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Abstract

Let u be a word over the positive integers P. Motivated by a question involving
crystal graphs, Sagan and Wilson initiated the study of the centralizer of u in the
plactic monoid which is the set

C(u) = {w | uw is Knuth equivalent to wu}.

In particular, they conjectured the following stability phenomenon: for any u there is
a positive integer K depending only on u such that C(uk) = C(uK) for k ≥ K. We
prove that this property holds for various u including words consisting of only ones and
twos, as well as permutations. Sagan and Wilson also considered cn,m(u) which is the
number of w ∈ C(u) of length n and maximum at most m. They showed that cn,m(1)
is a polynomial in m of degree n−1 and conjectured properties of the coefficients when
it is expanded in a binomial coefficient basis. We prove some of these conjectures, for
example, that the coefficients are always nonnegative integers.

1 Introduction

We will use the notation P and N for the positive and nonnegative integers, respectively.
And if n ∈ N, then we let

[n] = {1, 2, . . . , n}.

Given a finite set S we will use either #S or |S| for its cardinality. We will also use this
notation for words w over S, and |w| will be called the length of w. The Kleene closure of
S, denoted S∗, is the set of all words which can be formed from elements of S.
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We assume that the reader is familiar with the basic properties of the Robinson-Schensted-
Knuth (RSK) bijection as well as the jeu-de-taquin (jdt) of Schützenberger. The necessary
background can be found in the texts of Sagan [Sag01, Sag20] or Stanley [Sta24]. We will let
P (w) denote the insertion tableau of w under RSK. And we will write v ≡ w if v and w are
Knuth equivalent, that is, w can be obtained from v by a sequence of Knuth transpositions.
As proved by Knuth [Knu70],

v ≡ w if and only if P (v) = P (w).

Lacoux and Schützenberger’s plactic monoid [LS81] is P∗ modulo Knuth equivalence equipped
with the operation of concatenation.

Motivated by a question in representation theory, Sagan and Wilson [SW25] studied the
centralizer of a word u in the plactic monoid which can be described as

C(u) = {w | uw ≡ wu}
= {w | P (uw) = P (wu)},

where uw denotes the concatenation of u with w. For example, they characterized C(u) for
various u and studied an enumerative invariant of the centralizer, cn,m(u), defined below.
The purpose of the present work is to resolve or make progress on various conjectures that
they posed in this context.

Our first results have to do with a stability phenomenon. Call u stable if there is a
constant K depending only on u such that

C(uk) = C(uK) for k ≥ K,

where uk is u concatenated with itself k times. If we wish to be specific about the bound
then we will write that u is K-stable. In particular, we say that u is strongly stable if K = 1.
We will establish some cases of the following conjecture.

Conjecture 1.1 ([SW25, Conjecture 7.2]). Every u ∈ P∗ is stable.

In the next section, we show that if u consists of only ones and twos then it is strongly
stable. Then, in Section 3, we show that any permutation is stable, and that the longest
permutation is in fact strongly stable.

Sagan and Wilson also considered the cardinalities

cn,m(u) = #{w ∈ C(u) | |w| = n and maxw ≤ m}.

In particular, they showed that cn,m(1) is a polynomial in m of degree n−1. In Theorem 4.2
below we give various properties of the coefficients of this polynomial when expanded in
the basis of binomial coefficients

(
m
k

)
, k ≥ 0. Parts (a), (b), and (e) of that result were

conjectured by Sagan and Wilson. We also show that the coefficients in the expansion of
cn,m(1) in the basis

(
m−1
k

)
, k ≥ 0, have a nice combinatorial interpretation.

Various conjectures are scattered throughout.
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2 Words with only ones and twos

In this section we prove that if u consists only of ones and twos then it is strongly stable.
In so doing, we characterize the tableaux P (w) for w ∈ C(u) when u contains at least a
single one and a single two. A characterization of C(an) where a ∈ P and n ≥ 1 was given
in [SW25] and so, in particular, applies to any word which consists only of ones or only of
twos.

We start with the case where u = an for some n ≥ 1. We will need the following previous
result.

Proposition 2.1 ([SW25, Theorem 5.2]). If a ∈ P, then u = a is strongly stable.

Corollary 2.2. If a ∈ P and n ≥ 1, then u = an is strongly stable

Proof. Suppose k ≥ 1. Applying the previous proposition twice

C(uk) = C(ank) = C(a) = C(an) = C(u)

as desired.

To deal with the case where u contains both ones and twos, we need some preliminary
lemmas about insertion tableaux. If P is a semistandard Young tableau then we let

Ri(P ) = the ith row of P .

We set Ri(P ) = ∅ if i is larger than the number of rows of P . Similarly, if u is a word then
define

Ri(u) = Ri(P (u)).

A singleton column of P is a column C with #C = 1. And we call C a singleton a-column
if it is a singleton column whose sole entry is a. Finally, the restriction of w to ones and
twos is the word w obtained by removing any elements of w which are greater than or equal
to three and keeping the same relative order of the remaining elements. For example, the
restriction of w = 3122413321 is w = 122121. We define the restriction of an SSYT to ones
and twos similarly.

Lemma 2.3. Let u ∈ [2]n and suppose w has P (w) with at least two rows and satisfying

maxRi(w) ≤ 2 for i ≤ 2.

Then

(a) For i ≤ 2 we have Ri(wu) = Ri(wu) and Ri(uw) = Ri(uw) where w′ is the restriction
of w to its ones and twos.

(b) For i ≥ 3 we have Ri(wu) = Ri(w) = Ri(uw).
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P (u)

P (w)

Figure 1: Computing P (uw) via jdt

Proof. First consider wu. We compute P (wu) by RSK. So, first P (w) is computed. Since the
first two rows of P (w) consist only of ones and twos, and such elements are never bumped
by numbers greater than two, we have Ri(w) = Ri(w) for i = 1, 2. Since u consists only of
ones and twos, and these can only occur in the first two rows of an insertion tableau, the
previous sentence implies that Ri(wu) = Ri(wu) for i ≤ 2. Also, since the first two rows of
P (w) do not contain any elements greater than two, the insertion of u into P (w) will not
bump any elements from the second row into the third. Thus Ri(wu) = Ri(w) for i ≥ 3,
completing this case.

Now compute P (uw) using jdt, starting with P (u) southwest of P (w) as in Figure 1 and
filling the skewing rectangle of cells row by row, right to left. We claim that if Pi is the skew
tableau obtained after filling row i, then, for i ≥ 2, we have the concatenations

Ri(Pi) = R1(u) Ri(w),

Ri+1(Pi) = R2(u) Ri+1(w),

Rj(Pi) = Rj(w) for j ≥ i+ 2.

We prove this by reverse induction on i, where the base case before any slide as been applied
is trivial. Suppose these equations are true for i + 1 and consider filling the cells of row i.
Since i ≥ 2 we have maxP (u) ≤ 2 ≤ minRi(w). So the first slide into row i will bring the
last element of row 1 of P (u) up. If that element is in a singleton column of P (u), then the
slide will continue to move Ri+1(w) one cell to the left. Note that no elements of Ri+2(w)
will be affected since, by the induction assumption and the fact that in this case the second
row of P (u) is shorter than the first, row i + 2 of P (w) is already at least one cell to the
left of row i+ 1. Once all elements in singleton columns have been raised, applying jdt to a
doubleton column will merely raise both elements. This shows that the desired descriptions
of the rows still hold.

Now consider filling the first row. We have shown that the equalities above hold when
i = 2. Using arguments similar to the previous paragraph, one sees that once the first row
is filled we have R3(uw) = R3(w). And we have previously shown Rj(uw) = Rj(w) for
j ≥ i + 2 = 4. This verifies part (b) of the lemma for uw. Furthermore, since the first two
rows of P (w) contain no elements which are three or larger, the restriction of P2 to its ones
and twos is exactly the same as the jdt tableau for computing P (uw) after the row above
P (u) has been filled. This imples that filling the first row of P2 will cause exactly the same
slides as filling the first row in computing P (uw). Part (a) of the lemma now follows.
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To prove our next lemma, we will need a couple of results from [SW25].

Proposition 2.4 ([SW25, Lemma 3.3]). Given u and w ∈ C(u) we let P = P (w) have rows
Ri for i ≥ 1. Also let m = maxu. If u contains a subsequence m,m− 1, . . . ,m− k+1, then

maxRi ≤ m

for 1 ≤ i ≤ k.

To state the second result, we need the notation

lwi(w) = the length of a longest weakly increasing subsequence of w,

and, for a ∈ P,

lwi(w, a) = the length of a longest weakly increasing subsequence of w ending in a.

Proposition 2.5 ([SW25, Corollary 4.3]). The following are equivalent.

(a) w ∈ C(1).

(b) The entries of R1(w) are all ones.

(c) lwi(w) = lwi(w, 1).

The following notation will be very useful.

ma(u) = the multiplicity of a ∈ P in the word u.

Lemma 2.6. Let u ∈ [2]n satisfy m1(u),m2(u) ≥ 1. If w ∈ C(u), then maxRi(w) ≤ 2 for
i ≤ 2.

Proof. Suppose w ∈ C(u) so that P (uw) = P (wu). If u contains the subsequence 21, then
by Proposition 2.4 with m = 2 and k = 2, we have maxRi(w) ≤ 2 for i ≤ 2. Hence we may
assume that u = 1k2n−k with 1 ≤ k ≤ n− 1. By Proposition 2.4 with m = 2 and k = 1, we
have maxR1(w) ≤ 2. To show that maxR2(w) ≤ 2, we argue by contradiction.

Suppose that R2(w) contains some entry greater than 2. If R1(w) contains a 2, then
inserting a 1 from u will bump the leftmost 2 from the first row, which in turn will bump
the leftmost entry greater than 2 from the second row. If follows from [SW25, Corollary 3.2]
that inserting u into P (w) cannot bump any element not in u, so this is a contradiction.
Hence, the entries of R1(w) must be all 1’s. By Propositions 2.1 and 2.5, this implies
w ∈ C(1) = C(1k). And u ∈ C(w). Together these observations yield

P (1k2n−kw) = P (w1k2n−k) = P (1kw2n−k).

Now consider P (1kv) for any word v. Using jdt as in Lemma 2.3, we see that we have the
concatenation R1(1

kv) = 1kR1(v) as well as Ri(1
kv) = Ri(v) for i ≥ 2. Combining this with

the previously displayed equations shows that P (2n−kw) = P (w2n−k). So, w ∈ C(2n−k) =
C(2) by Proposition 2.1. By [SW25, Theorem 4.2], every column of P (w) must contain a 2,
forcing R2(w) to consist entirely of 2’s since R1 consists entirely of 1’s. This contradicts our
assumption that R2(w) contains an entry greater than 2. Thus, maxRi(w) ≤ 2 for i ≤ 2.
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To state a more precise relationship between the second rows of P (wu), P (w), and P (u)
when u,w are all ones and twos we will need the notation

ca(u) = number of singleton a-columns in P (u),

for a ∈ P.

Lemma 2.7. If u,w ∈ [2]∗, then

#R2(wu) = #R2(w) + #R2(u) + min(c1(u), c2(w)).

Proof. To compute P (wu), we can take any word Knuth equivalent to u and insert it in
P (w). So we can assume that u decomposes as a concatenation of

u′ = (21)#R2(u) and u′′ = 1c1(u)2c2(u).

By construction, P (u) = P (u′u′′) and hence P (wu) = P (wu′u′′). The net result of inserting
the word u′ into P (w) appends each 1 from u′ to the first row and each 2 from u′ to the
second row. Thus, we have Ri(wu

′) = i#R2(u) Ri(w) and ci(wu
′) = ci(w) for i ≤ 2. Next,

we insert u′′ into P (wu′). During this insertion, every 1 from u′′ bumps a 2 from the first
row whenever a 2 is present, and each bump contributes a 2 to the second row. Thus, the
number of 2’s bumped off into the second row of P (wu′) is

min(m1(u
′′), c2(wu

′)) = min(c1(u), c2(w)).

Hence, the total number of 2’s in R2(wu) is

#R2(wu) = #R2(w) + #R2(u) + min(c1(u), c2(w)).

as desired.

We will now give characterizations of words in the centralizer of a u consists of only ones
and twos. There will be three cases depending on the relative multiplicities of 1 and 2 in u.

Theorem 2.8. Let u ∈ [2]n with 1 ≤ m1(u) < m2(u). Then w ∈ C(u) if and only if P (w)
satisfy following two conditions.

(a) c1(w) = c1(u) ≤ c2(w) or c1(w) = c2(w) < c1(u).

(b) maxRi(w) ≤ 2 for i ≤ 2.

Proof. We first show that (a) and (b) imply w ∈ C(u). Let w be the restriction of w to
its 1s and 2s. Since (b) holds, we can apply Lemma 2.3 to obtain Ri(wu) = Ri(wu) and
Ri(uw) = Ri(uw) for i ≤ 2 and Ri(wu) = Ri(uw) for i ≥ 3. Hence, it suffices to verify that
Ri(wu) = Ri(uw) for i ≤ 2. But since w and u only consist of 1s and 2s this is equivalent to
proving P (wu) = P (uw).

Applying Lemma 2.7 we see that the total number of 2’s in R2(wu) is

#R2(wu) = #R2(w) + #R2(u) + min(c1(u), c2(w)). (1)
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Interchanging the roles of of w and u in the same lemma gives

#R2(uw) = #R2(u) + #R2(w) + min(c1(w), c2(u)). (2)

Since ci(w) = ci(w) for i ≤ 2 and the given condition m1(u) < m2(u) implies c1(u) < c2(u),
we now compare the two minima using the restrictions in part (a) of the theorem. If c1(u) =
c1(w) ≤ c2(w), then

min(c1(u), c2(w)) = c1(u) = c1(w) = min(c1(w), c2(u)).

If c1(u) > c1(w) = c2(w), then

min(c1(u), c2(w)) = c2(w) = c1(w) = min(c1(w), c2(u)).

Thus, #R2(wu) = #R2(uw). Since wu and uw contain the same number of 1s and 2s and
no other elements, their P -tableaux are uniquely determined by the length of the second
row. It follows that P (wu) = P (uw) so that, by the previous discussion, w ∈ C(u).

For the converse, suppose that w ∈ C(u), so that P (wu) = P (uw). Since u contains
both one and two, condition (b) holds by Lemma 2.6. Applying Lemma 2.7 again to both
wu and uw, the equality R2(wu) = R2(uw) yields

#R2(w) + #R2(u) + min(c1(u), c2(w)) = #R2(u) + #R2(w) + min(c1(w), c2(u)),

which simplifies to
min(c1(u), c2(w)) = min(c1(w), c2(u)). (3)

Since m2(u) > m1(u), we have c2(u) > c1(u). In particular,

c2(u) > min(c1(u), c2(w)) = min(c1(w), c2(u)).

Thus, both minima must equal c1(w), which implies that either c1(w) = c1(u) ≤ c2(w) or
c1(w) = c2(w) ≤ c1(u).

Theorem 2.9. Let u ∈ [2]n with m1(u) = m2(u) ≥ 1. Then w ∈ C(u) if and only if P (w)
satisfy the following two conditions.

(a) min(c1(w), c2(w)) ≥ c1(u) or c1(w) = c2(w) < c1(u).

(b) maxRi(w) ≤ 2 for i ≤ 2.

Proof. The proof follows the same structure as the demonstration of the previous theorem.
We first show that (a) and (b) imply w ∈ C(u). As before, let w be the restriction of w to
its ones and twos so that it suffices to show P (wu) = P (uw).

We compare #R2(wu) and #R2(uw) using equations (1) and (2). Now ci(w) = ci(w) for
i ≤ 2 and the given condition m1(u) = m2(u) implies c1(u) = c2(u). Now compare the two
minima using the restrictions in part (a) of the theorem. If min{c1(w), c2(w)} ≥ c1(u), then
min{c1(w), c2(w)} ≥ c1(u) and

min(c1(u), c2(w)) = c1(u) = min(c1(w), c1(u)) = min(c1(w), c2(u)).
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If c1(w) = c2(w) < c1(u), then

min(c1(u), c2(w)) = c2(w) = c1(w) = min(c1(w), c2(u)).

So, in either case, #R2(wu) = #R2(uw). It follows from the same reasoning as in the proof
of the previous theorem that P (wu) = P (uw), which implies w ∈ C(u).

For the converse, suppose that w ∈ C(u), so that P (wu) = P (uw). As in the previous
proof, condition (b) holds and we can assume equation (3). Since m1(u) = m2(u), we have
c1(u) = c2(u). So (3) becomes

min(c1(u), c2(w)) = min(c1(u), c1(w)).

There are two cases depending on whether c2(w) ≥ c1(u) or c2(w) < c1(u). In the first
case, both minima are equal to c1(u), which implies c1(w) ≥ c1(u). Thus min(c1(w), c2(w)) ≥
c1(u). In the second case, the equality of minima gives c2(w) = min(c1(u), c1(w)). Since
c1(u) > c2(w), we must have c1(w) = c2(w) < c1(u).

Theorem 2.10. Let u ∈ [2]n with 1 ≤ m2(u) < m1(u). Then w ∈ C(u) if and only if P (w)
satisfy the following two conditions.

(a) c2(w) = c2(u) ≤ c1(w) or c1(w) = c2(w) < c2(u).

(b) maxRi(w) ≤ 2 for i ≤ 2.

Proof. The proof again follows the same structure as the demonstration of the previous
theorem. We first verify the reverse implication. Let w be the restriction of w to its
ones and twos. As before, it suffices to show P (wu) = P (uw) which will be implied by
proving #R2(wu) = #R2(uw). And, by equations (1) and (2), this reduces to showing
min(c1(u), c2(w)) = min(c1(w), c2(u)). We have ci(w) = ci(w) for i ≤ 2 and m1(u) > m2(u)
implies c1(u) > c2(u). If the first condition in (a) holds then c2(w) = c2(u) ≤ c1(w). So

min(c1(u), c2(w)) = c2(w) = c2(u) = min(c1(w), c2(u)).

On the other hand, the second condition implies c1(w) = c2(w) < c2(u). Thus

min(c1(u), c2(w)) = c2(w) = c1(w) = min(c1(w), c2(u)).

So in either case we have equal minima.
For the converse, suppose that w ∈ C(u), so that P (wu) = P (uw). Then condition (b)

holds by Lemma 2.6. And, as before, equation (3) holds. Since m1(u) > m2(u), we have
c1(u) > c2(u), and hence

c1(u) > min(c1(w), c2(u)) = min(c1(u), c2(w)).

Both minima must therefore equal c2(w), which implies that either c2(w) = c2(u) ≤ c1(w)
or c1(w) = c2(w) < c2(u).
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Using these characterizations of words u over [2], we can now prove the strong stability
of u. First we need two final lemmas comparing the number of singleton columns in P (u)
and P (uk).

Lemma 2.11. Let u ∈ [2]n with 1 ≤ m1(u) ≤ m2(u). For all k ≥ 1 we have c1(u
k) = c1(u).

Proof. The proof is by induction on k, where the case k = 1 is obvious. Assume c1(u
k) =

c1(u) for some k ≥ 1 and consider uk+1 = uku. Applying Lemma 2.7, inserting u into P (uk)
gives

#R2(u
k+1) = #R2(u

k) + #R2(u) + min(c1(u
k), c2(u)).

Using the inductive hypothesis we obtain c1(u
k) = c1(u). And the assumption m1(u) ≤

m2(u) implies c1(u) ≤ c2(u). Thus

#R2(u
k+1) = #R2(u

k) + #R2(u) + c1(u).

For any word v consisting only of ones and twos, its insertion tableau P (v) has two rows,
and

c1(v) = m1(v)−#R2(v).

Since m1(u
k+1) = (k + 1)m1(u), substitution into the previous equation gives

c1(u
k+1) = (k + 1)m1(u)−

(
#R2(u

k) + #R2(u) + c1(u)
)

=
(
km1(u)−#R2(u

k)
)
+
(
m1(u)−#R2(u)− c1(u)

)
= c1(u

k),

where the last equality follows from the identities c1(u
k) = km1(u) −#R2(u

k) and c1(u) =
m1(u)−#R2(u). Thus c1(u

k+1) = c1(u
k) = c1(u) which completes the induction.

Lemma 2.12. Let u ∈ [2]n with 1 ≤ m2(u) ≤ m1(u). For all k ≥ 1 we have c2(u
k) = c2(u).

Proof. The argument follows the same inductive pattern as in Proposition 2.11. In par-
ticular, in the induction step one uses Lemma 2.7 together with m2(u) ≤ m1(u), so that
min(c1(u), c2(u)) = c2(u) yields

#R2(u
k+1) = #R2(u

k) + #R2(u) + c2(u).

Since c2(v) = m2(v) − #R2(v) for binary v, an analogous computation as before gives
c2(u

k+1) = c2(u
k) = c2(u), completing the induction.

We now use our characterizations to prove strong stability.

Theorem 2.13. If u ∈ [2]n then u is strongly stable.
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Proof. If m1(u) = 0 or m2(u) = 0 then this is a special case of Corollary 2.2.
The other possibility is that m1(u),m2(u) ≥ 1. Clearly mi(u

k) = kmi(u) for i = 1, 2.
Hence, u and uk both satisfy one of m1 > m2, m1 = m2, or m1 < m2. Thus, both u and uk

fall under the same hypothesis of Theorems 2.8, 2.9, or 2.10, respectively.
In each of these three theorems, condition (b) is identical for u and uk since it does not

involve u at all. For condition (a), Lemmas 2.11 and 2.12 show that the relevant parameters
remain unchanged upon repetition, that is

c1(u
k) = c1(u) if m1(u) ≤ m2(u), and

c2(u
k) = c2(u) if m1(u) > m2(u).

Thus, condition (a) is also identical for u and uk in all cases. Since both conditions
(a) and (b) agree, the theorems show that w ∈ C(u) if and only if w ∈ C(uk), and hence
C(u) = C(uk).

3 Permutations

Let Sm be the symmetric group of permutations u of [m] with elements expressed in one-line
form, that is, as rearrangements of [m]. We wish to show that every such u is m-stable. And
the decreasing permutation δm = m(m − 1) . . . 1 is, in fact, strongly stable. We use this
notation rather than w0 (which is usually employed for the longest element of a Coxeter
group) to show the dependence on m. We first need some preliminary results.

We will use a theorem of Greene [Gre74] about the shape of the P -tableau under RSK.
Call a sequence x weakly i-increasing if x can be written as a union of i disjoint weakly
increasing subsequences. For u ∈ P∗ we define

lwii(u) = length of a longest weakly i-increasing subsequence of u.

Theorem 3.1 ([Gre74]). If u ∈ P∗ then let P (u) have shape λ = (λ1, λ2, . . . , λl). For any
i ≥ 1 we have

λ1 + λ2 + · · ·+ λi = lwii(u).

In order to use Greene’s theorem, we will need the following result.

Lemma 3.2. If u ∈ Sm and i, k ≥ 1 then

lwii(u
k+1) ≥ lwii(u

k) + i.

Proof. Let x be a longest i-increasing subsequence of uk. Write x as a union of subsequences

x = x(1) ⊎ · · · ⊎ x(i)

where each subsequence is increasing and x(1), . . . , x(s) are those which end in m for some
0 ≤ s ≤ i. Further, if s ≥ 1 then suppose that x(1) contains the leftmost of these m’s in uk.
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Since u only contains one m, it must be that these s subsequences contain m’s from different
factors of u in uk. It follows that the sequences

y(1) = x(1)ms−1,

and
y(j) = x(j) with m removed

for 2 ≤ j ≤ s are disjoint increasing subsequences of uk. Furthermore

y := y(1) ⊎ · · · y(s) ⊎ x(s+1) ⊎ · · · ⊎ x(i)

has |y| = |x| and y(1) is the only subsequence which can end in an m.
Continue this process with the subsequence obtained from y by disregarding y(1) and

considering all the remaining subsequences ending in m − 1, etc. One finally obtains a
subsequence

z = z(1) ⊎ · · · ⊎ z(i)

of uk with |z| = |x| and max z(j) ≤ m − j + 1 for j ∈ [i]. Now we have a i-increasing
subsequence in uk+1 of the form

z = z(1)m ⊎ z(2)(m− 1) ⊎ · · · ⊎ z(i)(m− i+ 1).

Thus
lwii(u

k+1) ≥ |z| = |x|+ i = lwii(u
k) + i

as desired.

We now show that, for u ∈ Sm and large enough k, the rows of P (uk+1) are similar to
those of P (uk). To see how that rows of these tableaux are related, we first need a lemma.
Recall that

δm = m(m− 1) . . . 1.

Lemma 3.3. If v ∈ [m]∗ then for all i ∈ [m]

Ri(δmv) = iRi(v). (4)

Proof. We have that P (δm) is a single column with entries 1, 2, . . . ,m. Now using jdt to
compute P (δmv) from P (δm) and P (v), we see that the elements of the column just move
up one row each time an empty cell is filled. This proves the result.

It turns out that if u ∈ Sm then P (uk+1) and P (uk) are similarly related for k ≥ m.
Generalizing from the previous section we define, for any u ∈ P∗, the restriction of u to [m]
to be the subsequence u of u obtained by removing all elements of u larger than m.

Lemma 3.4. Suppose that u ∈ Sm and k ≥ m. Then for all i ∈ [m], we have

Ri(u
k+1) = iRi(u

k). (5)

11



Proof. We will induct on m where the result is clear from m = 1. So, suppose m ≥ 2 and
let u denote the restriction of u to [m− 1]. By induction, we have

Ri(u
k+1) = iRi(u

k) (6)

for i ∈ [m− 1] and k ≥ m− 1.
We now induct on k. In fact we claim that, by the previous lemma, it suffices to prove the

base case when k = m. To see this, assume that the current lemma holds for a given value
of k. Then, comparing equations (4) and (5), we have the Knuth equivalence uk+1 ≡ δmu

k.
So,

uk+2 = uk+1u ≡ δmu
ku = δmu

k+1.

Applying the previous lemma again gives Ri(u
k+2) = iRi(u

k+1) for i ∈ [m] as desired.
To prove the lemma under consideration for u when k = m, we will also induct on i.

First, consider the base case when i = 1. Note that by (6) we have

R1(u
m) = 1R1(u

m−1) and R1(u
m+1) = 1R1(u

m). (7)

Since m cannot bump any smaller element we have the concatenation

R1(u
m) = R1(u

m)ma (8)

for some multiplicity a ≥ 0. By similar reasoning and using (7), we obtain

R1(u
m+1) = R1(u

m+1)mb = 1R1(u
m)mb (9)

for some b ≥ 0. To finish the base case, it suffices to show that a = b.
Let x denote a longest weakly increasing subsequence of um. Then, by Theorem 3.1

and (8).
|x| = |R1(u

m)| = |R1(u
m)|+ a. (10)

Using (9) and the fact that xm is also a weakly increasing subsequence of um+1 we obtain

1 + |R1(u
m)|+ b = |R1(u

m+1)| ≥ |xm| = |x|+ 1. (11)

Comparing equations (10) and (11) and we have

b ≥ a.

On the other hand, the tableau P (um+1) can be obtained by inserting u into P (um), and u
has a single m. It follows that

b ≤ a+ 1.

Comparing these two inequalities for a, b we see that it suffices to show that some m is
displaced in passing from R1(u

m) to R1(u
m+1). We will divide the proof into two cases based

on the positivity of a. In both cases we will use the notation

j = |R1(u
m)|.

12



First suppose that a > 0. Then, by equation (8) and the definition of j, we have an m
in cell (1, j + 1) of R1(u

m). But from (9) we see that cell (1, j + 1) of R1(u
m+1) is occupied

by an element of u. So, the m in this cell was bumped.
Now suppose that a = 0 so that by (8)

|R1(u
m)| = |R1(u

m)| = j.

But, from the first half of (7),
|R1(u

m−1)| = j − 1.

It follows that the m in the last copy of u in um must enter the P -tableau in cell (1, j) and
then be bumped from that cell by a later element. Now comparison of the first and second
equations in (7) show that the insertion of the (m+1)st copy of u causes the same elements
to be bumped as in the insertion of the mth copy, and from the same place but one cell to
the right. Thus the m in the last copy of um+1 enters in cell (1, j + 1) and is bumped by a
later element. This completes the proof of the base case i = 1. The induction step is similar,
so we will only give details for the differences.

Now suppose that equation (5) holds for values less than i. Write

Ri(u
m) = Ri(u

m)mc (12)

and, using the induction on m,

Ri(u
m+1) = 1Ri(u

m)md (13)

To prove c = d, first combine Theorem 3.1 and Lemma 3.2 to obtain

|R1(u
m+1)|+ · · ·+ |Ri(u

m+1)| ≥ |R1(u
m)|+ · · ·+ |Ri(u

m)|+ i.

By induction on i we have |Rj(u
m+1)| = |Rj(u

m)| + 1 for j < i. Combining this with (12)
and (13) gives d ≥ c. The induction on i also shows that there is a single m which is bumped
out of row i − 1 and thus into row i, giving d ≤ c + 1. There are now two cases depending
on the positvity of c, but they are much like the base case and so the demonstration is
omitted.

Combining equations (4) and (5) we obtain the following.

Lemma 3.5. Suppose that u ∈ Sm. Then for all k ≥ m, we have

P (uk+1) = P (δmu
k).

We need one more result before we can prove the main theorem of this section

Proposition 3.6 ([SW25, Theorem 5.3]). We have w ∈ C(m(m − 1) . . . 1) if and only if
P = P (w) satisfies

maxRi ≤ m for all 1 ≤ i ≤ m

where Ri is the ith row of P .
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Theorem 3.7. If u ∈ Sm then u is m-stable.

Proof. It suffices to prove that if k ≥ m then

C(uk) = C(uk+1).

We first show that C(uk) ⊆ C(uk+1). Suppose that w ∈ C(uk), so that

wuk ≡ ukw. (14)

Let P = P (w), and denote the i-th row of P by Ri for i ≥ 1. Since k ≥ m we have that uk

contains the decreasing subsequence δm obtained by picking m− i+1 from the ith factor of
uk. Proposition 2.4 implies that

maxRi ≤ m for 1 ≤ i ≤ m.

Then, by Proposition 3.6, we have w ∈ C(δm). Applying Lemma 3.5 twice along with the
previous sentence and equation (14), we obtain the following sequence of Knuth equivalences

wuk+1 ≡ wδmu
k ≡ δmwu

k ≡ δmu
kw ≡ uk+1w,

which shows that w ∈ C(uk+1).
Conversely, suppose that w ∈ C(uk+1), so that

P (wuk+1) = P (uk+1w). (15)

Again, by Propositions 2.4 and 3.6, we have w ∈ C(δm), so that P (δmw) = P (wδm). Com-
bining this with Lemma 3.5 and equation (15), we can write

P (δmwu
k) = P (wδmu

k) = P (wuk+1) = P (uk+1w) = P (δmu
kw).

The equality P (δmwu
k) = P (δmu

kw) together with Lemma 3.3 imply P (wuk) = P (ukw).
Thus w ∈ C(uk) and C(uk+1) ⊆ C(uk). This completes the proof of the theorem.

We conjecture that the previous theorem can be generalized as follows. Say that a word
u is m-packed if it contains at least one copy of every integer in [m] where m = maxu.
This terminology was introduced by Pechenik [Pec14] in regards to poset labelings used for
a K-theoretic analogue of Schützenberger’s promotion operator. The orbit structure of K-
promotion on m-packed labelings of rooted trees was shown to have interesting properties by
Kimble, Sagan, and St. Dizier [KSD25]. Obviously, every u ∈ Sm is m-packed. Computer
calculations support the following conjecture about stability of m-packed words u. Our
computations were for all u with m = 3, 4 of length at most 8. (The cases of m = 1 and
2 having already been proven in Corollary 2.2 and Theorem 2.13, respectively.) Of course,
we could not compute the whole set C(uk) since it is infinite. But we calculated the set
C ′(uk) = C(uk) ∩ [m]l for l ≤ 10 and verified that C ′(uk) = C ′(uk+1) for m ≤ k ≤ 14.

Conjecture 3.8. If u is m-packed then u is m-stable.

14



Note that elements of Sm need not be strongly stable. For example, take u = 1234. Then
the word w = 4123 lies in C(u3) but not in C(u2). However, the longest word is strongly
stable.

Proposition 3.9. The permutation δm = m(m− 1) · · · 1 is strongly stable.

Proof. It was noted in [SW25, Lemma 5.1] that, for any u ∈ P∗ and k ≥ 1, we have
C(u) ⊆ C(uk). For the other containment, suppose w ∈ C(δkm) and let P = P (w) have
rows Ri for i ≥ 1. Since δkm contains the subsequence m(m− 1) . . . 1, Proposition 2.4 implies
that maxRi ≤ m for 1 ≤ i ≤ m. Thus P satisfies the condition in Proposition 3.6, so
w ∈ C(δm).

4 Coefficients

Let
cn,m(u) = #{w ∈ C(u) | |w| = n and maxw ≤ m}.

The following result was proved in [SW25] under the assumption the n is fixed and m ≥ n.
But an examination of the proof shows that the assumed inequality is not necessary for
n ≥ 2.

Proposition 4.1 ([SW25, Corollary 6.6(a)]). Fix n ≥ 2 and let m ≥ 0 vary. Then cn,m(1)
is a polynomial in m of degree n− 1 with leading coefficient 1/(n− 1)!.

We can now prove part of a conjecture from [SW25] about the the expansion of cn,m(1)
in the binomial coefficient basis. In the proof we will use the notation λ ⊢ n if the integer
partition λ = (λ1, . . . , λl) satisfies

∑
i λi = n. The Young diagram of λ consists of l left-

justified rows of boxes with λi boxes in row i from the top. To each box we assign coordinates
(i, j) where i and j are the row and column numbers of the box. A filling of the Young
diagram of λ = (3, 2, 2) is shown on the left in Figure 2 and the box containing 6 has
coordinates (3, 2). We will associate with λ a labeled poset (partially ordered set) Pλ,
defined as follows. Label the boxes of the Young diagram of λ with [n] where λ ⊢ n by
putting 1, . . . , λ1 in the first row from right to left, then λ1 + 1, . . . , λ1 + λ2 in the second
row from right to left, and so forth. See the labeling of (3, 2, 2) on the left in Figure 2 as an
example. We now construct the poset Pλ on [n] by letting

k ≤ k′ in Pλ if and only if i′ ≥ i and j′ ≥ j

where k and k′ have coordinates (i, j) and (i′, j′), respectively, in the labeling of λ. The
poset P(3,2,2) is shown on the right in Figure 2.

Theorem 4.2. Fix n ≥ 2 and write

cn,m(1) =
n−1∑
k=0

ak

(
m

k

)
(16)

for certain scalars ak depending on n. We have the following.
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λ =

3 2 1

5 4

7 6

7→

6

1 4 7

2 5

3

= P(3,3,2)

Figure 2: The poset P(3,2,2)

(a) a0 = 0.

(b) a1 = 1.

(c) a2 =

(
n

⌊n/2⌋

)
− 2.

(d) an−1 = 1.

(e) ai ∈ P for all i ∈ [n− 1].

Proof. (a) Setting m = 0 in (16) we obtain cn,0(1) = a0. But since n ≥ 2 there are no
w ∈ C(1) of length n and maximum 0. So, a0 = 0.

(b) Using part (a) and setting m = 1 in (16) gives cn,1(1) = a1. There is a unique
w ∈ C(1) of length n and maximum 1, namely w = 1n. This confirms the value of a1.

(c) By [SW25, Corollary 6.3], we have

cn,2(1) =

(
n

⌊n/2⌋

)
.

On the other hand, using (16) as well as parts (a) and (b) gives

cn,2(1) =

(
2

1

)
+ a2

(
2

2

)
= 2 + a2.

Equating the two expressions for a2 finishes the proof.

(d) By Proposition 4.1 we have that the coefficient of mn−1 in cn,m(1) is 1/(n− 1)!. But
in (16), the only term contributing to this power of m is

an−1

(
m

n− 1

)
=

an−1

(n− 1)!
m(m− 1) · · · (m− n+ 2).

Thus an−1 = 1.

(e) By [SW25, equation (2)] we have

cm,n(1) =
∑
λ⊢n

fλgλm (17)
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where fλ is the number of standard Young tableaux of shape λ and gλm is a polynomial in m
which we will describe below. Note that fλ is a positive integer for all λ. So we will consider
the binomial expansion of gλm.

If λ = (λ1, λ2, . . . , λl) then let λ′′ = (λ2, . . . , λl) and suppose λ′′ ⊢ n′′. Then gλm is the
coefficient of xm−2 in the power series expansion of∑

π x
desπ

(1− x)n′′+1
=

∑
π

xdesπ
∑
m≥0

(
m+ n′′

n′′

)
xm (18)

where π runs over the linear extensions of the poset Pλ′′ associated with λ′′, and des π is
the number of descents of π. Thus the coefficient of xm−2 in the term of this expansion
corresponding to π is (

m+ n′′ − desπ − 2

n′′

)
. (19)

We now break the proof into two cases depending on whether λ′′ is a column or not.
First consider the contribution of some λ where λ′′ is not a column, that is, λ2 ≥ 2. It

follows that Pλ′′ has (at least) two integers k, k′ such that k < k′ in Pλ′′ and k < k′ as
integers. So, the descending permutation π = n′′ . . . 21 is not a linear extension of Pλ′′ and
any π in (18) satisfies desπ ≤ n′′−2. Letting p := n′′−des π−2 we see that 0 ≤ p ≤ n′′−2.
We can now write, using Vandermonde’s convolution,(

m+ p

n′′

)
=

n′′∑
i=2

(
p

n′′ − i

)(
m

i

)
.

Since the coefficients
(

p
n′′−2

)
are nonnegative integers for i ∈ [n − 1], we are done with this

case.
Now consider what happens when λ′′ = (1n

′′
) for some 0 ≤ n′′ ≤ n− 1. Then the poset

Pλ′′ is the chain n′′ < n′′−1 < . . . < 1. So, the only possible linear extension is π = n′′ . . . 21
with des π = n′′ − 1. Using (19) we see that the contribution in (18) to gλm for this λ′′ is(
m−1
n′′

)
. And in this case λ = (n − n′′, 1n

′′
) so that, by the hook formula, fλ =

(
n−1
n′′

)
. Thus,

by applying the binomial recursion twice, the total contribution to (17) of these λ

n−1∑
n′′=0

(
n− 1

n′′

)(
m− 1

n′′

)
=

n−1∑
n′′=1

(
n− 2

n′′ − 1

)(
m

n′′

)
.

The coefficients
(
n−2
n′′−1

)
are positive integers for n′′ ∈ [n− 1]. So we can conclude that the ai

are in P, as desired.

To better understand the numbers cn,m(u), we refine them according to the number of
distinct letters used in a word. For m,n ≥ 1, let

Cn,m,k(u) := {w ∈ C(u) | |w| = n, maxw ≤ m, and there are k distinct elements in w}

and write
cn,m,k(u) = |Cn,m,k(u)|.

17



Clearly,

cn,m(u) =

min(m,n)∑
k=1

cn,m,k(u). (20)

Let w be a word whose set of distinct elements is S = {s1 < s1 < · · · < sk}. The
standardization of w is the word std(w) obtained by replacing each element aj with its rank
j in the set S. Thus the standardization is k-packed as defined in the previous section. Let

Bn,k := {w ∈ C(1) | |w| = n and w is k-packed}

and
bn,k = |Bn,k|.

Theorem 4.3. Fix n ≥ 1. For all m, k ≥ 1 we have

cn,m,k(1) = bn,k

(
m− 1

k − 1

)
.

Proof. Let m, k ≥ 1 be given. For a word w ∈ Cn,m,k(1) ⊆ C(1), we will show that v =
std(w) ∈ Bn,k(1). Proposition 2.5 (b) shows that the first row of P (w) consists entirely of
1’s, so in particular, 1 ∈ w. Hence w contains a set S ⊆ {2, . . . ,m} of k − 1 additional
distinct elements. Because of the presence of the 1’s, the alphabet of v is exactly [k]. Since
standardization is order-preserving, it also preserves the length of a longest weakly increasing
subsequence. Moreover, the presence of 1 in w forces standardization to fix 1, so v and w
have the same length of the longest weakly increasing subsequence ending at 1. By condition
(c) of Proposition 2.5, v ∈ C(1). Therefore v ∈ Bn,k(1).

Conversely, given an (k− 1)-element subset S ⊆ {2, . . . ,m} and a word v ∈ Bn,k, the in-
verse relabeling replaces 2, . . . , k by the elements of S in increasing order, producing a unique
word w of length n with k distinct letters from [m]. Since the condition of Proposition 2.5
(c) is preserved under such relabelings, we have w ∈ Cn,m,k(1).

Thus, the words counted by cn,m,k(1) are in bijection with pairs (S, v) where S is an
(k − 1)-element subset of {2, . . . ,m} and v ∈ Bn,k. Since there are bn,k choices for v, it
follows that cn,m,k(1) = bn,k

(
m−1
k−1

)
.

Combining the previous theorem with (20), we immediately get the following result.

Corollary 4.4. Let n be fixed and suppose m ≥ n. Then

cn,m(1) =
n∑

k=1

bn,k

(
m− 1

k − 1

)
. (21)

We now investigate the properties of the coefficients in this expansion. Because we have
a combinatorial interpretation for the bn,k, our proofs are simpler than for the coefficients ak
in Theorem 4.2.
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Theorem 4.5. Suppose n is fixed and m ≥ n, write

cn,m(1) =
n∑

k=1

bk

(
m− 1

k − 1

)
(22)

where bk = bn,k. We have the following.

(a) bk ∈ P for all k ∈ [n].

(b) b1 = 1.

(c) b2 =

(
n

⌊n/2⌋

)
− 1

(d) bn = 1.

Proof. (a) Let k ∈ [n]. Consider the word w = k(k − 1) . . . 21n−k+1. It is easy to see that
lwi(w) = lwi(w, 1). By Proposition 2.5(c), this implies that w ∈ C(1). Since w has length n
and alphabet [k], we have w ∈ Bn,k. Hence, bk = bn,k ∈ P.

(b) There is a unique 1-packed word of length n, namely w = 1n. Thus, b1 = bn,1 = 1.

(c) Notice that by definition, cn,2(1) = bn,1 + bn,2. By [SW25, Corollary 6.3], we have

cn,2(1) =

(
n

⌊n/2⌋

)
.

Using part (b) gives

b2 = bn,2 =

(
n

⌊n/2⌋

)
− 1.

(d) There is a unique n-packed word of length n, namely w = n(n − 1) . . . 1. Thus,
bn = bn,n = 1.

We have a conjecture about the bn,k which we have verified by computer for n ≤ 20.

Conjecture 4.6. For fixed n, the sequence {bn,k}k≥1 is log-concave.
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