverted since Ascα = Asc α̂. In
other words, the mapping A → Â by α 7→ α̂ is a bijection.

We [CCS24] have recently extended the “hat map”, α 7→ α̂, to d-ascent sequences:
Let d ≥ 0 and α ∈ Ad. Define d-hat of α as

hatd(α) = M
(
α,Ascd α

)
,

where Ascd α is the d-ascent list of α obtained by putting the set in increasing order,
and let

Âd = hatd(Ad)

denote the set of modified d-ascent sequences. As a special case, hat0(α) = α̂, for
each α ∈ A0, and Â0 coincides with the set of modified ascent sequences defined by
Bousquet-Mélou et al. [BMCDK10]. We will also use α̂ for hatd(α) if d is clear from
context.

One may alternatively define the set Âd recursively [CCS24]: Let d ≥ 0 be a non-
negative integer. Let Âd,0 = {ϵ} and Âd,1 = {1}. Suppose n ≥ 2. Every α̂ ∈ Âd,n is
of one of two forms depending on whether the last letter forms a d-ascent with the
penultimate letter:

• α̂ = β̂a and 1 ≤ a ≤ b− d, or

• α̂ = β̂+a and b− d < a ≤ 1 + max β̂,

where β̂ ∈ Âd,n−1 and the last letter of β̂ is b.

Let us recall a few more definitions and results from [CCS24] that we shall need below.
An endofunction α = a1 . . . an is an inversion sequence if ai ≤ i for each i ∈ [n]. Let
In denote the set of endofunctions of length n and let I = ∪n≥0 In. We showed that

I =
⋃
d≥0

Ad,
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and we defined the set Î of modified inversion sequences by

Î =
⋃
d≥0

Âd . (1)

A Cayley permutation is an endofunction α where Imα = [k] for some k ≤ n. Thus,
a nonempty endofunction α is a Cayley permutation if it contains at least one copy
of each integer between 1 and its maximum element. The set of Cayley permutations
of length n is denoted by Cayn.

Proposition 1.1 ([CCS24]). Given d ≥ 0, let α ∈ Ad and let α̂ = hatd(α). Then

(a) α̂ is a Cayley permutation,

(b) Ascd α = nub α̂,

(c) Ascd α̂ ⊆ nub α̂,

where
nubα = {minα−1(j) | 1 ≤ j ≤ maxα}

is the set of positions of leftmost occurrences.

2 Self-modified d-ascent sequences

Recall [BMCDK10] that an ascent sequence α is self-modified if α = hat0(α). We
extend this notion to d-ascent sequences by saying that α ∈ Ad is d-self-modified if
hatd(α) = α. Let

Ãd = {α ∈ Ad | hatd(α) = α}

denote the set of d-self-modified d-ascent sequences; or, in short, self-modified d-
ascent sequences. The main goal of this section is to obtain a better understanding
of the sets Ãd. Namely, in Theorem 2.5 we prove that Ãd = Ad ∩ Âd. Further, we
prove in Theorem 2.6 that Ãd+1 ⊆ Ãd for each d ≥ 0, from which the curious chain
of inclusions

· · · ⊆ Ã2 ⊆ Ã1 ⊆ Ã0 ⊆ A0 ⊆ A1 ⊆ A2 ⊆ · · · (2)

follows. We start with a couple of simple lemmas.

Let α = a1 . . . an be an endofunction. An index i ∈ [n] is a left-right maximum of α
if ai > aj for each j ∈ [i− 1]. We will use the notation

lrMaxα = {i ∈ [n] | i is a left-right maximum of α}.

It is easy to see that

lrMaxα ⊆ nubα and lrMaxα ⊆ Asc0 α, (3)

two facts we will use often in this section.

Lemma 2.1. For every α ∈ I and d ≥ 0, we have lrMaxα ⊆ Ascd α.
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Proof. By equation (3), we have

lrMaxα ⊆ Asc0 α ⊆ Ascd α, (4)

where the last set containment follows by definition of d-ascent.

Lemma 2.2. Let β ∈ Ad,n and let β̂ = hatd(β). Let β̂+ be obtained by increasing
by one each entry of β̂ greater than or equal to a, for some a ≥ 1. If β = β̂+, then
β = β̂.

Proof. For i ∈ [n], denote by bi, b′i and b′′i the ith entry of β, β̂ and β̂+, respectively.
By definition of β̂ and β̂+, we have

bi ≤ b′i ≤ b′′i .

If β = β̂+, then bi = b′i = b′′i for every i ∈ [n], and our claim follows.

Proposition 2.3. Let α ∈ Ad. The following three statements are equivalent:

(a) hatd(α) = α.

(b) Ascd α ⊆ lrMaxα.

(c) Ascd α ⊆ nubα.

Proof. We prove (a)⇔ (b) and (a)⇔ (c).

Let us start by proving (a)⇔ (b) by induction on the length of α. Our claim holds
if α has length at most one. Let α ∈ Ad and suppose that α = βa, for some β ∈ Ad,n,
where 1 ≤ a ≤ 1 + ascd β and n ≥ 1. Let α̂ = hatd(α) and β̂ = hatd(β). We
shall consider two cases, according to whether or not a forms a d-ascent with the last
letter b of β:

α̂ =

{
β̂a, if 1 ≤ a ≤ b− d;

β̂+a, if b− d < a ≤ 1 + ascd β.

Initially, suppose that α = α̂. We show that Ascd α ⊆ lrMaxα. If a ≤ b − d, then
β = β̂ since α = α̂. Moreover,

Ascd α = Ascd β ⊆ lrMaxβ = lrMaxα,

where we used induction on β. Otherwise, suppose that b− d < a. Since we assumed
α = α̂, we have βa = β̂+a, from which β = β̂+ follows. By Lemma 2.2, we have
β = β̂. Furthermore, since β̂ = β̂+, no entry of β̂ is increased by one in going from β̂
to β̂+. Thus, a > c for each entry c of β̂ = β, i.e. n+ 1 ∈ lrMaxα. Finally,

Ascd α = Ascd β ⊎ {n+ 1} ⊆ lrMaxβ ⊎ {n+ 1} = lrMaxα,

where Ascd β ⊆ lrMaxβ by induction.

To prove the converse, suppose that Ascd α ⊆ lrMaxα. Then

Ascd β = Ascd α ∩ [n] ⊆ lrMaxα ∩ [n] = lrMaxβ,
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and β̂ = β follows by induction. Now, if a ≤ b− d, then

α̂ = β̂a = βa = α,

as wanted. On the other hand, if b− d < a, then

n+ 1 ∈ Ascd α ⊆ lrMaxα.

Since n + 1 ∈ lrMaxα and β̂ = β, no entry of β̂ is increased by one in β̂+. Thus
β̂+ = β̂, and α̂ = α follows immediately.

Let us now prove (a)⇔ (c). The proof is similar to the one just given so we shall
keep the same notation. If α̂ = α, then

Ascd α = nub α̂ = nubα, (5)

where the first equality is item (b) of Proposition 1.1.

On the other hand, suppose that Ascd α ⊆ nubα. Then

Ascd β = Ascd α ∩ [n] ⊆ nubα ∩ [n] = nubβ.

and β̂ = β by induction. Now, if 1 ≤ a ≤ b− d, then α̂ = β̂a = βa = α. Otherwise,
suppose that b−d < a ≤ 1+ascd β and α̂ = β̂+a = β+a. Note that β and α̂ are Cayley
permutations by item (a) of Proposition 1.1. Further, we have n+1 ∈ Ascd α ⊆ nubα.
That is, the last entry a is a leftmost copy in α = βa. Since Imβ = [k], where
k = maxβ, we must have Imα = [k + 1] and a = maxβ + 1 = k + 1. In particular,
β+ = β and thus α̂ = β+a = βa = α.

The previous proposition still holds if we replace the set inclusions with equalities in
items (b) and (c), as we show next.

Corollary 2.4. Let α ∈ Ad and let α̂ = hatd(α). Then

α̂ = α ⇐⇒ Ascd α = lrMaxα ⇐⇒ Ascd α = nubα.

Furthermore, if α ∈ Ãd then Ascd α = Asc0 α.

Proof. To prove the first part it is enough, by Proposition 2.3, to show that α̂ = α
implies

Ascd α = lrMaxα = nubα,

where the inclusions Ascd α ⊆ lrMaxα and Ascd α ⊆ nubα hold by the same propo-
sition. The equality Ascd α = lrMaxα now follows directly from Lemma 2.1. And
Ascd α = nubα was proved in (5).

Let us now prove that Ascd α = Asc0 α if α ∈ Ãd. Using equation (4) and Proposi-
tion 2.3 once more, we obtain

lrMaxα ⊆ Asc0 α ⊆ Ascd α ⊆ lrMaxα,

from which the desired equality follows.

We are now ready for the promised characterization of Ãd.
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Theorem 2.5. For each d ≥ 0, we have Ãd = Ad ∩ Âd.

Proof. If α ∈ Ãd, then α ∈ Ad and α = hatd(α) ∈ Âd as well. On the other hand,
suppose that α ∈ Ad ∩ Âd. Since α ∈ Âd, we have Ascd α ⊆ nubα by item (c) of
Proposition 1.1. Then hatd(α) = α by Proposition 2.3, i.e. we have α ∈ Ãd.

We now have all the ingredients to prove equation (2), which is an immediate conse-
quence of item (b) of the following theorem.

Theorem 2.6. For every d ≥ 0, we have:

(a) Ãd ⊆ Ã0.

(b) Ãd ⊆ Ãk for each 0 ≤ k ≤ d. In particular, Ãd+1 ⊆ Ãd.

(c) Ãd = Ã0 ∩ Âd.

Proof. (a) Let α = a1 . . . an ∈ Ãd, where n ≥ 1. By Corollary 2.4, we have Ascd α =
Asc0 α. Therefore, we have a1 = 1 and

ai+1 ≤ 1 + ascd(a1 . . . ai) = 1 + asc0(a1 . . . ai)

for each i ∈ [n− 1], from which α ∈ A0. Finally,

Asc0 α = Ascd α = lrMaxα

and hat0(α) = α follows by Corollary 2.4 again.

(b) Let α ∈ Ãd and 0 ≤ k ≤ d. We prove that α ∈ Ak and hatk(α) = α. Using
item (a) and Theorem 2.5, we have that

α ∈ Ãd ⊆ Ã0 = A0 ∩Â0 ⊆ A0 ⊆ Ak .

Furthermore,

lrMaxα ⊆ Asck α (by Lemma 2.1)
⊆ Ascd α (since k ≤ d)
= lrMaxα (by Corollary 2.4).

Thus lrMaxα = Asck α, and hatk(α) = α follows by Corollary 2.4.

(c) We start with the inclusion Ãd ⊆ Ã0 ∩ Âd. By Theorem 2.5,

Ãd = Ad ∩ Âd ⊆ Âd .

Note also that Ãd ⊆ Ã0 by item (a) of this theorem, from which the desired inclusion
follows. To prove the opposite inclusion, we can once again use Theorem 2.5 to get

Ã0 = A0 ∩Â0 ⊆ A0 ⊆ Ad

and
Ã0 ∩ Âd ⊆ Ad ∩ Âd = Ãd,

which concludes the proof.
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The only inversion sequence that is d-self-modified for every d ≥ 0 is the increasing
permutation, as we will now show.

Proposition 2.7. We have ⋂
d≥0

Ãd = {12 . . . n | n ≥ 0}.

Proof. It follows immediately from the inductive description of hatd that 12 . . . n ∈ Ãd

for each n, d ≥ 0. That is,

{12 . . . n | n ≥ 0} ⊆
⋂
d≥0

Ãd .

Conversely, suppose that α ∈ Ãd for each d ≥ 0. For a contradiction, suppose that
α ∈ I is not the increasing permutation; equivalently, let α = a1 . . . an and suppose
that there is some i ∈ [n− 1] such that ai ≥ ai+1. Note that i+1 ∈ Ascn α = [n] and
ai ≥ ai+1. Therefore, the entry ai is increased by one under the action of the map
hatn, which contradicts α ∈ Ãn.

Given α ∈ I, let us recall [CCS24] the definition of the set

H(α) = {hatd(α) | d ≥ 0 and α ∈ Ad}

of all the d-hats of α. A seemingly more general notion of self-modified sequence
arises by defining an inversion sequence α to be self-modified if α ∈ H(α). The set Ĩ
of self-modified inversion sequences is defined accordingly as

Ĩ = {α ∈ I | α ∈ H(α)}.

It turns out that self-modified inversion sequences coincide with self-modified ascent
sequences. Indeed, it is easy to see that

Ĩ =
⋃
d≥0

Ãd = Ã0, (6)

where the last equality follows by item (a) of Theorem 2.6.

To end this section, we wish to provide two alternative characterizations of Ã0. Recall
that an endofunction α = a1 . . . an is a restricted growth function if a1 = 1 and

ai+1 ≤ 1 + max(a1 . . . ai)

for each i ∈ [n− 1]. We let

RGF = {α | α is a restricted growth function}.

Note that RGF ⊆ A0. There is a standard bijection between RGFs and set partitions
of [n] where the leftmost copies correspond to the minima of the blocks (nonempty
subsets of [n]). Next, we show that restricted growth functions are Cayley permuta-
tions whose leftmost copies appear in increasing order.

Lemma 2.8. We have

RGF = {α ∈ Cay | nubα = lrMaxα}.
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Proof. We use induction on the length n of α, where the cases n = 0 and n = 1 are
trivial. Let n ≥ 2 and let α = a1 . . . an−1a = βa, where β = a1 . . . an−1 and a ∈ [n].
Initially, suppose that α ∈ RGF.

We first show that α ∈ Cay. By definition of RGF we have β ∈ RGF. So by induction
β ∈ Cay, say with image [k]. If a ≤ k then α has the same image. Otherwise the RGF
condition forces a = k + 1 and α has image [k + 1]. The proof that nubα = lrMaxα
is similar: when a ≤ k then both nub and lrMax do not change in passing from β to
α. And if a = k + 1 then n is added to both sets.

On the other hand, suppose that α ∈ Cay and nubα = lrMaxα. We show that
α ∈ RGF. If n ∈ nubα = lrMaxα, then

[maxα] = Imα (since α ∈ Cay)
= Imβ ⊎ {a} (since n ∈ nubα)

and also a = maxα since n ∈ lrMaxα. Therefore, we have a = 1 + maxβ and
Imβ = [a− 1]. In particular, β ∈ Cay and

nubβ = nubα ∩ [n− 1] = lrMaxα ∩ [n− 1] = lrMaxβ.

By induction, we have β ∈ RGF, and α ∈ RGF follows as well since a = 1 +maxβ.
The case where n /∈ nubα = lrMaxα can be proved in a similar fashion, and we leave
the details to the reader.

Next we characterize self-modified d-ascent sequences as those modified d-ascent se-
quences that are restricted growth functions.

Proposition 2.9. For each d ≥ 0, we have

Ãd = Âd ∩ RGF .

Proof. Let us start with the inclusion Ãd ⊆ Âd ∩ RGF. Let α ∈ Ãd. Then α =
hatd(α) ∈ Âd and α is a Cayley permutation by item (a) of Proposition 1.1. Further-
more, by Corollary 2.4,

lrMaxα = Ascd α = nubα,

hence α ∈ RGF follows by Lemma 2.8.

To prove the remaining inclusion, recall that RGF ⊆ A0. Thus

Âd ∩ RGF ⊆ Âd ∩A0 ⊆ Âd ∩Ad = Ãd,

where the last equality is Theorem 2.5.

Letting d = 0 in Proposition 2.9 yields

Ã0 = Â0 ∩ RGF .

An alternative description of Ã0 is showed in the next result.

Corollary 2.10. We have
Ã0 = Î∩RGF .
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Proof. We have

Ã0 =
⋃
d≥0

Ãd (by equation (6))

=
⋃
d≥0

(
Âd ∩ RGF

)
(by Proposition 2.9)

=
(⋃
d≥0

Âd

)
∩ RGF

= Î∩RGF (by equation (1)),

finishing the proof.

Theorem 2.5 characterizes self-modified d-ascent sequences as Ãd = Ad ∩ Âd. It is
easy to see that the inclusion Ĩ ⊆ I∩ Î holds as well. Indeed, using equation (6),

Ĩ = Ã0 = A0 ∩Â0 ⊆ I∩ Î .

However, the opposite inclusion does not hold. For instance, 11312 = hat0(11212) is
a member of I∩ Î, but 11312 /∈ H(11312) = {31412, 43512} and hence 11312 /∈ Ĩ.

We end this section with one more remark. Self-modified inversion sequences are
related to restricted growth functions through Ĩ = Î∩RGF. But the inclusion RGF ⊆
Î does not hold: 1212 ∈ RGF, but 1212 /∈ Î. One way to make it hold would be to
alter the recursive definition of Âd given in Section 1 by allowing d = −∞ and letting
the last letter a be chosen in the interval [1 +maxβ]. This would give Â−∞ = RGF.

3 Enumeration of self-modified d-ascent sequences

We aim to determine the generating function

Ãd(q, x) =
∑
α

qmax(α)x|α|,

where the sum ranges over all self-modified d-ascent sequences. Our solution will be
in terms of certain Fibonacci polynomials which we introduce below.

The Fibonacci numbers Fn are defined by the second order recurrence relation Fn =
Fn−1 + Fn−2 with initial terms F0 = F1 = 1. Many generalizations of the Fibonacci
numbers have been proposed. One may for instance consider the dth order recurrence
relation Fn = Fn−1 + Fn−d with initial terms F0 = F1 = · · · = Fd−1 = 1. Or,
generalizing in a different direction, one may consider Fibonacci polynomials such as
those given by F0(x) = F1(x) = 1 and Fn(x) = Fn−1(x) + xFn−2(x). Combining
these two ideas we define, for any fixed d ≥ 0,{

Fd,n(x) = 1 for n < d,
Fd,n(x) = Fd,n−1(x) + xFd,n−d(x) for n ≥ d.

In generalizations of the Fibonacci sequence, like the one above, the “smallest” case
typically corresponds to the (classical) Fibonacci recurrence, which in our definition
is d = 2 (with x = 1). Note that we, however, also allow d = 0 and d = 1.
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If d = 0, then F0,n(x) = F0,n−1(x)+xF0,n(x), which together with the initial condition
F0,−1(x) = 1 gives

F0,n(x) = 1/(1− x)n+1 = (1 + x+ x2 + · · · )n+1.

In particular, F0,n(x) is a power series, while it is easy to see that Fd,n(x) is a
polynomial for any d ≥ 1. For example, when d = 1 we have F0,0(x) = 1 and
F1,n(x) = (1 + x)F1,n−1(x) for n ≥ 1, and hence

F1,n(x) = (1 + x)n.

For any d ≥ 0, define the generating function

Fd(x, y) =
∑
n≥0

Fd,n(x)y
n.

Using standard techniques it follows from the recurrence relation for Fd,n(x) that

Fd(x, y) =
1

1− y − xyd
. (7)

Viewing this as a geometric series and applying the binomial theorem we find that

Fd(x, y) =
∑
m≥0

m∑
k=0

(
m

k

)
xky(d−1)k+m

and on extracting the coefficient of yn we get

Fd,n(x) =
∑
k≥0

(
n− (d− 1)k

k

)
xk.

For reference, the first few polynomials for d = 2 are

F2,0(x) = F2,1(x) = 1;

F2,2(x) = 1 + x;

F2,3(x) = 1 + 2x;

F2,4(x) = 1 + 3x+ x2;

F2,5(x) = 1 + 4x+ 3x2;

F2,6(x) = 1 + 5x+ 6x2 + x3.

Let us write µ ⊨ n to indicate that µ is an integer composition of n. A well-known
interpretation of the nth Fibonacci number, Fn, is the number of compositions µ ⊨ n
with parts in {1, 2}. Similarly, for d ≥ 2, an interpretation of Fd,n(1) is the number
of compositions µ ⊨ n with parts in {1, d}, and the polynomial Fd,n(x) records the
distribution of d-parts in such compositions. In symbols,

Fd,n(x) =
∑

µ=(m1,...,mk)⊨n

mi∈{1,d}

x|µ|d ,

where |µ|d = #{i : mi = d}. This interpretation works for d = 0 as well; as previously
noted F0,n(x) is power series rather than a polynomial in that case. For d = 1 a little
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extra care is needed. For our combinatorial interpretation to work we must regard
the 1-parts as being distinct from the d-parts, even though d = 1 in this case. In
other words, F1,n(x) records the distribution of 1′-parts in compositions µ ⊨ n with
parts in {1, 1′}, where 1 and 1′ denote two different kinds of parts, both of size 1.

The nth Fibonacci factorial, also called Fibonorial or Fibotorial, is defined by

F !
n = F1F2 · · ·Fn.

We note that sometime these terms are used for the version of the Fibonacci sequence
where F0 = 0 and F1 = 1. In this manner we also define

F !
d,n(x) =

n∏
i=0

Fd,i(x).

Note that the index i ranges from 0 to n rather than from 1 to n. This only makes
a difference when d = 0 since F0,0(x) = 1/(1 − x) while Fd,0(x) = 1 for d ≥ 1. In
particular,

F !
0,n(x) =

(
1

1− x

)(n+2
2 )

and F !
1,n(x) = (1 + x)(

n+1
2 ).

For d ≥ 2 we do not have such simple formulas. As an illustration, the first few
polynomials for d = 2 are

F !
2,0(x) = F !

2,1(x) = 1;

F !
2,2(x) = 1 + x;

F !
2,3(x) = 1 + 3x+ 2x2;

F !
2,4(x) = 1 + 6x+ 12x2 + 9x3 + 2x4;

F !
2,5(x) = 1 + 10x+ 39x2 + 75x3 + 74x4 + 35x5 + 6x6.

For any d ≥ 0, define the generating function

F !
d(x, y) =

∑
n≥0

F !
d,n(x)y

n.

Also, define

Kd,n(x) =
∑
µ

xℓ(µ) and Kd(x, y) =
∑
n≥0

Kd,n(x)y
n,

where the former sum ranges over all integer compositions µ of n into parts of size d
or larger, and ℓ(µ) denotes the number of parts of µ.

Lemma 3.1. We have
Kd(x, y) =

1− y

1− y − xyd
.

Proof. The generating function for single parts of size at least d is yd/(1− y). Thus∑
n≥0

Kd,n(x)y
n =

∑
k≥0

(
xyd

1− y

)k

=
1

1−
xyd

1− y

=
1− y

1− y − xyd
.

12



Lemma 3.2. For any d ≥ 0, we have

(a) Fd,n(x) = Fd,n−1(x) +Kd,n(x) for n ≥ 1, and

(b) Fd,n(x) = Kd,0(x) +Kd,1(x) + · · ·+Kd,n(x) for n ≥ 0.

Proof. Identity (b) is obtained by repeated application of identity (a), so let us focus
on (a). An immediate consequence of Lemma 3.1 and identity (7) is

Kd(x, y) = (1− y)Fd(x, y),

from which (a) follows by identifying coefficients. While this settles the claimed
identity, let us also provide a, perhaps more elucidating, combinatorial proof. Assume
n ≥ 1 and let µ = (m1,m2, . . . ,mk) ⊨ n be such that mi ∈ {1, d} for each i ∈ [k]. If
mk = 1 then we map µ to the composition µ′ = (m1,m2, . . . ,mk−1) ⊨ n− 1 obtained
from µ by removing its last part. This procedure is trivially reversible. If mk = d,
then we need to map µ (in a reversible way) to a composition ν with parts of size
at least d. Moreover, ν should have as many parts as µ has d-parts. Having spelled
out these criteria, the map now presents itself: Assume that mi is the first d-part
of µ; that is, m1 = · · · = mi−1 = 1 and mi = d. We simply sum these up to get
the first part n1 = i − 1 + d of ν; the second part n2 is obtained by applying the
same procedure to (mi+1,mi+2, . . . ,mk); and so on. For instance, µ = (1, 3, 3, 1, 1, 3),
where d = 3 and n = 12, gets mapped to ν = (4, 3, 5).

Let us say that a sequence of numbers c1c2 . . . cℓ is decreasing with pace d if the
difference between consecutive elements is at least d; that is, if cj − cj+1 ≥ d for
1 ≤ j < ℓ.

Lemma 3.3. Any α ∈ Ad is self-modified if and only if it can be written

α = 1B12B2 . . . kBk,

where k = maxα and each factor iBi is decreasing with pace d.

Proof. Let α ∈ Ãd with maxα = k be given. By Proposition 2.9, α is an RGF and
so can be written

α = 1B12B2 . . . kBk

where nubα is the set of positions of the elements 1, 2, . . . , k which are not in the Bi.
But from Corollary 2.4 we have Ascd α = nubα. Thus each factor iBi must be void
of d-ascents; that is, each iBi is decreasing with pace d.

Conversely, if α = 1B12B2 . . . kBk, where k = maxα and each factor iBi is decreasing
with pace d, then nubα = Ascd α and hence α is self-modified by Corollary 2.4.

The following theorem reveals a striking relationship between Fibonacci factorials
and the number of self-modified d-ascent sequences. Recall the generating function
Ãd(q, x) =

∑
α q

max(α)x|α|, where the sum ranges over all α ∈ Ãd.

Theorem 3.4. For any d ≥ 0,

Ãd(q, x) = 1 + qxF !
d(x, qx).

13



d \n 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 2 5 14 43 143 510 1936 7775 32869 145665 674338
1 1 1 1 2 4 10 27 81 262 910 3363 13150 54135
2 1 1 1 1 2 4 9 23 64 194 629 2177 7982
3 1 1 1 1 1 2 4 9 22 58 167 515 1698
4 1 1 1 1 1 1 2 4 9 22 57 158 467
5 1 1 1 1 1 1 1 2 4 9 22 57 157
6 1 1 1 1 1 1 1 1 2 4 9 22 57

Table 1: The number of self-modified d-ascent sequences of length n

Proof. Let α ∈ Ãd. In accordance with Lemma 3.3, write α = 1B12B2 . . . kBk, in
which k = maxα and each factor iBi is decreasing with pace d. Assume that the
length of iBi is ℓ and write

iBi = c1c2 . . . cℓ.

Let mj = cj − cj+1 for j ∈ [ℓ− 1] and let mℓ = cℓ. Note that iBi = c1c2 . . . cℓ can be
recovered from the composition

µ = (m1,m2, . . . ,mℓ) ⊨ i

by letting cj = mj + · · · + mℓ. In other words, µ encodes the factor iBi, and the
length of iBi equals the number of parts of µ. If we exclude the last part of µ and
let µ′ = (m1, . . . ,mℓ−1), then we have a composition each part of which is at least d,
and the possible choices for µ′ are recorded by Kd,m(x), where m = m1+ · · ·+mℓ−1.
The last part, mℓ, of µ can be any integer between 1 and i and hence the possible
choices for µ are recorded by

xKd,0(x) + xKd,1(x) + · · ·+ xKd,i−1(x).

By item (b) of Lemma 3.2, this expression simplifies to xFd,i−1(x) and hence the
generating function for α ∈ Ãd with k = maxα is

qk
k∏

i=1

xFd,i−1(x) = qkxkF !
d,k−1(x).

The claim now follows by summing over k.

Theorem 3.4 allows us to easily tabulate the cardinalities of Ãd,n; see Table 1.

For d = 0 and d = 1 we even get explicit general expressions. For d = 0 we rediscover
a formula originally given by Bousquet-Mélou et al. [BMCDK10]:

Ã0(q, x) = 1 + qxF !
0(x, qx)

= 1 +
∑
k≥1

(qx)kF !
0,k−1(x) =

∑
k≥0

(qx)k

(1− x)(
k+1
2 )

.

14



d \n 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 2 5 14 43 143 510 1936 7775 32869 145665 674338
1 1 1 2 4 10 27 81 262 910 3363 13150 54135 233671
2 1 1 2 4 9 23 64 194 629 2177 7982 30871 125402
3 1 1 2 4 9 22 58 167 515 1698 5925 21810 84310
4 1 1 2 4 9 22 57 158 467 1474 4934 17448 64847
5 1 1 2 4 9 22 57 157 454 1387 4476 15243 54606
6 1 1 2 4 9 22 57 157 453 1369 4321 14293 49570
7 1 1 2 4 9 22 57 157 453 1368 4297 14027 47615
8 1 1 2 4 9 22 57 157 453 1368 4296 13996 47178
9 1 1 2 4 9 22 57 157 453 1368 4296 13995 47139
10 1 1 2 4 9 22 57 157 453 1368 4296 13995 47138

Table 2: The coefficients of
(
Ãd(1, x)− [d ]x

)
/xd

For d = 1 (self-modified weak ascent sequences) we get the following formula:

Ã1(q, x) = 1 + qxF !
1(x, qx)

= 1 +
∑
k≥1

(qx)kF !
1,k−1(x) =

∑
k≥0

(qx)k(1 + x)(
k
2).

Note that the diagonals of Table 1 each appear to tend to some constant. To bring out
this pattern let us skip the first d ones of each row and left adjust. In other words we
are interested in the coefficients of

(
Ãd(1, x)−[d ]x

)
/xd, where [d]x = 1+x+· · ·+xd−1;

we display those coefficients in Table 2. What can be said about the sequence that
is emerging as d → ∞? Formally, this limit should be understood as follows. Let
G0(x), G1(x), G2(x), . . . be a sequence of power series. Then

lim
k→∞

Gk(x) =
∑
n≥0

cnx
n

if, given a nonnegative integer n, there is a corresponding K such that the coefficient
of xn in Gk(x) is cn for all k ≥ K.

Theorem 3.5. We have

lim
d→∞

1

(qx)d

(
Ãd(q, x)− [d ]qx

)
=

∑
k≥0

(qx)k(1 + x)(1 + 2x) · · · (1 + kx).

Let R(q, x) be the generating function on the right-hand side of the claimed identity,
and let rn(q) be the coefficient of xn in R(q, x). The sequence (rn(1))n≥0 starts

1, 1, 2, 4, 9, 22, 57, 157, 453, 1368, 4296, 13995, 47138, 163779, 585741,

which agrees with the last row of Table 2. There is a corresponding entry in the
OEIS, namely A124380. No combinatorial interpretation is given in that entry, but
it is now straightforward to give one.
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Lemma 3.6. Let Rn be the set of restricted growth functions α = 1B12B2 . . . kBk

such that, for each i ∈ [k], either Bi is empty or Bi = bi is a single letter with bi ≤ i.
With rn(q) defined as above, we have

rn(q) =
∑
α∈Rn

qmaxα.

Proof. The following generating function for the Stirling numbers of the second kind,
S(n, k) = #{α ∈ RGFn : maxα = k}, is well-known:

∑
n≥0

xn
∑

α∈RGFn

qmaxα =
∑
k≥0

(qx)k

(1− x)(1− 2x) · · · (1− kx)
.

A proof goes as follows. Let α ∈ RGFn with maxα = k be given. Factor α =
1B12B2 . . . kBk in which each letter of Bi is at most i. The possible choices of Bi are
encoded in the generating function 1/(1 − ix) = 1 + ix + i2x2 + · · · and hence the
possible choices of α are encoded by xk/((1 − x)(1 − 2x) · · · (1 − kx)). For α ∈ Rn

with maxα = k the same approach applies, but now |Bi| ≤ 1 and the choices of Bi

are encoded by 1 + ix.

Proof of Theorem 3.5. Letting fd,n(q) denote the coefficient of xn in Ãd(q, x) we find
that the coefficient of xn in (Ãd(q, x)− [d ]qx)/(qx)

d is fd,n+d(q)/q
d. Thus, it suffices

to prove that, for any d ≥ 0 and n ≤ d,

fd,n+d(q) = qdrn(q).

Assume n ≤ d and let α ∈ Ãd,n+d with k = maxα be given. Write α = 1B12B2 . . . kBk,
where each iBi is decreasing with pace d. Note that Bi is empty whenever i ≤ d.
Moreover, since n ≤ d we have that Bd+i is empty or Bd+i = bd+i is a singleton with
bd+i ∈ [i] for i ≥ 1. The desired bijection from Ãd,n+d onto Rn is now provided by

1 2 . . . d (d+ 1)Bd+1 (d+ 2)Bd+2 . . . kBk 7→ 1Bd+1 2Bd+2 . . . (k − d)Bk.

For instance, if d = 4 and n = 3, then

1234516 7→ 112, 1234561 7→ 121, 1234562 7→ 122, 1234567 7→ 123.

Finally, if α 7→ β in this way, then maxα = d+maxβ, which conludes the proof.

4 Self-modified d-Fishburn permutations

Let S denote the set of all permutations π = p1p2 . . . pn of [n] for all n ≥ 0. Inspired
by a question of Dukes and Sagan [DS24], Zang and Zhou [ZZ] have recently intro-
duced the set Fd of d-Fishburn permutations. They are a generalization of Fishburn
permutations [BMCDK10] where the recursive structure of Fd is encoded by Ad, for
every d ≥ 0. The bijection between Fd and Ad defined this way is denoted by

Φd : Ad → Fd .
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Fishburn permutations are defined as F0 = S(f), where f is the following (bivincular)
mesh pattern [BMCDK10, BC11]:

f = ,

that is, F0 is the set of all π ∈ S which do not contain a subsequence pipjpk with
j = i+ 1 < k and pk + 1 = pi < pj .

We [CCS24] gave an alternative definition of Fd that is reminiscent of the classical
case d = 0, which we now recall. First, we describe a procedure to determine the
d-active and d-inactive [ZZ] elements of a given permutation π = p1 . . . pn. Let π(k)

denote the restriction of π to the elements of [k].

• Set 1 to be a d-active element.

• For k = 2, 3, . . . , n, let k be d-inactive if k is to the left of k − 1 in π and
there exist at least d elements of π(k) between k and k − 1 that are d-active.
Otherwise, k is said to be d-active.

We say that a permutation π contains the d-Fishburn pattern [CCS24], denoted by fd,
if it contains an occurrence pipjpk of f where pi is d-inactive. The other two elements
pj and pk can be either d-active or d-inactive. With slight abuse of notation, we let
S(fd) be the set of permutations that do not contain fd. Finally, for every d ≥ 0 we
have that [CCS24, Prop. 7.1]

Fd = S(fd).

In the same paper, we showed that d-Fishburn permutations can be alternatively
obtained as the bijective image of d-ascent sequences under the composition of the
d-hat map with the Burge transpose [CC23], lifting a classical result by Bousquet-
Mélou et al. [BMCDK10] to any d ≥ 0. As we will build on this alternative description
of Fd, we wish to recall the necessary tools and definitions.

Given an endofunction α = a1 . . . an, let

wDesα = {i ≥ 2 | ai ≤ ai−1}

denote the set of weak descents of α. The set of Burge words [CC23] is defined as

Burn =

{(
u

α

)
: u ∈ WIn, α ∈ Cayn, wDes(u) ⊆ wDes(α)

}
,

where WIn is the subset of Cayn consisting of the weakly increasing Cayley permuta-
tions. The Burge transpose is a transposition operation T on Burn defined as follows.
Given w =

(
u
α

)
∈ Burn, to compute wT turn each column of w upside down and then

sort the columns in weakly increasing order with respect to the top entry, breaking
ties by sorting in weakly decreasing order with respect to the bottom entry. Observe
that T is an involution on Burn. Furthermore, by picking idn = 12 . . . n as the top
row, we obtain a map t : Cayn → Sn defined by1(

idn
α

)T

=

(
sort(α)

t(α)

)
,

1The map t was originally [CC23] denoted by the letter γ.
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for any α ∈ Cay, where sort(α) is obtained by sorting the entries of α in weakly
increasing order. As a special case, if α is a permutation, then t(α) = α−1; note that
this proves that t is surjective. Finally, for every d ≥ 0 we have [CCS24, Thm. 7.10]

Φd = t ◦ hatd.

In other words, the diagram

Ad Fd

Âd

Φd

hatd
t

(8)

commutes for every d ≥ 0 and all the arrows are size-preserving bijections.

For the rest of this section, let d ≥ 0 be a fixed nonnegative integer. Denote by

F̃d = Φd(Ãd)

the set of d-Fishburn permutations corresponding to self-modified d-ascent sequences
under the bijection Φd. Bousquet-Mélou et al. [BMCDK10] proved that F̃0 = S(31̄524̄),
where a permutation π avoids the barred pattern 31̄524̄ if every occurrence of the pat-
tern 231 plays the role of 352 in an occurrence of 31524. Formally, for every i < j < k
such that pk < pi < pj , there exist ℓ ∈ {i+ 1, i+ 2, . . . , j − 1} and m > k such that
pipℓpjpkpm is an occurrence of 31524. More visually, in terms of mesh patterns,

F̃0 = S

 ,

 .

In the same spirit, we wish to characterize F̃d. From now on, we say that a permu-
tation π = p1 . . . pn contains sd if there are two indices i < j such that

• pi = pj + 1; and

• asc(pipi+1 . . . pj) ≤ d.

Furthermore, with slight abuse of notation, we write S(sd) to denote the set of
permutations that do not contain sd. Our goal is to prove that

F̃d = S(31̄524̄, sd) = F̃0(sd). (9)

Observe that
F̃d = Φd(Ãd) = t

(
hatd(Ãd)

)
= t(Ãd), (10)

where hatd(Ãd) = Ãd by definition of self-modified d-ascent sequence. In other words,
permutations in F̃d are precisely those that are obtained by applying the Burge trans-
pose to some self-modified d-ascent sequence in Ãd. Furthermore, by Lemma 3.3 every
α ∈ Ãd can be written α = 1B12B2 . . . kBk, where k = maxα and each factor iBi is
decreasing with pace d.

Since we know from Proposition 2.9 that Ãd ⊆ RGF, it will be useful to describe the
ascents of permutations in t(RGF).
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Lemma 4.1. Let α ∈ RGF, k = maxα, and(
id

α

)T

=

(
sort(α)

π

)
=

(
1 . . . 1 2 . . . 2 . . . k . . . k

p1 . . . pi1 pi1+1 . . . pi2 . . . pik−1+1 . . . pik

)
.

Then:

(a) Ascπ = {1, i1 + 1, i2 + 1, . . . , ik−1 + 1}.

(b) For each i < j, we have

asc(pi . . . pj) = ℓj − ℓi + 1,

where ℓi and ℓj are the entries above pi and pj in sort(α), respectively.

Proof. To prove (a), let j ∈ [k]. By definition of Burge transpose, the entry pij below
the rightmost copy of j in sort(α) is the index of the leftmost copy of j in α. Since
α ∈ RGF, the leftmost copy of j precedes each copy of j+1 in α; that is, pij < pij +1
for each j ∈ [k − 1], and thus Ascπ ⊇ {1, i1 + 1, i2 + 1, . . . , ik−1 + 1}. The other
inclusion is trivial because each factor pij+1 . . . pij+1 is weakly decreasing by definition
of Burge transpose.

We shall now prove (b). By the first item, the ascents of π are precisely those entries
that are below the leftmost copy of some j ∈ [k] in sort(α). Since the first position
is an ascent by definition, the sequence pi . . . pj contains exactly one ascent for each
number from ℓi (the entry above pi) to ℓj (the entry above pj); that is, we have

asc(pi . . . pj) = ℓj − ℓi + 1.

Theorem 4.2. We have
F̃d = F̃0(sd).

Proof. We showed in item (a) of Theorem 2.6 that Ãd ⊆ Ã0. Using this and equa-
tion (10) we obtain

F̃d = t(Ãd) ⊆ t(Ã0) = F̃0 .

Now, let π ∈ F̃0. To obtain the desired equality, it suffices to prove that π contains
sd if and only if π /∈ F̃d. We will only provide the details of the forward direction as
the demonstration of the converse can be obtained by just reversing each step.

Since π ∈ F̃0 = t(Ã0), there is some α ∈ Ã0 such that(
id

α

)T

=

(
sort(α)

π

)
.

Furthermore, by Lemma 3.3, we have

α = 1B12B2 . . . kBk,

where k = maxα and each factor iBi is decreasing with pace zero, i.e. is weakly
decreasing. By definition, π containing sd means that there are indices i < j with
pi = pj + 1 and asc(pi . . . pj) ≤ d. Now applying item (b) of Lemma 4.1 (which can
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be done since α is an RGF) shows that the ascent inequality implies ℓj−ℓi < d where
we are using the notation of the lemma. But pi = pj + 1 so that(

id

α

)
=

(
. . . pj pi . . .

. . . ℓj ℓi . . .

)
.

Since i < j we have that ℓj ≥ ℓi and this forces the pair ℓjℓi to be part of the same
factor kBk above. On the other hand ℓj − ℓi < d so that factor can not be decreasing
with pace d. Using Lemma 3.3 again, we see that α /∈ Ãd. Thus, since t is injective,
π = t(α) /∈ t(Ãd) = F̃d as desired.

5 Pattern avoidance in F̃d

The first two authors have developed a theory of transport of patterns between Fish-
burn permutations and modified ascent sequences [CC23]. We recently showed that
the same machinery also applies to d-Fishburn permutations and modified d-ascent
sequences [CCS24, Thm. 8.6]. More explicitly, for any d ≥ 0 and permutation τ ,

t : Âd(Bτ ) −→ Fd(τ)

is a size-preserving bijection, where Bτ is a finite set called the Fishburn basis of τ ,
Âd(Bτ ) is the set of modified d-ascent sequences avoiding every pattern in Bτ , and
Fd(τ) is the set of d-Fishburn permutations avoiding τ . Moreover, there is a con-
structive procedure to compute Bτ [CC23].

Since the map t is injective on Âd [CCS24, Cor. 4.7], it is also injective on Ãd =
Ad ∩ Âd. The following is a corollary to the previous discussion and the transport
theorem [CCS24, Thm. 8.6].

Corollary 5.1. For any d ≥ 0 and permutation τ , the map t : Ãd(Bτ ) → F̃d(τ) is a
size-preserving bijection. In particular, # F̃d,n(τ) = # Ãd,n(Bτ ).

For instance, let us again consider the pattern 213. Recall [CC23] that B213 =
{112, 213} and hence # F̃d(213) = # Ãd(112, 213). We will enumerate these sets
below.

Lemma 5.2. Let α ∈ Ãd and write α = 1B12B2 . . . kBk as in Lemma 3.3. Then α
avoids 112 and 213 if and only if B1 = B2 = · · · = Bk−1 = ∅.

Proof. Assume that B1 = B2 = · · · = Bk−1 = ∅ so that α = 12 . . . kBk. Since
the last two letters of 112 form an ascent and kBk is decreasing (with pace d), any
occurrence of 112 would have to wholly reside in the prefix 12 . . . k of α, but that
is clearly impossible. Similarly, α avoids 213. To prove the converse, assume that
Bi ̸= ∅ for some i ∈ [k − 1] and let b be the first letter of Bi. If b = i (this can only
happen if d = 0), then ibk is an occurrence of 112 in α. Otherwise, b < i and ibk is
an occurrence of 213 in α.

Proposition 5.3. We have

Fd+1,n−1(q) =
∑

α∈Ãd,n(112,213)

qwdesα =
∑

π∈F̃d,n(213)

qidesπ,
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where wdesα = #wDesα is the number of weak descents of α and idesπ = des(π−1)
is the number of inverse descents of π.

Proof. Let α ∈ Ãd(112, 213), k = maxα and write α = 12 . . . kBk as in Lemma 5.2.
By following the same reasoning as in the proof of Theorem 3.4, we find that∑

α

qmaxαx|α| = 1 +
∑
k≥1

qkxkFd,k−1(x) = 1 + qxFd(x, qx),

in which α ranges over Ãd(112, 213). Using the explicit formula (7) it is easy to verify
that Fd+1(q, x) = Fd(qx, x). Also, by Lemma 3.3, wdesα + maxα = |α|. Putting
this all together we have∑

α

qwdesαx|α| =
∑
α

q−maxα(qx)|α| = 1 + xFd(qx, x) = 1 + xFd+1(q, x).

The first equality of our proposition follows by identifying coefficients in this identity.

Now, the Fishburn basis of 213 is {112, 213} and, by Corollary 5.1, the Burge trans-
pose t is a bijection between Ãd,n(112, 213) and F̃d,n(213). More specifically [CC24,
Lemma 5.2], a sequence α ∈ Ãd,n(112, 213) with k weak descents is mapped under t
to a permutation π ∈ F̃d,n(213) with k inverse descents, and hence the second equality
follows.
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