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Abstract

Let α = (a, b, . . .) be a composition. Consider the associated poset F (α), called a
fence, whose covering relations are

x1 � x2 � . . .� xa+1 � xa+2 � . . .� xa+b+1 � xa+b+2 � . . . .

We study the associated distributive lattice L(α) consisting of all lower order ideals
of F (α). These lattices are important in the theory of cluster algebras and their
rank generating functions can be used to define q-analogues of rational numbers. In
particular, we make progress on a recent conjecture of Morier-Genoud and Ovsienko
that L(α) is rank unimodal. We show that if one of the parts of α is greater than
the sum of the others, then the conjecture is true. We conjecture that L(α) enjoys
the stronger properties of having a nested chain decomposition and having a rank
sequence which is either top or bottom interlacing, the latter being a recently defined
property of sequences. We verify that these properties hold for compositions with at
most three parts and for what we call d-divided posets, generalizing work of Claussen
and simplifying a construction of Gansner.

1 Basic definitions and background

We will be studying the conjectured rank unimodality of certain distributive lattices. We
begin by defining the posets from which they arise. Our terminology for partially ordered sets
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Figure 1: The fence F (2, 3, 1)

and other structures will follow Sagan’s combinatorics text [16]. Let α = (α1, α2, . . . , αs) be
a composition of n−1, that is, a sequence of positive integers summing to n−1. To simplify
notation we will sometimes write α = (a, b, c, . . .). For each α we have a corresponding fence
poset, F = F (α), with elements x1, x2, . . . , xn and covering relations

x1 � x2 � . . .� xa+1 � xa+2 � . . .� xa+b+1 � xa+b+2 � . . .� xa+b+c+1 � xa+b+c+2 � . . . (1)

where � is the order relation in F . The Hasse diagram of the fence F (2, 3, 1) is shown in
Figure 1. We will call the maximal chains of F segments so that the ith part of α is equal to
the length of the ith segment of F . Because of this convention, the sum of the parts of α is
one less than #F , the cardinalty of F . We will also denote cardinality by using the absolute
value symbol.

Given any poset P , its set of (lower) order ideals forms a distributive lattice L(P ). We will
shorten L(F (α)) to L(α) and use similar abbreviations with other notation. The complement
of an order ideal of P is an order ideal of P ∗, the poset dual of P . And if α = (α1, . . . , αs)
has an odd number of segments then F (αr) ∼= F (α)∗ where where αr = (αs, . . . , α2, α1) is the
reversal of α and ∼= is poset isomorphism. Combining these two observations and translating
to the corresponing lattices we have the following result which we record for future use.

Lemma 1.1. For any α = (α1, . . . , αs) with s odd we have

L(α) ∼= L(αr)∗.

The lattices L(α) will be our principal objects of study. They are important objects in
the theory of cluster algebras. In particular, one can view F (α) as a quiver formed from the
Dynkin diagram of type A by replacing each cover x � y with an arrow from x to y. Then
L(α) can be used to compute a mutation in a corresponding cluster algebra on a surface.
In fact, there are (at least) six different descriptions of L(α) or its dual which are useful
for this computation. These are in terms of perfect matchings on snake graphs [15], perfect
matchings of angles [23, 24], T -paths [18, 19, 20], lattice paths on snake graphs [15], lattice
paths of angles [8], or S-paths [8].

In order to introduce the conjecture on which we will focus, we need some definitions
related to sequences and their generating functions. We say that a sequence of nonnegative
real numbers a0, a1, . . . , an is unimodal if there is some index m such that

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . ≥ an.
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Unimodal sequences arise frequently in combinatorics, algebra, and geometry; see the survey
articles of Stanley [22], Brenti [7] or Brändén [5]. We will say that the generating function
f(q) =

∑
k akq

k has a property such as unimodality if its coefficient sequence does.
Now suppose that P is a finite poset. We call P ranked if, for all x ∈ P , the length of

any saturated chain from a minimal element to x is invariant. This length is called the rank
of x and denoted rkx. We also define the rank of P , rkP , to be the maximum of rkx over
all x ∈ P . The kth rank of P is the set

Rk(P ) = {x ∈ P | rkx = k}

and we let rk(P ) = #Rk(P ). Any finite distributive lattice is ranked by the cardinality of
each element viewed as an order ideal of the corresponding poset of join irreducibles. We say
that P is rank unimodal if the sequence r0(P ), r1(P ), . . . , rn(P ) is unimodal where n = rkP .
We will similarly prepend “rank” to other properties of sequences when applied to the rank
sequence of a poset. Our main object of study is the following conjecture of Morier-Genoud
and Ovsienko.

Conjecture 1.2 ([12]). For any α, the lattice L(α) is rank unimodal.

We note that Morier-Genoud and Ovsienko used the rank generating functions for the
L(α) to define q-analogues for rational numbers. Interestingly, special cases of this conjecture
had already been proven even before it was stated because the problem is so natural in its
own right. Gansner [9] proved Conjecture 1.2 for certain dual fences which we call d-divided
and which will be precisely defined in Section 5. Munarini and Zagaglia [13] gave a different
proof of the conjecture for 2-divided fences which are those with α = (1, 1, . . . , 1). Since
the conjecture was posed, Claussen [8] has shown that it is true for all fences with at most
four segments. One of our main results is that Conjecture 1.2 holds if one of the segments
is sufficiently long.

Theorem 1.3. Suppose α = (α1, . . . , αs) and there is an index t such that

αt >
∑
i 6=t

αi.

Then L(α) is rank unimodal.

We will also be interested in various strengthenings of Conjecture 1.2. To state them,
we will need to define other properties of sequences and posets. Say that the sequence
a0, a1, . . . , an is symmetric if ak = an−k for k < n/2. Symmetric unimodal sequences are
common, for example a row of Pascal’s triangle or the coefficients of a q-binomial coefficient.
Even when one does not have symmetry, there may be some relation between ak and an−k.
Call the sequence top heavy (respecively, bottom heavy) if ak ≤ an−k (respectively, ak ≥ an−k)
for k < n/2. As an illustration, a special case of a result of Björner and Ekedahl [4] states
that the rank sequence for Bruhat order on a crystallographic Coxeter group is top heavy.
More recently, a new property of sequences has been identified which implies both uimodality
and heaviness. Call the sequence top interlacing if

a0 ≤ an ≤ a1 ≤ an−1 ≤ . . . ≤ adn/2e (2)
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where d·e is the ceiling function. Similarly, the sequence is bottom interlacing if

an ≤ a0 ≤ an−1 ≤ a1 ≤ . . . ≤ abn/2c

with b·c being the floor function. See [1, 2, 3, 6, 17, 21] for research related to this concept.
We note that in the literature (2) has been called “alternately increasing.” However, we
prefer our terminology both because “alternating” usually refers to a sequence satisfying
a0 < a1 > a2 < a3 > . . ., and since (2) implies that the first half of the sequence and the
reverse of the second half interlace in the usual sense of the term. We propose the following
strengthening of Conjecture 1.2. In it, we refer to the rank sequence

r(α) = (r0(α), r1(α), . . . , rn(α)) (3)

where rk(α) = rk(L(α)) and n = #F (α).

Conjecture 1.4. Suppose α = (α1, . . . , αs).

(a) If s = 1 then r(α) = (1, 1, . . . , 1) is symmetric.

(b) If s is even, then r(α) is bottom interlacing.

(c) Suppose s ≥ 3 is odd and let α′ = (α2, . . . , αs−1).

(i) If α1 > αs then r(α) is bottom interlacing.

(ii) If α1 < αs then r(α) is top interlacing.

(iii) If α1 = αs then r(α) is symmetric, bottom interlacing, or top interlacing de-
pending on whether r(α′) is symmetric, top interlacing, or bottom interlacing,
respectively.

Statement (a) in this conjecture is trivial, but is needed as a base case. We have verified
this conjecture by computer for up to 5 segments of lengths at most 10, and for 6 segments
having lengths at most 5. We have been able to prove the conjecture for various fences,
including those with at most three segments and the d-divided posets, by showing that the
corresponding lattices satisfy an even stronger condition which we now describe.

Let P be a ranked poset with rkP = n. Also, let C be a saturated x–y chain in P . The
center and interval of C are the rational number

cenC =
rkx+ rk y

2

and interval of integers
[C] = [rk x, rk y],

repectively A chain decomposition or CD of P is a set partition of P into saturated chains.
In a symmetric chain decomposition or SCD, every chain C in the partition must satisfy
cenC = n/2. Equivalently, if C is an x–y chain of the partition then rk y = n − rkx. If P
admits an SCD then its rank sequence is symmetric and unimodal. In fact, P even enjoys
the strong Sperner property which says that, for all k ≥ 1, the maximum number of elements
in a subposet whose longest chain has at most k elements is just the sum of the k largest
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ranks. See the survey article of Greene and Kleitman [11] for more information about chain
decompositions and the Sperner property. To deal with the case when the rank sequence
is not symmetric, consider a nested chain composition, NCD, which is a CD where any two
of its chains C,D satisfy either [C] ⊆ [D] or [D] ⊆ [C]. If P admits an NCD then it is
rank unimodal and still has the strong Sperner property. We will be particularly concerned
with a special type of NCD. Call a CD top centered if every chain C in the partition satisfies
cenC = n/2 or cenC = (n+1)/2. It follows easily that this is an NCD and the rank sequence
of P is top interlacing. Similarly, a CD is bottom centered if its chains satisfy cenC = n/2
or (n− 1)/2. Again, this is an NCD and the rank sequence is now bottom interlacing. Note
also that if a poset has an NCD and its rank sequence is top or bottom interlacing then the
NCD must be top or bottom centered, respectively. This can be proven inductively using the
observation that an NCD must contain a chain from a minimum rank element to a maximum
rank element. This leads to the strongest of our conjectures so far.

Conjecture 1.5. For any α, the lattice L(α) admits a CD which is either symmetric, top
centered, or bottom centered consistent with Conjecture 1.4.

We prove a number of special cases of this conjecture in the sequel. In particular, when
the fence has at most three segments we have the following refinement of Claussen’s result
on the rank unimodality of the L(α).

Theorem 1.6. If α has at most three parts then Conjecture 1.5 is true.

The rest of this paper is structured as follows. In the next section we will prove The-
orem 1.3 in the case that the long segment is the first or the last. We will do this using
a recursion which will also permit us to replace the strict inequality with a weak one for
these particular segments. In Section 3 we will complete the proof of Theorem 1.3. We will
also describe an inductive procedure for proving Conjecture 1.5 when a long segment exists.
The following section will be devoted to proving Theorem 1.6. Section 5 contains a proof
of Conjecture 1.5 for d-divided posets. It is modeled on, but simpler than, Gansner’s proof.
We end with a section outlining two more possible approaches to these conjectures.

2 Long initial or final segments

In this section we will prove a stronger version of Theorem 1.3 where the long segment is
either the first or the last. This will be based on a recursion for the rank generating function

r(q;α) =
∑
k≥0

rk(α)qk

where the rk(α) are given by (3). The method of proof involves considering the ideals of
F (α) which do or do not contain an element x which we will call toggling on x. Also, for
the recursions to make sense, we must permit compositions (α1, . . . , αs) where αs = 0. But
in this case we just define

F (α1, . . . , αs−1, 0) = F (α1, . . . , αs−1).
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Lemma 2.1. Let α = (α1, α2, . . . , αs). Then for s odd

r(q;α) = r(q;α1, . . . , αs−1, αs − 1) + qαs+1 · r(q;α1, . . . , αs−2, αs−1 − 1)

and for s even

r(q;α) = r(q;α1, . . . , αs−2, αs−1 − 1) + q · r(q;α1, . . . , αs−1, αs − 1).

Proof. Induct on s. We will just do the induction step for s odd as the case when s is
even is similar. Let x = xn be the furthest right element of F (α) in (1). Then a given
lower order ideal I of F (α) contains x or does not contain x. In the case where I does not
contain x, the fact that s is odd implies that these ideals are in bijection with the ideals
of F (α1, . . . , αs−1, αs − 1). So the contributions of such order ideals to r(q;α) give the first
summand in the recursion. If x ∈ I then all the elements below x are also in I. Removing
these αs + 1 elements from I yields an ideal J in F (α1, . . . , αs−2, αs−1 − 1) and this is a
bijection. This accounts for the second term in the recursion.

In order to make use of this lemma, we will have to consider the indices where the
coefficients of a polynomial achieve their maximum. Given f =

∑
k akq

k we define the set of
maxima indices as

mi(f) = {k | ak = m}
where m is the maximum value of a coefficient of f . Note that if f is unimodal then mi(f)
will be an interval of integers. The next result is easy to prove so the demonstration is
omitted.

Lemma 2.2. Let f, g be unimodal polynomials and suppose that mi(f) ∩ mi(g) 6= ∅. Then
f + g is unimodal and mi(f + g) = mi(f) ∩mi(g).

We can now prove a stronger version of Theorem 1.3 for the first segment.

Theorem 2.3. If α = (α1, α2, . . . , αs) satisfies

α1 ≥ α2 + α3 + · · ·+ αs

then r(q;α) is unimodal with

mi(r(q;α)) = [α2 + α3 + · · ·+ αs, α1].

Proof. We will induct on s and, for a given s, on α2 + . . .+ αs. We will only provide details
for the case when s is odd. So we will apply the first recursion of Lemma 2.1. Using the
induction hypothesis on the first term of the recursion, we see that

mi(r(q; β)) = [α2 + α3 + · · ·+ αs − 1, α1]

where β = (α1, . . . , αs−1, αs − 1). Similarly, for the second term we have

mi(qαs+1 · r(q; γ)) = [α2 + α3 + · · ·+ αs, α1 + αs + 1]

where γ = (α1, . . . , αs−2, αs−1 − 1). Now

[α2 +α3 + · · ·+αs− 1, α1]∩ [α2 +α3 + · · ·+αs, α1 +αs + 1] = [α2 +α3 + · · ·+αs, α1] 6= ∅

by our hypothesis on α. So Lemma 2.2 applies and we are done.
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We have the same result for the last segment.

Theorem 2.4. If α = (α1, α2, . . . , αs) satisfies

αs ≥ α1 + α2 + · · ·+ αs−1

then r(q;α) is unimodal.

Proof. If s is even, then L(α) ∼= L(αr). So the result follows from the previous theorem.
If s is odd then, by Lemma 1.1, L(α) ∼= L(αr)∗. Since taking the dual just reverses the
coefficients of the rank polynomial, we are again done by the previous result.

3 Arbitrary long segments

We will now complete the proof of Theorem 1.3. We will also provide an inductive way of
creating posets which satisfy Conjecture 1.5. We begin by locating the ranks of maximum
size in the lattice coming from a poset with a long segment.

Lemma 3.1. Let α = (α1, . . . , αs) and n = #F (α). Suppose that for some t we have

αt >
∑
i 6=t

αi. (4)

Then the maximum size of a rank of L = L(α) is ` = #L(F ′) where F ′ is the poset obtained
by removing the elements of segment t from F = F (α). And this maximum occurs at ranks
m+ 1 through n−m− 1 where m = #F ′.

Proof. Any I ∈ L has the form I = J ∪ K where J ∈ L(F ′) and K ∈ L(S) with S being
segment t of F . So if #I = k is fixed, the maximum number of possible ideals at this rank is
the number of choices for J since S has only one ideal of each rank. The maximum number
of possible J is `, which implies rk(α) ≤ ` for all k.

We will now show that rk(α) = ` for m+ 1 ≤ k ≤ n−m− 1 which will finish the proof.
Note that [m+ 1, n−m− 1] 6= ∅ because of assumption (4). Every I at such a rank k must
contain minS since, if not, then I ⊆ F ′ which forces #I ≤ m. Similarly, I can not contain
maxS since if it did then #I ≥ n−m. From these two statements, it follows that I = J ∪K
is an ideal for any choice of J , and for any J there is a unique K yielding an ideal at rank k
since S is a chain. So the number of choices for I equals the number of choices for J which
is `, as desired.

We will now prove Theorem 1.3, noting that we have already demonstrated a slight
strengthening of it in Theorems 2.3 and 2.4 for the first and last sements.

Theorem 3.2. Suppose α = (α1, . . . , αs) satisfies, for some t,

αt >
∑
i 6=t

αi. (5)

Then r(q;α) is unimodal.
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Proof. We adopt the notation of the statement and proof of Lemma 3.1. According to this
lemma, it suffices to find a matching in L from rank k into rank k + 1 for k ≤ m and from
rank k into rank k − 1 for k ≥ n−m.

First consider the case k ≤ m. We claim that if #I = k and y is the coatom on segment
S then y 6∈ I. For suppose y ∈ I. Then all the elements under y on S are in I which implies
#I ≥ αt = n−m−1. However, m = #F ′ =

∑
i 6=t αi so equation (5) forces n−m−1 ≥ m+1

or n ≥ 2(m+ 1). It follows that #I ≥ 2(m+ 1)−m− 1 = m+ 1 which is a contradiction.
Now given I with #I ≤ m, we match this ideal with I ∪ {yI} where yI is the smallest

element on S not in I. From the previous paragraph yI ≤ y so that I ∪{yI} is still an ideal.
And this is clearly a matching since I determines yI uniquely.

The case k ≥ n − m is similar. For this range of k one can show that x ∈ I where x
is the atom on S. So one can match I with I − {xI} where xI is the largest element on S
which is in I. The details are similar to the first case and so left to the reader.

We now give an inductive method for proving that Conjecture 1.5 holds. To do so, we
must first investigate the finer structure of L(α) where α has a long segment. For any ranked
poset P , let

Pk = {x ∈ P | rkx ≤ k}

and
P k = {x ∈ P | rkx ≥ k}.

Lemma 3.3. Let α = (α1, . . . , αs), F = F (α), and L = L(α). Also let n = #F and
m = #F ′ where F ′ is as in Lemma 3.1. Suppose that for some t we have

αt >
∑
i 6=t

αi.

Let G = F (β) and M = L(β) where

β = (α1, . . . , αt−1, αt + 1, αt+1, . . . , αs).

Then we have isomorphisms

Ln−m−1 ∼= Mn−m−1 and Ln−m ∼= Mn−m+1.

Proof. We will construct an isomorphism f : Mn−m−1 → Ln−m−1. Note that F can be
obtained from G by contracting (in the sense of graph theory) the edge of the Hasse diagram
of G containing the maximum vertex z and the coatom y it covers on the tth segment into a
single maximum vertex. Doing this contraction on the second segment in Figure 1 yields the
fence in Figure 2. But if J ∈M has rk J ≤ n−m−1, then the inequality for αt ensures that
J does not contain either of these two largest vertices. So this induces a bijection between
such J and the corresponding I ∈ Ln−m−1 which is order preserving in both directions, being
essentially the identity map.

We can also define an isomorphism g : Mn−m+1 → Ln−m. This is similar to the construc-
tion of f . Let w and x be the minimum element and atom on S, respectively. Note that if
J ∈Mn−m+1 then w, x ∈ J . So contracting x into w yields the isomorphism.
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Figure 2: The fence obtained by contracting x3 and x4 in Figure 1

We now have everything in place to state our inductive criterion for checking whether a
poset with a long segment satsifies Conjecture 1.5.

Theorem 3.4. Assume the hypotheses and notation of Lemma 3.3. If L has an NCD then
so does M . Furthermore, if the NCD of L is symmetric, top centered, or bottom centered
then the NCD of M has the same property.

Proof. Suppose we have such an NCD of L. We will keep the notation of the proof of
Lemma 3.3. Then, by this lemma, this NCD lifts to NCDs of Mn−m−1 and Mn−m+1. What
remains is to show how to connect these two NCDs through rank n −m of M to form an
NCD of the whole poset. Let R, R′, and R′′ denote ranks n−m−1 , n−m, and n−m+1 of
M , respectively. Note that by Lemma 3.1 we have #R = #R′ = `. As noted in the previous
proof, no element of R contains the coatom of the long sement, S. So there is a perfect
matching from J ∈ R to J ′ ∈ R′ by letting J ′ = J ∪ {a} where where a = min(S − J). To
find the chains which continue to R′′, consider I = f(J) to see if it is connected in the NCD
of L to some I ′′ in the next rank up. If so, then J ′ will be covered by J ′′ = g−1(I ′′) and so
the sequence J, J ′, J ′′ will serve to connect the corresponding chains in M . It is easy to see
that this construction will preserve whether the NCD is symmetric, top centered, or bottom
centered which completes the proof.

By induction on the length of the long segment, we immediately get the following result.
Note that showing one lattice has an NCD of a certain form immediately gives an infinite
family of lattices with NCDs of the same form.

Corollary 3.5. Let α = (α1, . . . , αs) where

αt = 1 +
∑
i 6=t

αi (6)

for some t. If L = L(α) has an NCD then so does M = L(β) where

β = (α1, . . . , αt−1, αt + a, αt+1, . . . , αs)

for any a ≥ 0. Furthermore, if the NCD of L is symmetric, top centered, or bottom centered
then the NCD of M has the same property.

Now one can use a computer to verify the following.
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Corollary 3.6. Let F = F (α1, . . . , αs) where

αt >
∑
i 6=t

αi

where ∑
i 6=t

αi ≤ 5.

Then L = L(α) satisfies Conjecture 1.5.

Note that with a little more care, one can replace condition (6) with

αt =
∑
i 6=t

αi

when t = 1 or t = s.

4 At most three segments

This section is devoted to a proof of Theorem 1.6. The result is trivial if the fence F (α)
has one segment since in that case the poset is a chain and so its lattice is as well. As we
will see in the next result, the case of two segments is also easy. But for three, we will have
to use a modified version of the famous Greene-Kleitman symmetric chain decomposition of
the Boolean algebra of all subsets of a finite set [10].

Theorem 4.1. Let α = (a, b). Then L(α) is bottom interlacing.

Proof. Let z be the maximum element of F = F (α). Also let C,D be the first and second
segments of F , respectively, with z removed. Note that any ideal of F except F itself is the
disjoint union of an order ideal of C and an order ideal of D. It follows that

L(α) ∼= (L(C)× L(D))⊕ {1̂}

where × is poset product and ⊕ is ordinal sum which makes every element of the product
less than 1̂. Since C and D are chains, so are L(C) and L(D). And there is a well-known
symmetric decomposition C1, C2, C3, . . . , of a product of two chains. So in L(α) we have
cenCi = (n − 1)/2 for all i where n = #F . Let C1 be the chain containing the minimum
element of L(C)× L(D). Then, by symmetry, C1 must also contain the maximum element
of the product. So C ′1 = C1 ∪ {1̂} is a saturated chain in L(α) with cenC ′1 = n/2. It follows
that C ′1, C2, C3, . . . is the desired bottom-interlacing NCD.

To finish the proof of Theorem 1.6, we will use the idea of a Greene-Kleitman core. To
define this object, let w = w1w2 . . . wn be a sequence (or word) of zeros and ones. The
Greene-Kleitman (GK) core of w, GK(w), is a set of pairs of indices formed as follows. If
wi = 0 and wi+1 = 1 then (i, i + 1) ∈ GK(w). We continue to add pairs (i, j) to GK(w) as
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Figure 3: The labeling of F (2, 3, 1)

long as wi = 0 and wj = 1, where i < j and all the elements between wi and wj are already
in pairs of the core. For example, if

w = 110001011000111

then

GK(w) = ∗ ∗ ∗ 0̂0̂10̂11 ∗ 0̂0̂11 ∗
where elements not in the GK core have been replaced by stars, and pairs in the core are
indicated by the hats. Writing out the pairs themselves gives

GK(w) = {(4, 9), (5, 6), (7, 8), (11, 14), (12, 13)}.

We will refer to the elements in the pairs of GK(w) as matched.
To apply this idea to fences, we will have to modify the GK core. And to do that it

will be convenient to think of a fence F as a partial order on [n] = {1, 2, . . . , n} where, as
usual, n = #F . When doing this, it will be important to distinguish i ≤ j which is the
usual total order on the integers and i� j which will be an order relation in F . So consider
F = F (a, b, c) as the fence with covering relations

b+ c+ 1 � b+ c+ 2 � . . .� a+ b+ c+ 1 � b� b− 1 � . . .� 1 � b+ 1 � b+ 2 � . . .� b+ c.

In other words label the second segment except for its maximum element with the elements
of the interval [1, b] from bottom to top. Then label the elements of the third segment (except
its minimum which has already been labeled) bottom to top with [b+ 1, b+ c]. Finally label
the complete first segment with [b + c + 1, a + b + c + 1] again from bottom to top. Note
that this labeling is a linear extension of F . This labeling for the fence F (2, 3, 1) is showing
in Figure 3.

Now associate with any subset S ⊆ F a word w = wS = w1 . . . wn where wi is one or
zero depending on whether i ∈ S or i 6∈ S, respectively, and n = #F . Suppose I ⊆ F is an
ideal and w = wI . Since specifying I and specifying w are equivalent, we will often go back
and forth without mention. We will need a lemma about where n lies with respect to the
GK core of w for ideals of certain three-segment fences

Lemma 4.2. Let F = F (a, b, c) where a ≥ c, n = #F , and I be an ideal of F . Then n is
unmatched.
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Proof. Suppose, towards a contradiction, that n is matched. Since n is the largest index in
w, it must be in a pair (i, n) and so n ∈ I. Since I is an ideal, this forces [1, b] ∪ [b + c +
1, a + b + c + 1] ⊆ I. But then every element of [b + c + 1, a + b + c + 1] must be matched
with some element of [b+ 1, b+ c]. This contradicts the fact that a ≥ c.

Given an ideal, I, call an element f ∈ F frozen if it is unmatched in GK(w) and there
exists (i, j) ∈ GK(w) with f � i or f � j. Note that since (i, j) is in the GK core we must
have i 6∈ I and j ∈ I. So f � i implies f 6∈ I, since I is an ideal, and wf = 0. Similarly, if
f � j then f ∈ I and wf = 1. Whether an element is frozen or not depends upon the ideal
under consideration, but we will make sure I is clear from context. Finally, define the core
of w = wI by

corew = GK(w) ∪ {f ∈ F | f is frozen}.

We say that elements of F not in corew are free. For example, suppose F = F (2, 3, 1) and
I = {1, 4, 5}. Then we first compute the GK core as indicated by the hats in

w = 10̂0̂1100.

Since (3, 4) ∈ GK(w) and 1� 4 we have that 1 is frozen in w. Similarly, (3, 4) ∈ GK(w) and
7 � 3 implies that 7 is frozen. One can also check that 6 is free so that

corew = 10̂0̂11 ∗ 0

or
corew = {1, (2, 5), (3, 4), 7}.

We will need some facts about frozen elements.

Lemma 4.3. Let F = F (a, b, c) where a ≥ c, n = #F , and I be an ideal of F .

(a) If f ∈ F is frozen then f = 1 or f = n.

(b) If 1 is frozen then w1 = 1. If n is frozen then wn = 0.

(c) If 1 is frozen, then so is n.

Proof. Let the segments corresponding to a, b, c be A,B,C, respectively. Suppose (i, j) ∈
corew = wI . So i 6∈ I, j ∈ I and i < j. It follows that i, j must be in different segments
since the labeling of F is a linear extension and I is an ideal. The order of labeling the
segments and i < j then imply that there are only three different possibilities: i ∈ B and
j ∈ C, or i ∈ B and j ∈ A, or i ∈ C and j ∈ A.

We now consider what elements are frozen for each of the three positions of i, j. Suppose
first that i ∈ B and j ∈ C. Note that we can not have i = n since i < j. If we have
an element f satisfying f � i then for f to be frozen it must be unmatched. But all the
elements of B − {n} above i come between wi and wj and so are in pairs of GK(w). So the
only element of B which could be frozen is n. In fact, n must be frozen since n � i forces
wn = 0 and a final zero is never matched. In a similar way, we see that if f � j then it can
only be frozen if f = 1 and that this element must indeed be frozen.
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In a similar manner, one shows that if f is frozen when i ∈ B and j ∈ A then f = n and
that n is always frozen in this case. Finally, we consider i ∈ C and j ∈ A. As before, we can
show that no f � i is frozen. As far as the f � j, note that j 6= n because of the previous
lemma. So all such j are on segment A and now one can proceed as before to show that no
f � j are frozen.

Summarizing the three cases in order, if (i, j) ∈ corew then it freezes: 1 and n, or just
n, or no element of F . And in all three cases if 1 or n is frozen then w1 = 1 and wn = 0.
This completes the proof of the lemma.

We are now prepared to prove the last case of Theorem 1.6 which we restate here for
convenience.

Theorem 4.4. If α = (a, b, c) then L(α) admits a CD which is symmetric, top heavy, or
bottom heavy depending on whether a = c, a > c, or a < c, respectively.

Proof. We will consider that case a ≥ c. This is without loss of generality since if a < c then
αr has its first part larger than its third.

Let I be an ideal of F = F (α) and let w = wI . The free elements of I must form a
subsequence of w where all the ones precede all the zeros since, by the previous lemma, if
this were not true then there would be a pair of free elements which could be matched. Let
w′ be the sequence formed from w by replacing the left-most free zero wk (if any) with a
one. We will show that the corresponding I ′ ⊆ F is an ideal and that corew′ = corew.

Suppose, towards a contradiction, that I ′ is not an ideal . Then we must have i�k where
i 6∈ I. Now i can not be free in w because of the choice of k. Also i can not be paired since,
if it were, then k would be frozen and not free. Finally, i can not be frozen since Lemma 4.3
(a) would imply that i = 1, which contradicts Lemma 4.3 (b). So i does not exist and I ′ is
an ideal.

Now suppose, towards another contradiction, that corew′ 6= corew. Then it must be
that k is an element of corew′. But k can not be paired in w′ since, by the choice of k, all
wi = 0 with i < k are already in pairs of corew ⊆ corew′. So k must be frozen in w′. By
the previous lemma and the fact that w′k = 1 we must have k = 1. However w1 = 0 and
I is an ideal, so I contains no elements on either the second or third segment of F . This
contradicts the fact that, from the proof of Lemma 4.3, the only way w′1 = 1 can be frozen
is if there is an (i, j) ∈ corew′ where j � 1 is on the third segment.

Consider what happens if we form a sequence w′′ from w by turning the right-most free
one (if any) into a zero. We can similarly prove that the resulting I ′′ is an ideal with the
same core as w.

Now given κ = corewI where I is an ideal, we form a corresponding chain in L = L(α),
Cκ, as follows. The minimum element on Cκ is the word v which has core κ and all free
elements equal to zero. Now turn the free 0s in v into 1s one at a time, moving left to right
until they are all 1s. From what we have proved, the elements of Cκ are exactly the ideals of
L with core κ. And the chain is saturated by construction. From this discussion it is clear
that the Cκ as κ runs over all possible cores form a CD of L. Furthermore, from the previous
lemma, every chain either has cenCκ = n/2 if 1 and n are either both frozen or both not,
or has cenCκ = (n− 1)/2 if n is frozen but 1 is not. Thus this is a bottom-heavy CD.
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Figure 4: The 3-divided poset P10,4

Finally, we consider what happens when a = c. In that case F ∼= F ∗ so that L ∼= L∗. It
follows that r(q;α) is symmetric and so the bottom-heavy CD we have constructed must, in
fact, be symmetric.

5 d-divided posets

We will now give a simplified proof of a theorem of Gansner [9] showing that the posets he
considered, which we will call d-divided, have top-interlacing NCDs. We note that Gansner
did not state his result in terms of the top-interlacing concept since it had not been defined
when his paper was written. But it is easy to derive this property from his proof.

Let n, d be positive integers. Divide n by d to obtain

n = qd+ r (7)

where 0 ≤ r < d. We then define the corresponding d-divided partially ordered set, Pn,d, to
be the poset on [n] with covering relations

d� d− 1 � . . .� 1 � 2d� 2d− 1 � . . .� d+ 1 � 3d� . . .� n� n− 1 � . . .� qd+ 1.

So Pn,d has segments with d elements alternating with segments of 2 elements, ending with
a segment of r elements. And the segments of length d and r are labeled left to right from
the bottom to the top of each segment. So, again, the labeling is a linear extension. For
example, P10,4 is displayed in Figure 4.

Now given any ideal I of Pn,d, we have a corresponding word w = wI just as in the
previous section. So we can form its Green-Kleitman core GK(w) as before. To define what
the core is for this poset, we need to consider p ∈ Pn,d which is the lowest element on the
right-most chain of length d. In our example, p = 5. Consider the subword v = wpwp+1 . . . wn
of w. We now define the core of w to be

corew =

{
GK(w) if n is unmatched in GK(v),

ĜK(w) else,

where ĜK(w) is a modification of GK(w) defined as follows. If n is in a pair of GK(w), then
we must have wn = 1 since this is the last element of the word. This forces wp = 1 because
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p�n and I is an ideal. We now consider wp as paired with itself and form the rest of ĜK(w)
around it in the usual way. Returning to our running example, suppose I = {1, 2, 5, 6, 9, 10}
so that

w = 1100110011.

Then
v = 110011

with

GK(v) = ∗ ∗ 0̂ 0̂ 1 1.

Since w10 is matched in GK(v), we form ĜK(w) by considering w5 as matched with itself
which will be indicated by it having a hat of its own. So

corew = ĜK(w) = ∗ ∗ ∗ 0̂ 1̂ 1 0̂ 0̂ 1 1.

As in the previous section, we call the elements of [n] matched or free with respect to w
depending on whether they are in corew or not, respectively. We note that if r = 0 in (7)
then n is always unmatched in v and so in this case corew = GK(w).

We are now ready to prove that L(Pn,d) always has an NCD which is either top-heavy or
symmetric. One can translate these into instances where Conjecture 1.5 is true by noting that
the dual P ∗n,d is a fence and L(P ∗n,d)

∼= L(Pn,d)
∗. Our proof will parallel that of Theorem 4.4.

Theorem 5.1 ([9]). The lattice L(Pn,d) has an NCD which is symmetric or top heavy de-
pending on whether d divides n or not, respectively.

Proof. Let I be an ideal of Pn,d and let w = wI . As in the proof of Theorem 4.4, the
free elements of w form a subsequence of ones followed by a subsequence of zeros. We will
consider what happens in passing to w′ which is obtained from w by replacing the rightmost
free one wi (if any) by a zero. We will show that w′ is the word of an ideal I ′ and that
corew′ = corew.

We suppose I ′ is not an ideal and derive a contradiction. So there must be j ∈ I with
j � i. It follows that j and i are on the same segment S. We will now consider three cases
depending on the location of S.

First suppose that S is one of the segments with d or r elements as defined by (7). Take
j minimal with respect to these restrictions. It follows that j − 1 6∈ I. If i < j − 1 then we
immediately have a contradiction since j ∈ I, j − 1 6∈ I, j − 1 � j, and I is an ideal. So
i = j − 1 which means wi+1 = wj = 1. But wi is the rightmost free one, so wi+1 must be
matched. This contradicts the fact that a matched one can only have matched ones between
it and its paired zero.

We now consider what happens when S is one of the segments of length one, first suppos-
ing that it is not the last such segment. So all of the element on the segment S ′ of length d
containing j must be in I. But there are only d−1 other elements between wi and wj. Thus
at least one of the elements of S ′ must be paired with an element before i, contradicting the
fact that i is free in w.

Finally, we look at the case when S is the last segment of length one. So j = n and
i = p in the notation of the discussion before this theorem. If n is not matched in GK(v)
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then corew = GK(w) where n is matched since p was the rightmost free one. Now using
an argument as in the previous paragraph, we get a contradiction. But if n is matched in
GK(v), we get an immediate contradiction because p is in corew and so not free.

Now that we know I ′ is an ideal, we wish to show corew′ = corew. But the only way
corew′ could change is if the new zero in position i becomes paired with a one. And this
one would have to be free and in a position to the right of i, contradicting the fact that i
was the rightmost free one.

Similarly one can show that changing the leftmost free zero to a one in I results in an
ideal with the same core. The rest of the proof is almost exactly like the last two paragraphs
of the demonstration of Theorem 4.4. The only difference is that now a chain Cκ will have
cenCκ = n/2 or (n+ 1)/2 where the latter case happens whenever there is a one paired with
itself in κ.

6 Two more approaches

We end with two other possible methods for proving the conjectures in this paper. While
we have not been able to make them bear fruit, we hope that someone else will be more
successful.

1. An explicit formula. There is an explicit formula for r(q;α) in terms of powers
of q and q-integers [n]q = 1 + q + · · · + qn−1 where n ≥ 0. This expression appeared in a
more complicated form in Claussen’s thesis [8] and formed part of the basis for his proof
that Conjecture 1.2 is true for any fence with at most four segments. It is easy to prove
by toggling in a manner similar to that of the demonstration of Lemma 2.1. But now one
toggles on subsets of

Z(α) = {z1, z2, . . . , zu} (8)

which is the set of maxima of F (α) written in order from left to right. We will state the
theorem without proof since the demonstration does not contain any new ideas. A similar
result holds for an even number of segments.

Theorem 6.1 ([8]). Let α = (α1, . . . , α2u−1) with Z(α) given by (8). Then

r(q;α) =
∑

Z⊆Z(α)

q#Zr(Z, 1)r(Z, 2) · · · r(Z, u)

where

r(Z, 1) =

{
qα1 if z1 ∈ Z,

[α1 + 1]q if z1 6∈ Z,

and

r(Z, i) =


qα2i−2+α2i−1−1 if zi−1, zi ∈ Z,

qα2i−2 [α2i−1]q if zi−1 ∈ Z and zi 6∈ Z,

qα2i−1 [α2i−2]q if zi−1 6∈ Z and zi ∈ Z,

1 + q[α2i−2]q[α2i−1]q if zi−1, zi 6∈ Z.

for i > 1.

16



One can now write out r(q;α) for any desired α and try to use inductive arguments
on these expressions. It is easy to prove that multiplying by [n]q preserves the interlacing
conditions. Unfortunately, addition is another matter and this is where the difficulty lies.

2. Lexicographic CDs. There are two hurdles to using the Greene-Kleitman approach
to constructing NCDs. The first is finding a suitable labeling of the poset. The other is
coming up with an appropriate modification of GK(w) when w is taken with respect to the
labeling. Here we propose another method which, given any labeling of any finite labeled
poset P , produces a chain decomposition of the lattice of ideals L = L(P ) which may or
may not be nested.

We construct the chains C1, C2, C3, . . . of the CD as follows. Suppose C1, . . . , Ci−1 have
been constructed. Since P = [n] as sets, we can consider any ideal I of P as a subset of
{1, . . . , n} and we will not make any distinction between an ideal and its subset. So given
two ideals, we can compare them in the lexicographic order on subsets. Now we form Ci by
starting with the unique ideal I0 which has minimum rank and is also lexicographically least
among all elements of L′ = L − (C1 ∪ · · · ∪ Ci−1). We now consider all ideals of L′ which
cover I0 and take the lexicographically least of them to be the next element I1 on Ci. We
continue in this manner until we come to an ideal which has no cover in L′ at which point
Ci terminates. We have the following conjecture which we have verified for all fences F with
#F ≤ 7.

Conjecture 6.2. For every α there is a labeling of F (α) such that the correponding lexico-
graphic CD is an NCD.

There are a couple of stumbling blocks we have encountered in trying to prove this
conjecture. One is guessing what the proper labeling of F (α) should be. It seems that
for a given α there are many labelings which work. So narrowing the field down is where
the difficulty lies. The second problem is trying to prove that you have a CD for a certain
family of fences once you have identified a suitable labeling. Induction is the obvious proof
technique, but a small change in the fence can make the lexicographic CD change in what
seems to be difficult ways.

Still, we are optimistic that much progress can be made on these conjectures. We invite
the reader to work on them.
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