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Abstract

Associated with any composition β = (a, b, . . .) is a corresponding fence poset F (β)
whose covering relations are

x1 � x2 � . . .� xa+1 � xa+2 � . . .� xa+b+1 � xa+b+2 � . . . .

The distributive lattice L(β) of all lower order ideals of F (β) is important in the theory
of cluster algebras. In addition, its rank generating function r(q;β) is used to define
q-analogues of rational numbers. Oğuz and Ravichandran recently showed that its
coefficients satisfy an interlacing condition, proving a conjecture of McConville, Smyth
and Sagan, which in turn implies a previous conjecture of Morier-Genoud and Ovsienko
that r(q;β) is unimodal. We show that, when β has an odd number of parts, then the
polynomial is also partially symmetric: the number of ideals of F (β) of size k equals
the number of filters of size k, when k is below a certain value. Our proof is completely
bijective. Oğuz and Ravichandran also introduced a circular version of fences and
proved, using algebraic techniques, that the distributive lattice for such a poset is rank
symmetric. We give a bijective proof of this result as well. We end with some questions
and conjectures raised by this work.

Keywords: bottom heavy, bottom interlacing, distributive lattice, fence, gate, order ideal, poset,
rank, symmetric, unimodal, top heavy, top interlacing
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1 Introduction

We will be studying the rank sequences for distributive lattices of certain partially ordered
sets (posets) called fences, defined as follows. Any terms or notation from the theory of posets
which are not defined here can be found in the texts of Sagan [Sag20] or Stanley [Sta12].
A chain of length l is a totally ordered set with l + 1 elements. A composition of m is a
sequence β = (β1, β2, . . . , βs) of positive integers, called parts, with

∑
i βi = m. We write
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Figure 1: The fence F (2, 4, 1)

β |= m. The corresponding fence F (β) is obtained by taking chains Si of length βi for
1 ≤ i ≤ s and identifying the maximal (respectively, minimal) elements of Si and Si+1 for i
odd (respectively, even). As an example, the fence F (2, 4, 1) is displayed in Figure 1. Placing
the chains S1, S2, . . . , Ss from left to right as in the figure, we label the elements of F (β) as
x1, x2, . . . , xn from left to right. We say that Si is an ascending or descending segment of
F (β) depending on whether i is odd or even, respectively. Note that if #F (β) = n, where
the hash tag denotes cardinality, then β |= n− 1.

Let L(β) be the distributive lattice of lower order ideals of F (β). These lattices can be
used to compute mutations in an associated cluster algebra on a surface with marked points.
In fact there are (at least) six methods for doing so, see [Cla20, Pro20, Sch08, Sch10, ST09,
Yur19a, Yur19b]. Since L(β) is ranked, it has an associated rank sequence r(β) : r0, r1, . . . , rn
where

rk = number of elements at rank k in L(β).

for 0 ≤ k ≤ n. The corresponding rank generating functions

r(q; β) =
n∑

k=0

rkq
k.

were used by Morier-Genoud and Ovsienko to define q-analogues of rational, and even real,
numbers [MGO20]. For example, for the fence F (β) with β = (6, 2, 1, 2, 3, 1, 6) (see Figure 4),
the rank generating function is

r(q; β) = 1 + 4q + 11q2 + 23q3 + 41q4 + 65q5 + 93q6 + 121q7 + 146q8 + 163q9 + 170q10

+ 165q11 + 147q12 + 122q13 + 93q14 + 65q15 + 41q16 + 23q17 + 11q18 + 4q19 + q20.

Two well-studied properties of sequences b : b0, b1, . . . , bn are as follows. Call the sequence
symmetric if

bk = bn−k

for 0 ≤ k ≤ n. The sequence is said to be unimodal if there is an index m such that

b0 ≤ b1 ≤ . . . ≤ bm ≥ bm+1 ≥ . . . ≥ bn.

Sequences satisfying these properties abound in combinatorics, algebra, and geometry. See
the survey articles of Stanley [Sta89], Brenti [Bre94], or Brändén [Br15] for examples. In
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their previously cited paper, Morier-Genoud and Ovsienko made the following conjecture
which has now been proved, as we will discuss shortly.

Conjecture 1.1 ([MGO20]). For all β, the sequence r(β) is unimodal.

It is not true that r(β) is always symmetric. For example, when β = (1, 1) we have r(β) :
1, 2, 1, 1. However, there are other recently studied properties of sequences [Ath14, Ath18,
BJM19, BS21, SVL13, Sol19] which are satisfied by r(β). Call a sequence b : b0, b1, . . . , bn
top heavy if

bk ≤ bn−k

for 0 ≤ k < ⌊n/2⌋, where ⌊·⌋ is the floor (round-down) function. Dually, the sequence is
bottom heavy if

bk ≥ bn−k

for 0 ≤ k < ⌊n/2⌋. Call the sequence top interlacing if

b0 ≤ bn ≤ b1 ≤ bn−1 ≤ . . . ≤ b⌈n/2⌉,

where ⌈·⌉ is the ceiling (round-up) function. Top interlacing clearly implies top heavy, and
it also gives unimodality, since the inequalities imply that the sequence is increasing up to
b⌈n/2⌉ and decreasing from b⌈n/2⌉ onward. Some papers use the term “alternately increasing,”
but we prefer “top interlacing” because it emphasizes how the first and second halves of the
sequence interlace. Similarly, define a sequence to be bottom interlacing if

bn ≤ b0 ≤ bn−1 ≤ b1 ≤ . . . ≤ b⌊n/2⌋.

As before, bottom interlacing implies both bottom heavy and unimodal. McConville, Sagan,
and Smyth [MSS21] conjectured the following strengthening of Conjecture 1.1, which has
has recently been proved by Oğuz and Ravichandran [OR21] using induction and algebraic
techniques.

Theorem 1.2 ([OR21]). Let β = (β1, . . . , βs).

(a) If s = 1 then r(β) = (1, 1, . . . , 1).

(b) If s is even, then r(β) is bottom interlacing.

(c) Suppose s ≥ 3 is odd and let β′ = (β2, . . . , βs−1).

(i) If β1 > βs then r(β) is bottom interlacing.

(ii) If β1 < βs then r(β) is top interlacing.

(iii) If β1 = βs then r(β) is symmetric, bottom interlacing, or top interlacing depending
on whether r(β′) is symmetric, top interlacing, or bottom interlacing, respectively.

The purpose of the present work is to show that, even though r(β) is not always symmet-
ric, it exhibits at least partial symmetry if there is an odd number of segments. In particular,
our main result is as follows.
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Figure 2: The circular fence F (2, 1, 1, 2)

Theorem 1.3. Let β = (β1, β2, . . . , βs) where s is odd and r(β) : r0, r1, . . . , rn. For all
k ≤ min{β1, βs} we have

rk = rn−k.

Oğuz and Ravichandran’s proof of Theorem 1.2 relied on certain posets obtained by
making the Hasse diagram of a fence into a cycle. Let β = (β1, β2, . . . , β2ℓ) |= n be a
composition with an even number of parts, so that the fence F (β) has n + 1 elements
x1, . . . , xn+1, begins with an ascending segment, and ends with a descending segment. Define
the corresponding circular fence to be the poset F (β) with n elements obtained by identifying
x1 and xn+1. For example, F (2, 1, 1, 2) is displayed in Figure 2. Denote the rank sequence of
F (β) by r(β). Using algebraic manipulation of recurrence relations, Oğuz and Ravichandran
proved the following result, and left finding a bijective proof as an open problem.

Theorem 1.4 ([OR21]). Let β = (β1, β2, . . . , βs) where s is even. Then r(β) is symmetric.

The rest of this paper will be structured as follows. In the next section, we will present
a totally bijective proof of Theorem 1.3. Section 3 will be devoted to showing that our
bijection can be used, with minor modifications, to prove Theorem 1.4 as well. We will end
with a section of comments and open questions.

2 Proof of partial symmetry for fences

In order to give our bijective proof of Theorem 1.3, we will need some definitions and notation.
In a poset, an ideal will always be a lower order ideal. We will also use the terms upper order
ideal and filter interchangeably. Consider a composition β = (β1, β2, . . . , β2ℓ+1) with an odd
number of parts. For a fence F (β) and k ≥ 0, we let

Ik(β) = {I | I is a lower order ideal of F (β) with #I = k}

and
Uk(β) = {U | U is an upper order ideal of F (β) with #U = k}.

To prove Theorem 1.3, it suffices to construct a bijection Φ : Ik(β) → Uk(β) for all k ≤
min{β1, β2ℓ+1}. This is because, with the notation of the theorem, we have #Ik(β) = rk and
#Uk(β) = rn−k.
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Figure 3: The gate G(2, 3, 1).

2.1 Bijection ϕ for gates

To define Φ, we will first construct a bijective map ϕ on certain ideals of a particular subposet
of a fence obtained by removing the first and last segments, and requiring ascending segments
to have length one. For an arbitrary composition δ = (δ1, δ2, . . . , δℓ), let the corresponding
gate be

G(δ) = F (δ1, 1, δ2, 1, . . . , δℓ−1, 1, δℓ)
∗,

where the star indicates poset dual. The gate G(2, 3, 1) is shown in Figure 3. We will use
the same terminology for gates as we do for fences. Note that G(δ) begins and ends with
a descending segment. Let Di denote the ith descending segment from the left, which has
length δi. The ideals of a gate which correspond to those of bounded size in the corresponding
fence are as follows. If G(δ) has ℓ descending segments, then call an ideal I of this gate
restricted if #(I ∩D1) ≤ δ1 and #(I ∩Dℓ) ̸= 1. In other words, I is restricted if it does not
contain the maximal element on D1, and if it contains the minimal element on Dℓ then it
also contains the element above it. Let

Ir(δ) = {I | I is a restricted ideal of the gate G(δ)}

Call a filter U of G(δ) restricted if #(U ∩D1) ̸= 1 and #(U ∩Dℓ) ≤ δℓ. Equivalently, U
∗ is

a restricted ideal of G(δ)∗, which is isomorphic to G(δR) where

δR = (δℓ, δℓ−1, . . . , δ2, δ1)

is the reversal of δ. In general, the reversal of any sequence b will be denoted by bR. Note the
difference between our use of r for restricted and R for reversal. The notation for restricted
filters is, as expected,

U r(δ) = {U | U is a restricted filter of the gate G(δ)}

We will describe a cardinality-preserving bijection

ϕ : Ir(δ) → U r(δ).

We will need some more notation and terminology. Given a sequence d : d1, d2, . . . , dℓ, we
use the floor symbol

⌊d⌋ = ⌊d1, d2, . . . , dℓ⌋
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to denote the subset of G(δ) (if it exists) consisting of the smallest di elements on segment
Di for 1 ≤ i ≤ ℓ. It is easy to see that ⌊d⌋ exists and is a restricted lower order ideal
if and only if the following conditions hold. We use the notation [m,n] for the interval of
integers between m and n inclusive, which is shortened to [n] if m = 1. The restricted ideal
conditions are:

I1 (existence) for i ∈ [ℓ] we have 0 ≤ di ≤ δi + 1,

I2 (lower order ideal) for i ∈ [2, ℓ]: if di = δi + 1 then di−1 > 0,

I3 (restricted) d1 ≤ δ1 and dℓ ̸= 1.

Similarly, we use ceiling notation

⌈e⌉ = ⌈e1, e2, . . . , eℓ⌉

to denote the subset of G(δ) containing the largest ei elements on segment i for 1 ≤ i ≤ ℓ.
Here are the conditions for ⌈d⌉ to exist and be a restricted filter:

U1 (existence) for i ∈ [ℓ] we have 0 ≤ ei ≤ δi + 1,

U2 (upper order ideal) for i ∈ [ℓ− 1]: if ei = δi + 1 then ei+1 > 0 for,

U3 (restricted) e1 ̸= 1 and eℓ ≤ δℓ.

A factor of the sequence d : d1, d2, . . . , dℓ is a subsequence di, di+1, . . . , dj of consecutive
elements. If the di are nonnegative integers then a block is a maximal factor of positive
integers. For example, the sequence

d : 6, 1, 1, 1, 0, 4, 5, 1, 1, 0, 0, 3, 1, 2

has three blocks, namely 6, 1, 1, 1; 4, 5, 1, 1; and 3, 1, 2. The factor of trailing ones of a block
B is the (possibly empty) maximal factor T of B consisting only of ones such that there is
no element of B larger than one to its right. In our example, the blocks have three, two,
and no trailing ones, respectively. Note that if ⌊d1, d2, . . . , dℓ⌋ is a restricted ideal, then any
nonempty factor T of trailing ones must be followed by a 0. This follows directly from the
definition of T unless its block contains the last element dℓ. And in that case, since the ideal
is restricted, we must have dℓ ≥ 2 so that no trailing ones are possible.

One can now construct ϕ(⌊d1, d2, . . . , dℓ⌋) as follows. Consider each block B of the se-
quence d1, d2, . . . , dℓ, and factor it as the concatenation B = B′T where T is B’s factor of
trailing ones and B′ is the rest of B. The map ϕ performs the following two steps.

P1 For each nonempty factor T of trailing ones, exchange T with the 0 to its right.

P2 For each B′ with #B′ ≥ 2, decrease the rightmost such entry by 1 and increase the
leftmost one by 1.
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Continuing our example, the three blocks have 3, 2 and 0 trailing ones and B′ equal to
6; 4, 5; and 3, 1, 2 from left to right. So after P1 we have the sequence

6, 0, 1, 1, 1, 4, 5, 0, 1, 1, 0, 3, 1, 2.

Now applying P2 gives

ϕ(⌊6, 1, 1, 1, 0, 4, 5, 1, 1, 0, 0, 3, 1, 2⌋) = ⌈6, 0, 1, 1, 1, 5, 4, 0, 1, 1, 0, 4, 1, 1⌉.

Note that the construction of ϕ(⌊d⌋) does not depend on the lengths δi.
For the following proof, it will be convenient to extend the reversal operator as follows.

If ⌊d⌋ is an ideal of G(δ), then let
⌊d⌋R = ⌈dR⌉,

where ⌈dR⌉ is being considered as a filter of G(δR). Similarly let

⌈e⌉R = ⌊eR⌋.

Theorem 2.1. The map ϕ : Ir(δ) → U r(δ) defined by P1 and P2 is a cardinality-preserving
bijection.

Proof. Let δ = (δ1, δ2, . . . , δℓ), and suppose we are given d : d1, d2, . . . , dℓ with ⌊d⌋ ∈ Ir(δ).
Let ϕ(⌊d⌋) = ⌈e⌉, where e : e1, e2, . . . , eℓ.

We first show that ϕ is well defined in that #⌊d⌋ = #⌈e⌉ and ⌈e⌉ ∈ U r(δ). The first
statement is clear since P1 does not change cardinalities, and every entry increased by one
in P2 is offset by an entry decreased by one. For the second statement, we need to check
U1–U3. The truth of U1 follows from the fact that d satisfies I1 unless di = δi + 1 and di is
increased in step P2. But if i = 1 then this contradicts I3, and if i > 1 then this contradicts
I2, since di was not the first nonzero entry in its block. If U2 is violated, then ei = δi + 1
and ei+1 = 0. So di must have been the last entry of some B′. If #B′ = 1 then di−1 = 0.
But then ei = di ≤ δi, because if we had di = δi + 1 then ⌊d⌋ would not be an ideal since it
violates I2. On the other hand, if #B′ > 1 then by P2 we have ei = di − 1 ≤ δi, which is
another contradiction. Thus ⌈e⌉ is a filter. Finally, we must verify U3. For the first condition
suppose, towards a contradiction, that e1 = 1, and let B′ be the initial factor of the block B
containing d1 ≥ 1. If e1 = d1 then by P2 we must have #B′ = 1. But then B′ would have
been included in the trailing ones of B and moved to the right in P1. The other possibility
is e1 = d1 + 1 ≥ 2, again a contradiction. Thus the first condition holds. To prove that the
second condition is true, assume the opposite which is that eℓ = δℓ + 1. Clearly eℓ ≥ 2. It
follows that dℓ must have been part of a block B with no trailing ones so that B′ = B. If
#B′ = 1 then dℓ = eℓ = δℓ + 1. By P2, this forces dℓ−1 ̸= 0. But then dℓ was not the only
element in B′ which is impossible. If #B′ ≥ 2 then, by P2 again, eℓ = dℓ − 1 ≤ δℓ. This
final contradiction finishes the proof that U3 holds and that ϕ is well defined.

To show that ϕ is bijective, we construct ϕ−1 : U r(δ) → Ir(δ). If ⌈e⌉ ∈ U r(δ) then define

ϕ−1(⌈e⌉) = ϕ(⌈e⌉R)R,

where, on the right-hand side, the map being applied is ϕ : Ir(δR) → U r(δR). Because
reversal is an involution, showing that ϕ−1 is well defined is equivalent to showing that ⌈e⌉
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is a restricted filter if and only if ⌈e⌉R is a restricted ideal. But this follows immediately by
comparing I1–I3 with U1–U3.

To show that ϕ−1 is indeed the inverse of ϕ, we claim that the factors of ones moved by
ϕ are the same as those moved by ϕ−1. We will only show that if a factor is moved by ϕ
then it is moved by ϕ−1, as the reverse implication is similar. Let T be a factor of trailing
ones in ⌊d⌋. After T moves when applying ϕ, it either becomes a block itself or merges with
B′ where B is the block which was to its right. In the first case, T is clearly a block of ones
in ⌈e⌉ = ϕ(⌊d⌋) and so also in ⌈e⌉R. Thus it will be moved when computing ϕ−1(⌈e⌉). In
the second case, it suffices to show that the leftmost entry di of B becomes ei ≥ 2 in ⌈e⌉,
since then T becomes a factor of trailing ones in ⌈e⌉R. If #B = 1 then ei = di ≥ 2 since,
otherwise, di = 1 would have been one of the trailing ones of the original block and moved
to the right. On the other hand, if #B ≥ 2, then by P2 we have ei = di + 1 ≥ 2, which is
again what we wished to show and completes the second case of the claim.

Because of the claim, ϕ−1 acts as a step-by-step inverse of ϕ. Indeed, moving factors
right in ⌊d⌋ corresponds to moving the same factors left in ⌈e⌉. And this is equivalent to
moving them right in ⌈e⌉R by applying ϕ, while the final reversal brings the factor back to
its original position. Also, what P2 does to the two ends of the remains B′ of a block B are
inverses of each other. This shows that B′ will also be restored to itself by ϕ−1, so that this
map does indeed undo what was done by ϕ. This completes the proof.

2.2 Bijection Φ for fences

Let β = (β1, β2, . . . , βs) |= n − 1 with s odd. Write s = 2ℓ + 1, where ℓ ≥ 0. Our
algorithm will be simplest to state using somewhat different parameters for the corresponding
fence F = F (β). These constants first appeared in the work of Elizalde, Plante, Roby and
Sagan [EPRS21] concerning rowmotion on fences. Call the elements of F which appear on
two segments shared and all other elements unshared. It will be convenient to use different
notation and conventions for ascending and descending segments. Let the ascending segments
of F be A1, A2, . . . , Aℓ+1 from left to right, and similarly let D1, D2, . . . , Dℓ be the descending
segments. Let

δi = 1 + (the number of unshared elements on D2i) (1)

for 1 ≤ i ≤ ℓ. Thus δi = β2i. Similarly, let

αi = 1 + (the number of unshared elements on A2i−1) (2)

for 1 ≤ i ≤ ℓ + 1. It follows that αi = β2i−1 for 2 ≤ i ≤ ℓ, α1 = β1 + 1, and αℓ+1 = βs + 1.
For i ∈ [ℓ + 1], denote by Ãi the chain consisting of the unshared elements on segment Ai.
Note that #Ãi = αi− 1 and #Di = δi+1, and that each element from F appears in exactly
one of the Ãi or Di.

We encode ideals I of F (β) by pairs of sequences a : a1, a2, . . . , aℓ+1 and d : d1, d2, . . . , dℓ,
where ai = #(I ∩ Ãi) and di = #(I ∩Di) for all i. It is sometimes convenient to visualize
these sequences as placed one above the other, with entries interlaced, i.e.,⌊

a
d

⌋
=

⌊
a1 a2 · · · aℓ aℓ+1

d1 d2 · · · dℓ

⌋
.

8



Similarly, we encode filters U of F (β) by pairs of sequences b : b1, b2, . . . , bℓ+1 and e :
e1, e2, . . . , eℓ, where bi = #(U ∩ Ãi) and ei = #(U ∩Di) for all i, and we write⌈

b
e

⌉
=

⌈
b1 b2 · · · bℓ bℓ+1

e1 e2 · · · eℓ

⌉
.

A pair of sequences ⌊a
d
⌋ as above encodes an ideal of F (β) if and only if the following

conditions hold:

IF1 for i ∈ [ℓ+ 1] we have 0 ≤ ai ≤ αi − 1,

IF2 for i ∈ [ℓ] we have 0 ≤ di ≤ δi + 1,

IF3 for i ∈ [ℓ]: if di = δi + 1 then ai = αi − 1, and if i > 1 then di−1 > 0 as well,

IF4 for i ∈ [ℓ]: if ai+1 > 0 then di > 0.

Note that the size of the ideal is
∑

i ai +
∑

i di.
To obtain the conditions for ⌈ b

e
⌉ to encode a filter of F (β), note that this happens if and

only if

⌈ b
e
⌉R def

= ⌊ bR

eR
⌋ (3)

encodes an ideal of F (βR). Similarly define

⌊a
d
⌋R = ⌈aR

dR
⌉. (4)

The following is equivalent to ⌈ b
e
⌉ being a filter of F (β):

UF1 for i ∈ [ℓ+ 1] we have 0 ≤ bi ≤ αi − 1,

UF2 for i ∈ [ℓ] we have 0 ≤ ei ≤ δi + 1,

UF3 for i ∈ [ℓ]: if ei = δi + 1 then bi+1 = αi+1 − 1, and if i < ℓ then ei+1 > 0 as well,

UF4 for i ∈ [ℓ]: if bi > 0 then ei > 0.

Next, we define a bijection Φ : Ik(F ) → Uk(F ), where

k ≤ min{β1, βs} = min{α1, αℓ+1} − 1.

Given an ideal of Ik(F ) encoded by a pair of sequences ⌊a
d
⌋, we apply the following steps,

where we use x := y to mean that x is to be assigned the value y.

PH1 For every i ∈ [ℓ] such that di = 1 and ai+1 < αi+1 − 1, let di := 0 and ai+1 := ai+1 + 1.

PH2 Decompose d : d1, d2, . . . , dℓ into factors by splitting between di−1 and di for each
i ∈ [2, ℓ] such that ai < αi − 1. Apply ϕ (defined by P1–P2) to each factor to obtain a
sequence e. Let b := a.

PH3 For every i ∈ [ℓ] such that ei = 0 and bi > 0, let ei := 1 and bi := bi − 1.
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Define
Φ(⌊a

d
⌋) = ⌈ b

e
⌉.

For example, let F = F (6, 2, 1, 2, 3, 1, 6) be the fence in Figure 4, which has α : 7, 1, 3, 7
and δ : 2, 2, 1. Label its elements x1, x2, . . . , x22 from left to right, and consider the ideal
I = {x9, x10, x11, x12, x13, x16} ∈ I(F ), which is encoded by⌊

a
d

⌋
=

⌊
0 0 1 0

1 3 1

⌋
.

In the top of Figure 4 the elements of I are circled. Applying PH1 yields

0 0 1 1
1 3 0

.

In step PH2, the sequence 1, 3, 0 is split into two factors 1, 3 and 0. Applying ϕ to each one
we get

0 0 1 1
2 2 0

.

Finally, applying PH3 yields⌈
b
e

⌉
=

⌈
0 0 0 1

2 2 1

⌉
,

which encodes the filter U = {x7, x8, x10, x11, x15, x21} ∈ I(F ), depicted in the bottom of
Figure 4.

We now prove the main theorem of this section.

Theorem 2.2. Let β = (β1, β2, . . . , βs) where s = 2ℓ+ 1 and

k ≤ min{β1, βs}. (5)

The map Φ : Ik(β) → Uk(β) defined by PH1–PH3 is a bijection.

Proof. We maintain the notation established in the lead up to this theorem. To show that Φ
is well defined, we need to first demonstrate that ϕ can be applied to the factors determined
by PH2 in that they satisfy I1–I3. The first two conditions follow directly from the fact
that I = ⌊a

d
⌋ is an ideal. For I3, we begin with d1 in the first factor and assume, towards a

contradiction, that d1 = δ1 + 1. But then IF3 forces a1 = α1 − 1. So

k = #I ≥ a1 + d1 ≥ α1 = β1 + 1,

which contradicts (5). Now consider dℓ in the last factor and suppose, again towards a
contradiction, that dℓ = 1 when ϕ is about to be applied. Note that we must also have
aℓ+1 < αℓ+1 − 1, since otherwise we would again contradict (5) similarly to our first case.
But under these conditions, PH1 would have set dℓ to 0, which is again a contradiction. To
finish verifying I3, we must consider the splits between di−1 and di for 2 ≤ i ≤ ℓ, which
occur when ai < αi− 1 in PH2. If di−1 = 1 then we must have had ai < αi− 1 to start with,
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Figure 4: Computing Φ({x9, x10, x11, x12, x13, x16}) in F (6, 2, 1, 2, 3, 1, 6).

since ai can only increase in value, so PH1 would have again set di−1 to 0. If di = δ1 + 1
then IF3 forces ai = αi − 1, which contradicts the assumption in PH2. So in all cases ϕ can
be applied.

That Φ preserves cardinality follows from the fact that ϕ does and that the assignments
in steps PH1 and PH3 keep the sum of the sequences equal. So to finish the proof that Φ
is well defined we need to show that Φ(⌊a

d
⌋) = ⌈ b

e
⌉ satisfies UF1–UF4. The first two items

follow by the equalities and bounds imposed in PH1 and PH3 before reassignment, and from
the fact that the image of ϕ satisfies U1. To check UF3, suppose ei = δi + 1. The “and if”
clause is true because applying ϕ gives a sequence satisfying U2. For the first clause we will
see that having bi+1 < αi+1 − 1 leads to a contradiction. Note that the value of bi+1 could
not have been lowered in PH3 since ei = δi + 1 ̸= 0. So we have ai+1 = bi+1 < αi+1 − 1,
and the condition in PH2 forces ei to be the end of a factor. But since ϕ maps to restricted
filters, we have that ei ≤ δi by U3, which is the desired contradiction. Finally, we tackle
UF4 by contradiction again, assuming bi > 0 and ei = 0. If this had been the case, then ei
would have been reassigned to be 1 in PH3. This completes the verification that Φ is well
defined.

As with ϕ, we define Φ−1 to be

Φ−1(⌈ b
e
⌉) = Φ(⌈ b

e
⌉R)R. (6)
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As in the demonstration of Theorem 2.1, the proof that Φ−1 is well defined follows from the
fact that Φ is.

We first prove that Φ−1 ◦ Φ is the identity. We first need to show that if Φ(⌊a
d
⌋) = ⌈ b

e
⌉

then d gets broken into factors when applying Φ at the same indices as eR when applying
Φ−1. We will show that every break point of d becomes a break point of eR, again leaving
the reverse implication to the reader. If there was a break between di−1 and di in applying
Φ, then we must have ai < αi−1 in step PH2. After applying PH3 we have bi ≤ ai < αi−1.
Next PH1 is applied to ⌈ b

e
⌉R as the first step of Φ−1. If bi does not change at this step,

then PH2 will still split eR between ei and ei−1 because of the previous inequality. If bi does
increase during PH1, then it must have been because ei = 1 at this stage. But di was first
in its factor before applying ϕ, and so, by U3, we had ei ̸= 1 after PH2 was applied as part
of Φ. So the only way to have ei = 1 at the end of PH3 is if we also decreased bi by one in
that step. In this case bi < ai < αi − 1, which makes bi < αi − 1 after adding one in PH1.
So PH2 will still break at the same spot.

It is now easy to see that Φ−1 will act as a step-by-step inverse for Φ. Indeed, applying
PH1 for Φ−1 undoes what PH3 did for Φ. By what we proved in the previous paragraph and
the definition of ϕ−1, the steps PH2 for Φ and Φ−1 cancel each other out. And finally step
PH3 for Φ−1 cancels out PH1 in Φ.

To complete the proof, we show that Φ−1 ◦ Φ is the identity map. This follows from
equation (6) and the fact that Φ−1 ◦ Φ is the identity, since

Φ(Φ−1(⌈ b
e
⌉)) = Φ(Φ(⌈ b

e
⌉R)R) = Φ−1(Φ(⌈ b

e
⌉R))R = (⌈ b

e
⌉R)R = ⌈ b

e
⌉

as desired.

3 Proof of symmetry for circular fences

We will now show how slight modifications of ϕ and Φ can be used to give a bijective proof
of Theorem 1.4. We use the notation

I(β) = {I | I is a lower order ideal of F (β)}

and
U(β) = {U | U is an upper order ideal of F (β)}.

Our goal is to construct a cardinality-preserving bijection Φ : I(β) → U(β). As before, we
start with the case where ascending segments have length one.

3.1 Bijection ϕ for narrow circular fences

We call a circular fence F (β) narrow if its composition has the form β = (1, δ1, 1, δ2, . . . , 1, δℓ).
Let Di be the descending segment of length δi. Any I ∈ I(β) can be expressed as I =
⌊d1, d2, . . . , dℓ⌋, where di = #(I ∩Di) for i ∈ [ℓ], satisfying the following conditions:

ICN1 (existence) for i ∈ [ℓ] we have 0 ≤ di ≤ δi + 1,

ICN2 (ideal) for i ∈ [ℓ]: if di = δi + 1 then di−1 > 0, where subscripts are taken modulo ℓ.
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Similarly, the conditions for filters U = ⌈e1, e2, . . . , eℓ⌉ of F (β) are as follows:

UCN1 (existence) for i ∈ [ℓ] we have 0 ≤ ei ≤ δi + 1,

UCN2 (filter) for i ∈ [ℓ]: if ei = δi + 1 then ei+1 > 0, where subscripts are taken modulo ℓ.

To define ϕ, it will be useful to define a circular sequence ⟨d⟩ : ⟨d1, d2, . . . , dℓ⟩, which
is obtained from the linear sequence d : d1, d2, . . . , dℓ by considering dℓ as followed by d1.
Equivalently, the subscripts in a circular sequence are to be treated modulo ℓ and this will be
our convention in all definitions pertaining to circular sequences. Note our calling ordinary
sequences linear to distinguish them from the circular case.

A factor of ⟨d⟩ is a subsequence of the form di, di+1, . . . , dj. Note that this is a linear
sequence even though it may wrap around to the beginning of d. Call d positive if all its
elements are positive. If d is not positive (and so has at least one zero) then a block B of ⟨d⟩
is a maximal factor of positive elements. For example, the circular sequence

⟨d⟩ = ⟨7, 1, 1, 0, 5, 1, 0, 0, 3⟩

has blocks 5, 1 and 3, 7, 1, 1. Now the trailing ones of a block are defined exactly as in the
linear case. Conveniently, for circular sequences every factor of trailing ones is followed by
a zero, which is why we do not need the notion of restriction for ideals in circular fences. In
our example, block 5, 1 has one trailing one and block 3, 7, 1, 1 has two.

Now suppose we are given I = ⌊d1, d2, . . . , dℓ⌋ ∈ I(β) with F (β) narrow. If d :
d1, d2, . . . , dℓ is not positive, then we define ϕ(I) by applying P1 and P2 for ϕ to ⟨d1, d2, . . . , dℓ⟩.
Note that this is well defined since factors of a circular permutation are linear. Returning
to our example, we have

I = ⌊7, 1, 1, 0, 5, 1, 0, 0, 3⌋ P17→ ⟨7, 0, 1, 1, 5, 0, 1, 0, 3⟩ P27→ ⌈6, 0, 1, 1, 5, 0, 1, 4⌉ = ϕ(I).

If d is positive, then we let

ϕ⌊d1, d2, . . . , dℓ⌋ = ⌈d1, d2, . . . , dℓ⌉.

The proof of the next result is very similar to that of Theorem 2.1, so the demonstration
is omitted.

Theorem 3.1. Let β = (1, δ1, 1, δ2, . . . , 1, δℓ). The map ϕ : I(β) → U(β) defined above is a
cardinality-preserving bijection.

3.2 Bijection Φ for circular fences

Now consider an arbitrary circular fence F = F (β), where β = (β1, β2, . . . , β2ℓ) |= n. We
again use Ai and Di to denote the corresponding ascending and descending segments, noting
that now there are only ℓ ascending segments. Define δi and αi using equations (1) and (2),
respectively. We now have δi = β2i and αi = β2i−1 for all i (unlike the linear case, there are
no exceptions).
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Given I ∈ I(β), we continue to let ai = #(I ∩ Ãi) and di = #(I ∩ Di), where Ãi also
retains its previous meaning. The notation for I will be⌊

a
d

⌋
=

⌊
a1 a2 · · · aℓ a1

d1 d2 · · · dℓ

⌋
. (7)

Note the repetition of a1 in the top line, which will make our future definitions simpler. The
encoding for filters is changed mutatis mutandis.

We can now easily write down the conditions for being an ideal of a circular fence in
terms of the ai and di (all subscripts are modulo ℓ):

IC1 for i ∈ [ℓ] we have 0 ≤ ai ≤ αi − 1,

IC2 for i ∈ [ℓ] we have 0 ≤ di ≤ δi + 1,

IC3 for i ∈ [ℓ]: if di = δi + 1 then ai = αi − 1 and di−1 > 0,

IC4 for i ∈ [ℓ]: if ai > 0, then di−1 > 0.

Similarly, ⌈ b
e
⌉ being a filter is equivalent to the following conditions:

UC1 for i ∈ [ℓ] we have 0 ≤ bi ≤ αi − 1,

UC2 for i ∈ [ℓ] we have 0 ≤ ei ≤ δi + 1,

UC3 for i ∈ [ℓ]: if ei = δi + 1 then bi+1 = αi+1 − 1 and ei+1 > 0,

UC4 for i ∈ [ℓ]: if bi > 0, then ei > 0.

We now modify PH1–PH3 for the circular case. Given ⌊a
d
⌋ as in (7), perform the following

operations. In all steps, the indices are taken modulo ℓ.

PHC1 For every i ∈ [ℓ] such that di = 1 and ai+1 < αi+1 − 1, let di := 0 and ai+1 := ai+1 + 1.

PHC2 If there exists some index i ∈ [ℓ] with ai < αi − 1, then split ⟨d⟩ into factors between
di−1 and di for each such i and apply ϕ to each factor. If no such i exists, then compute
ϕ(⌊d⌋). In both cases, let e be the resulting sequence. Let b := a.

PHC3 For every i ∈ [ℓ] such that ei = 0 and bi > 0, let ei := 1 and bi := bi − 1.

Define
Φ(⌊a

d
⌋) = ⌈ b

e
⌉.

Let us look at two examples which will illustrate the two cases in step PHC2. First
consider the circular fence F (β) where β = (2, 1, 2, 3, 1, 2, 2, 1), so

α : 2, 2, 1, 2 and δ : 1, 3, 2, 1,

as illustrated in Figure 5. Let I = {x1, x2, x3, x4, x5, x9, x12} ∈ I(β), which is encoded by⌊
a
d

⌋
=

⌊
1 1 0 0 1

2 1 1 1

⌋
.
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Figure 5: Computing Φ({x1, x2, x3, x4, x5, x9, x12}) in F (2, 1, 2, 3, 1, 2, 2, 1)

This ideal is indicated by the circled nodes in the top poset in Figure 5. Applying PHC1
yields

1 1 0 1 1
2 1 0 1

.

In step PHC2, since ai = αi−1 for all i, we simply apply ϕ to the sequence ⌊d⌋ = ⌊2, 1, 0, 1⌋,
which gives ⌈e⌉ = ⌈1, 0, 1, 2⌉. Finally, applying PHC3 to

1 1 0 1 1
1 0 1 2

yields ⌈
b
e

⌉
=

⌈
1 0 0 1 1

1 1 1 2

⌉
,

which encodes the filter U = {x1, x2, x3, x6, x10, x13, x14} ∈ U(β), as illustrated in the bottom
poset in Figure 5.

If instead we apply Φ to the ideal I = {x1, x2, x3, x4, x9, x12} ∈ I(β), which is encoded
by ⌊

a
d

⌋
=

⌊
1 0 0 0 1

2 1 1 1

⌋
,

step PHC1 yields
1 0 0 1 1

2 1 0 1
.
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Now, in step PHC2, we have a2 = 0 < 1 = α2−1, so we split ⟨d⟩ between d1 = 2 and d2 = 1.
Applying ϕ to the resulting linear factor 1, 0, 1, 2, we obtain the sequence 0, 1, 2, 1, and so
e : 1, 0, 1, 2. Finally, applying PHC3 to

1 0 0 1 1
1 0 1 2

does not produce any change, and so⌈
b
e

⌉
=

⌈
1 0 0 1 1

1 0 1 2

⌉
,

which encodes the filter U = {x1, x2, x3, x10, x13, x14} ∈ U(β).
To prove that Φ is bijective, we will use the definition of reversal for ideals given by (4),

remembering that for circular fences a1 appears twice in a. So,⌊
a1 a2 · · · aℓ a1

d1 d2 · · · dℓ

⌋R

=

⌈
a1 aℓ · · · a2 a1

dℓ dℓ−1 · · · d1

⌉
.

Similarly, reversal for filters is given by (3).

Theorem 3.2. Let β = (β1, β2, . . . , β2ℓ). The map Φ : I(β) → U(β) defined by PHC1–PHC3
is a cardinality-preserving bijection.

Proof. We will use the notation we have established above. If there is an index i in step
PHC2 with ai < αi− 1, then this map is very similar to Φ. The proof in this case essentially
follows the lines of that of Theorem 2.2, and so we omit the details.

Assume now that, in step PHC2, we have ai = αi−1 for all i. There are two possibilities
depending on whether d is positive or not. First consider what happens if d is positive. In
this case ϕ(⌊d⌋) = ⌈d⌉, so that in step PHC2 we have e := d. Since d does not change, PHC3
will undo what was done in PHC1, so that b = a. Thus, in this case Φ is the identity map
at the level of encodings. It is now easy to check that this map is well defined, and trivial
that it is a bijection.

Now suppose that d is not positive. Clearly Φ preserves cardinality, because so does ϕ,
and in the first and last steps the changes take place in pairs, with one element increasing by
one and the other decreasing by the same amount. We need to show that Φ is well defined
in that ⌈ b

e
⌉ ∈ U(β). So we need to check UC1–UC4.

Conditions UC1 and UC2 are true because of the bounds and equalities which must be
satisfied in steps PHC1 and PHC3 before making the assignments, and because in PHC2
we know that ϕ(⌊d⌋) satisfies UCN2. To check UC3, we assume ei = δi + 1 at the end of
PHC3, and thus also at the end of PHC2. Since ϕ(⌊d⌋) satisfies UCN2, we have that ei+1 > 0
after PHC2, and thus also after PHC3. For the other assertion in UC3 assume, towards a
contradiction, that bi+1 < αi+1−1. Now the value of bi+1 was not changed in PHC3 because
ei+1 > 0 after PHC2. So ai+1 = bi+1 < αi+1 − 1, which contradicts the fact that ai = αi − 1
for all i. We also handle UC4 by contradiction, assuming that bi > 0 but ei = 0. Under
these circumstances, ei would have been reassigned to be 1 in PHC3. Thus we have shown
that all four conditions for a filter are satisfied.

Finally, we define Φ
−1

by (6) with Φ replaced by Φ. The demonstration that this is well
defined and indeed the inverse of Φ is much the same as the proof for Φ, and so left to the
reader.
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4 Comments and open questions

This section is devoted to some remarks and a number of open questions which we hope the
reader will be interested in pursuing.

4.1 Extending the bijections

Even though the map Φ : Ik(β) → Uk(β) from Theorem 2.2 is not well defined when
condition (5) does not hold, it is possible to extend it to any value of k if we restrict the
map to a particular subset of ideals, namely those for which ϕ can be applied in step PH2.
We continue to use the notation established at the beginning of Subsection 2.2. We say that
an ideal of F (β) encoded by ⌊a

d
⌋ is restricted if, in addition to IF1–IF4, it satisfies the two

conditions:

IF5 d1 ≤ δ1,

IF6 either dℓ ̸= 1 or aℓ+1 < αℓ+1 − 1.

Note that I = ⌊d1, d2, . . . , dℓ⌋ is a restricted ideal of the gate G(δ1, δ2, . . . , δℓ) if and only if

I ′ =

⌊
1 0 · · · 0 1

d1 d2 · · · dℓ

⌋
is a restricted ideal of the fence F (1, δ1, 1, δ2, . . . , δℓ, 1). Indeed, IF5 is the first condition
in I3. And since αℓ+1 − 1 = 1, we have aℓ+1 = αℓ+1 − 1, and so IF6 reduces to the second
condition in I3.

Similarly, we say that a filter of F (β) encoded by ⌈ b
e
⌉ is restricted if, in addition to

UF1–UF4, it satisfies:

UF5 eℓ ≤ δℓ,

UF6 either e1 ̸= 1 or b1 < α1 − 1.

Denote by Ir
k(β) and U r

k(β) the subsets of restricted ideals in Ik(β) and restricted filters in
Uk(β), respectively. The reader should keep in mind that this notation refers to restricted
ideals and filters in fences, not gates. If k satisfies (5), then conditions IF5–IF6 and UF5–UF6
always hold, and so Ir

k(β) = Ik(β) and U r
k(β) = Uk(β) in this case.

A slight adaptation of the proof of Theorem 2.2 demonstrates the following.

Theorem 4.1. Let β = (β1, β2, . . . , β2ℓ+1). For any k, the map Φ : Ir
k(β) → U r

k(β) defined
by PH1–PH3 is a bijection.

Question 4.2. Is it possible to give an injective proof of Theorem 1.2 using a variant of Φ?

For example, Theorem 4.1 reduces the problem of comparing the number of ideals and
filters of size k to the special case of ideals and filters that fail to satisfy IF5–IF6 and UF5–
UF6. Ideals that fail to satisfy IF5 (respectively, IF6) are in bijection with ideals of the fence
obtained by removing the first (respectively, last) two segments, and similarly for filters.

In a similar vein, we wonder whether it is possible to use a variant of Φ to give an injective
proof of the following conjecture of Oğuz and Ravichandran.

Conjecture 4.3 ([OR21]). If β = (β1, β2, . . . , β2ℓ) then r(β) is unimodal except when β =
(1, k, 1, k) or (k, 1, k, 1) for some k ≥ 1.
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4.2 Log-concavity

Another important property of some real sequences is log-concavity. Call a0, a1, . . . , an log-
concave if

a2i ≥ ai−1ai+1

for all 0 < i < n. It is well known, and easy to prove, that if a sequence contains only positive
reals then log-concavity implies unimodality. It is not true that r(β) is always log-concave, as
can be seen in the example after Conjecture 1.1 where β = (1, 1) and r(β) : 1, 2, 1, 1. It is also
possible for r(β) to be unimodal, but not log-concave; for example, when β = (1, 1, 1, 1, 1, 1),
we have r(β) : 1, 3, 3, 4, 3, 1. This raises the following question.

Question 4.4. For which β are r(β) or r(β) log-concave? Even if the whole sequence is not
log-concave, is there a long portion of it which is?

4.3 Chain decompositions

In [MSS21], McConville, Sagan, and Smyth made another conjecture which implies The-
orem 1.2 but remains open. It has to do with certain chain decompositions of posets.
Let (P,�) be a poset. If x, y ∈ P then an x–y chain in P is a totally ordered subset
C : x1 � x2 � . . . � xl with x = x1 and y = xl. Call C saturated if xi+1 covers xi for all
1 ≤ i < l. A chain decomposition (CD) of P is a partition P = ⊎iCi where the Ci are
saturated chains.

Suppose now that P is ranked with rank function rk. The center of a saturated x–y chain
C is the average

cenC =
rkx+ rk y

2
.

Let n be the maximum rank of an element of P . Call a saturated chain symmetric if
cenC = n/2. A symmetric chain decomposition or SCD is a chain decomposition all of
whose chains are symmetric. It is easy to see that if P admits an SCD then its rank
sequence is symmetric and unimodal. Having an SCD also implies that P has the strong
Sperner property as discussed in the survey article of Greene and Kleitman [GK78]. Greene
and Kleitman also gave a famous SCD of the Boolean algebra of all subsets of a finite
set [GK76].

There is an analogue of SCDs for top and bottom interlacing rank sequences. As in the
previous paragraph, let P be ranked with maximum rank n. Call a chain decomposition of
P top centered, or a TCD, if for every chain C in the decomposition we have cenC = n/2
or (n + 1)/2. Again, a simple argument shows that if P has a TCD then its rank sequence
is top interlacing. Similarly, a bottom centered chain decomposition, or BCD, has all chains
satisfying cenC = n/2 or (n− 1)/2. As expected, this property implies a bottom interlacing
rank sequence.

Conjecture 4.5 ([MSS21]). The lattice L(β) admits either an SCD, BCD, or TCD consis-
tent with Theorem 1.2.

McConville, Sagan, and Smyth were able to prove this conjecture using modifications
of the Greene-Kleitman SCD whenever β has a most three parts or is of the form β =
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(k, 1, k, 1, . . . , k, 1, l) for some 1 ≤ l ≤ k. Frustratingly, there seems to be an inductive
procedure which always produces a CD of the desired type for F (β), even though it has
not been possible to prove that it always works. Let P be any finite poset and let L be
the corresponding distributive lattice of lower order ideals. Let x1, x2, . . . , xn be a linear
extension of P . Then any subset of P can be written as an increasing sequence with respect
to this extension. For example, the fence F (2, 4, 1) in Figure 1 has linear extension

x7, x8, x6, x5, x4, x1, x2, x3

which would associate the ideal I = {x1, x6, x7, x8} with the sequence x7, x8, x6, x1. So
any two subsets can now be compared using lexicographic order on their sequences. A
corresponding lexicographic chain decomposition or LCD is L = C1 ⊎ . . . ⊎ Cl obtained as
follows. Suppose C1, . . . , Ci−1 have been constructed and let L′ = C1 ⊎ . . . ⊎ Ci−1. We now
construct Ci : I1 � I2 � . . . � Ij. Suppose that the smallest rank of an element of the set
difference L−L′ is r. Choose the lexicographically smallest element of L−L′ having rank r
to be I1. Let I2 be the lexicographically smallest element of L−L′ which covers I1. Continue
in this way until it is not possible to pick a covering element of the current ideal for Ci from
L− L′, at which point the chain terminates. We iterate this construction until all elements
of L are in a chain.

Conjecture 4.6 ([MSS21]). For any β, there is a linear extension of F (β) whose corre-
sponding LCD is an SCD, BCD, or TCD of L(β) consistent with Theorem 1.2.

The difficulty in proving this conjecture is not that it is hard to find such a linear exten-
sion. Indeed, so many linear extensions give a CD of the desired type that it is hard to find
a common feature which runs through some subset of them.

4.4 Distributive lattices

By the Fundamental Theorem of Finite Distributive Lattices, every distributive lattice L
can be obtained as the set of lower order ideals of some poset P ordered by inclusion. In this
case we write L = L(P ). Given what has been discussed, the following is a natural question
to ask.

Question 4.7. What conditions on a poset P imply that the rank sequence of L(P ) satisfies
conditions on sequences such as symmetry, unimodality, and so forth? What conditions on
P guarantee that L(P ) has an SCD, BCD, or TCD?

4.5 Rowmotion

Fences also have connections with dynamical algebraic combinatorics. Information about
this relatively new area of combinatorics can be found in the survey articles of Roby [Rob16]
or Striker [Str17]. Let G be a group acting on a finite set S with orbits O. Consider a
statistic on S, which is a map st : S → {0, 1, 2, . . .}. Given a real constant c, we say that st
is c-mesic if its average over any orbit O is c, that is,

stO
#O

= c
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where stO =
∑

x∈O stx.
Given any poset P , there is a well-studied action called rowmotion on L(P ), viewed as

the set of lower order ideals of P . The generator of rowmotion is the map ρ : L(P ) → L(P )
defined as follows. Given I ∈ L(P ), the antichain A of its maximal elements generates an
upper order ideal U . Define ρ(I) = L(P )− U . Elizalde, Plante, Roby, and Sagan [EPRS21]
showed that rowmotion on L(β) has many interesting properties, but they were unable to
resolve the following conjecture.

Conjecture 4.8. Suppose k ≥ 2 and β = (k−1, k, k, . . . , k, k−1) where the number of parts
is odd. For I ∈ L(β), define st(I) = #I. Then st is n/2-mesic, where n = #F (β).
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