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Abstract

The lattice of partitions of a set and its d-divisible generalization have been much
studied for their combinatorial, topological, and respresentation-theoretic properties.
An ordered set partition is a set partition where the subsets are listed in a specific order.
Ordered set partitions appear in combinatorics, number theory, permutation polytopes,
and the study of coinvariant algebras. The ordered set partitions of {1, . . . , n} can be
partially ordered by refinement and then a unique minimal element attached, resulting
in a lattice Ωn. But this lattice has received no attention to our knowledge. The
purpose of this paper is to provide the first comprehensive look at Ωn. In particular,
we determine its Möbius function, show that it admits a recursive atom ordering, and
study the action of the symmetric group Sn on associated homology groups, looking in
particular at the multiplicity of the trivial representation. We also consider the related
posets where every block has size either divisible by some fixed d ≥ 2 or congruent to
1 modulo d.

1 Introduction

For nonnegative integers m,n with m ≤ n we will use the notation

[n] = {1, 2, . . . , n} and [m,n] = {m,m+ 1, . . . , n}. (1)

If S is any finite set then we will use the notations #S or |S| for the cardinality of S.
A set partition π of S is a a family of nonempty subsets B1, . . . , Bk called blocks such that

S = ⊎iBi (disjoint union) and we write π = B1/ . . . /Bk. We may leave out set braces and
commas in examples. Note that the order of the blocks does not matter so that, for example,
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134/26/5 = 26/5/134. The partition is d-divisible if d divides #Bi for all i. Partitions can be
partially ordered by refinement whereB1/ . . . /Bk ≤ C1/ . . . /Cl if each Cj is a union of certain
Bi. The poset of all partitions of [n] ordered by refinement is a lattice denoted Πn. Also,
ordering the d-divisible partitions and adding a unique minimal element 0̂ results in a lattice
Π

(d)
n . Notice that the symmetric group Sn acts on both these lattices. The combinatorial,

topological, and representation-theoretic properties of Πn and Π
(d)
n have been extensively

studied. See, for example, [CHR86, Com25, EH18, HS15, HH03, Sun94b, Sun16, Wac96].
An ordered set partition of a finite set S is a sequence of non-empty subsets ω =

(B1, B2, . . . , Bk) with ⊎iBi = S, where the Bi are again called blocks. Note the use of
parentheses and commas, as opposed to forward slashes, to indicate that now the order of
the blocks matters. As with ordinary set partitions, we will often leave out the set braces
and commas in each Bi. The ordered set partitions of [3] are displayed in Figure 1. We will
use letters near the end of the Greek alphabet for ordered partitions. The number of blocks
of ω is its length, denoted ℓ(ω). The Stirling numbers of the second kind are

S(n, k) = the number of unordered partitions of n into k blocks.

It follows that

k!S(n, k) = # of ordered partitions of n into k blocks. (2)

Ordered set partitions and Stirling numbers have connections to combinatorics, number
theory, polyhedral theory, and coinvariant algebras. They appear in a closeted form as far
back as a paper of Carlitz [Car33, equation (11)]. See the papers of Ishikawa, Kasraoui, and
Zeng [IKZ08] or Sagan and Swanson [SS24] for history and references.

As in the unordered case, if d ≥ 1 is an integer then we say that ω is d-divisible if d
divides #Bi for all i. In this case we write

ω |=d S.

We will drop the d if d = 1 so that there is no restriction on the block sizes. To illustrate,
the 2-divisible partitions of {a, b, c, d} are

(ab, cd), (ac, bd), (ad, bc), (bc, ad), (bd, ac), (cd, ab), and (abcd).

We partially order the d-divisible partitions of S by insisting that (B1, B2, . . . , Bk) is
covered by all elements of the form

(B1, . . . , Bi−1, Bi ⊎Bi+1, Bi+2, . . . Bk) for 1 ≤ i < k

and extending by transitivity. In other words, one is permitted to merge adjacent blocks,
keeping the new block in the same relative position with the other blocks. From this one
sees that ω ≤ ψ in this partial order if each block of ψ is a union of adjacent blocks of ω,
and one block B of ψ is to the left of another C if the blocks of ω contained in B are to the
left of those in C. Adding a unique minimal element 0̂ results in a poset which we will call
Ω

(d)
S . In the case S = [n] we will write this as

Ω(d)
n = {0̂} ⊎ {ω | ω |=d [n]}
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0̂

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

(12, 3) (1, 23) (13, 2) (2, 13) (23, 1) (3, 12)

(123)

Figure 1: The poset Ω3

where when n = 0 the second set is considered to be empty. We will shorten Ω
(1)
n to just Ωn.

And if we write ω ∈ Ω
(d)
n then we are tacitly assuming that ω is an ordered set partition in

Ω
(d)
n , i.e., ω ̸= 0̂. If we write x ∈ Ω

(d)
n then x could be any element of the poset, including 0̂

and similarly for other letters near the end of the Latin alphabet. See Figure 1 for the Hasse
diagram of Ω3.

As far as we are aware, the posets Ω
(d)
n have not been discussed in the literature. The

purpose of the current work is to study their combinatorial, topological, and representation-
theoretic properties. The rest of this paper is organized as follows. In the next section we
concentrate on the combinatorics of Ωn. For example, we determine its Möbius function in
Theorem 2.2 and show that it admits a recursive atom ordering in Theorem 2.5. Section 3 is
devoted to generalizing some of the results in the previous section to Ω

(d)
n . Interestingly, the

Möbius value µ(Ω
(d)
n ) is a d-divisible analogue of the Euler numbers introduced by Leeming

and MacLeod [LM81], see Theorem 3.4 (b). The symmetric groupSn on [n] acts naturally on

Ω
(d)
n by permuting the entries of the blocks. Section 4 looks at the induced action on various

associated homology groups. As an illustration, Theorem 4.4 shows that the Frobenius
characteristic of the action on the Whitney homology and its dual can be expressed in
terms of complete homogeneous symmetric functions hλ where λ an integer partition with
all parts divisible by d. In Section 5, rank-selected and corank-selected subposets of Ω

(d)
n are

considered. Theorem 5.4 gives a recurrence for the Frobenius characteristic of the corank-
selected homology. Section 6 is devoted to studying the multiplicity bm(T ) of the trivial

representation of Sdm acting on the homology of the subposet of Ω
(d)
dm selected by coranks

T . In Theorem 6.1 we show that bm(T ) counts permutations in Sm−1 with descent set T . A
similar result, Theorem 6.3, is obtained for the action of Sdm−1 considered as the subgroup
of Sdm which fixes dm. Finally, Section 7 considers the combinatorics of the subposet of Ωn

where all the block sizes are congruent to 1 modulo d. In this case, the Möbius function is
given up to sign by a generalization of the Catalan numbers as shown in Theorem 7.4.
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2 Combinatorial properties of Ωn

In our first result we will collect some elementary properties of the poset Ωn. For more
information about posets, including definitions of any undefined terms, see the texts of
Sagan [Sag20, Chapter 5] or Stanley [Sta12, Chapter 3] Assume that (P,≤) is a poset. All
posets in this work will be finite without further mention. If x, y ∈ P with x ≤ y then we
have the closed interval

[x, y] = {z | x ≤ z ≤ y}.

If P has a unique minimal element or unique maximal element then they are denoted 0̂
or 1̂, respectively. If P contains both of these elements it is said to be bounded. We write
x� y if x is covered by y in P , that is, x < y and there is no z with x < z < y. If P has a 0̂
then the atoms a of P are the elements covering 0̂. The poset is ranked if, for every x ∈ P ,
all maximal chains from 0̂ to x have the same length ℓ. In that case, we say that x has rank
ℓ and write

rkx = ℓ.

We also define the rank of an interval [x, y] to be

rk(x, y) = rk y − rkx.

If P is ranked and has a unique maximal element 1̂ then we say that P is graded. In this
case, the corank of x ∈ P is

crkx = rk 1̂− rkx.

Finally, we will need the Boolean algebra

Bn = {S | S ⊆ [n]}

ordered by inclusion. The Boolean algebra is a lattice which is a poset where every pair of
elements x, y has a greatest lower bound or meet, x ∧ y, and a least upper bound or join,
x ∨ y.

Note that, interestingly, the isomorphism in part (d) of the next result depends only on
k (the number of blocks of the partition) and not on n (the sum of the parts).

Theorem 2.1. The poset Ωn satisfies the following.

(a) It has 1̂ = ([n]).

(b) Its atoms are the ω with #B = 1 for all blocks B of ω.

(c) It is ranked. The rank of ω = (B1, . . . , Bk) is

rkω = n− k + 1.

The number of ω at corank k is (k + 1)!S(n, k + 1).

(d) For any ω = (B1, . . . , Bk) we have

[ω, 1̂] ∼= Bk−1.
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(e) For any orderdered partitions ψ, ω ∈ Ωn we have

[ψ, ω] ∼= Brk(ψ,ω),

(f) The poset Ωn is an atomic lattice but it is not semimodular in general.

Proof. (a) We need to show that every ordered partition ω ∈ Ωn satisfies ω ≤ ([n]). But this
clearly follows from the description of the partial order.

(b) Using the description of the partial order again, we have that ω will cover 0̂ if and
only if no block of ω can be written as a disjoint union of two proper subsets. But this is
equivalent to having all blocks of size one.

(c) Consider any maximal chain

C : 0̂ = ω0 � ω1 � . . .� ωℓ = ω.

By part (b), ω1 has n singleton blocks. And we lose a block in each cover ωi � ωi+1. So to
end with an ordered partition with k blocks we must have

ℓ = n− k + 1.

The result now follows from this discussion and equation (2).

(d) We will construct an anti-isomorphism A : Bk−1 → [ω, 1̂]. This will suffice since Bk−1

is self dual. Take ω = (B1, B2, . . . , Bk) and number the k− 1 commas as 1, 2, . . . , k− 1 from
left to right to obtain

ω = (B1
1, B2

2, . . . , Bk−1
k−1, Bk).

Now given any S ⊆ [k− 1] we form the ordered partition A(S) by removing any comma not
labeled by an element of S and taking the disjoint union of any blocks no longer separated
by commas. For ease of notation, we will often suppress the disjoint union signs and write
BiBi+1 in place of Bi ⊎Bi+1. For example, if k = 6 then

ω = (B1
1, B2

2, B3
3, B4

4, B5
5, B6)

And the set S = {2, 5} gives rise to the ordered set partition

A(S) = (B1 ⊎B2
2, B3 ⊎B4 ⊎B5

5, B6) = (B1B2
2, B3B4B5

5, B6).

It is easy to check that A is invertible and is a poset anti-isomorphism.

(e) This follows immediately from (d) and the fact that all intervals in a Boolean algebra
are Boolean algebras.

(f) Since Ωn has a 0̂, to show it is a lattice it suffices to show the existence of a join.
Suppose ψ, ω ∈ Ωn where

ψ = (A1, A2, . . . , Ak),

ω = (B1, B2, . . . , Bℓ).

5



Find the smallest i such that

A1 ⊎ A2 ⊎ . . . ⊎ Ai = B1 ⊎B2 ⊎ . . . ⊎Bj (3)

for some j. Such an i exists because if i = n then the union of A’s is [n]. Call the union
in (3) C1 and removed the corresponding blocks from ψ and ω. Iterate this process to find
C2 and so forth. It is easy to see that (C1, C2, . . . Cm) is the join of ψ and ω.

To prove that Ωn is atomic, consider any of its ordered set partitions ω = (B1, B2, . . . , Bn).
Construct a set of atoms A as follows. Put a = (a1, a2, . . . , an) into A precisely when
{a1, a2, . . . , ai} = B1 where i = #B1, and {ai+1, ai+2, . . . , ai+j} = B2 where j = #B2, etc. It
is easy to verify that

∨
A = ω.

Finally to show that Ωn is neither upper nor lower semimodular, we use the equivalent
conditions in terms of covers. In the upper case, consider the atoms ψ = (1, 2, 3, a4, . . . , an)
and ω = (2, 3, 1, a4, . . . , an) where a4, . . . , an forms an arbitrary permutation of [4, n]. Clearly,
ψ ∧ ω = 0̂ which they cover. But ψ ∨ ω = (123, a4, . . . , an) which doees not cover ψ or
ω. For lower semimodular, one uses the ordered set partitions ψ′ = (12, 3, b4, . . . , bn) and
ω′ = (2, 13, b4, . . . , bn).

The Möbius function of a finite poset P is a function from the closed intervals [x, z] of P
to the integers defined by µ(x, x) = 1 and either of the two equivalent equations

µ(x, z) = −
∑
x≤y<z

µ(x, y) (4)

= −
∑
x<y≤z

µ(y, z) (5)

for x < z. If P has a 0̂ and a 1̂ we write

µ(P ) = µ(0̂, 1̂).

It is a far-reaching generalization of the Möbius function in number theory. The second
statement in the following theorem shows that (by definition) Ωn is Eulerian. We give two
proofs, one combinatorial and one geometric. For the latter, we need the fact that Ωn is the
face lattice of the permutahedron, the convex hull of the n! points whose coordinates are
the permutations in Sn; see the paper of Billera and Sarangarajan [BS96, Proposition 1.4].
From this it also follows that the order complex of Ωn is homotopy equivalent to a single
sphere in dimension n− 2.

Theorem 2.2. We have
µ(Ωn) = (−1)n (6)

In fact, if x ≤ y are any elements of Ωn, including x = 0̂, then

µ(x, y) = (−1)rk y−rkx. (7)

Proof. We will give a combinatorial proof of (6). It is well known that if S ∈ Bk then

µ(S, 1̂) = (−1)crkS.

6



We also have the classical identity

xn =
n∑
k=0

S(n, k)x(x− 1) · · · (x− k + 1)

and plugging in x = −1 gives

(−1)n =
n∑
k=0

(−1)kk!S(n, k).

Combining these facts with (c) and (d) from the previous theorem gives that in Ωn

µ(Ωn) = −
∑

0̂<ω≤1̂

µ(ω, 1̂)

= −
n−1∑
k=0

∑
crkω=k

(−1)k

= −
n∑
k=1

(−1)k−1k!S(n, k)

= −(−1)n−1

= (−1)n

as desired.
To demonstrate the more general (7), we appeal to geometry. As mentioned before the

proof, Ωn is the face lattice of the permutohedron. Since all such face lattices are Eulerian,
we are done.

We will need another form of equation (6) for the sequel. A composition of n is a sequence
α = (α1, α2, . . . , αk) of positive integers called parts with

∑
i αi = n. In this case we write

α |= n and call k = ℓ(α) the length of α. Any ordered set partition ω = (B1, B2, . . . , Bk) has
an associated composition called the type of ω and defined as

typeω = (#B1,#B2, . . . ,#Bk).

For example type(245, 16, 3789) = (3, 2, 4). Given a composition α |= n, the number of
ordered set partitions of that type is clearly a multinomial coefficient

#{ω ∈ Ωn | typeω = α} =

(
n

α

)
=

n!∏
i αi

. (8)

Corollary 2.3. We have

∑
α|=n

(−1)ℓ(α)
(
n

α

)
=

n∑
k=1

∑
α|=n

ℓ(α)=k

(−1)k
n!∏
i αi

= (−1)n
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Proof. By equation (8) the two summations are equal. So, we only need so show that the
first equals (−1)n. Using equations (6) and (7) as well as organizing by type gives

(−1)n = µ(Ωn)

= −
∑

0̂<ω≤1̂

µ(ω, 1̂)

= −
∑
α|=n

∑
typeω=α

(−1)ℓ(α)−1

=
∑
α|=n

(−1)ℓ(α)
(
n

α

)
so we are done.

We will now consider shellability questions for Ωn. The face lattice of a convex polytope
is always CL-shellable, see the paper of Björner and Wachs [BW83, Theorem 4.5]. Also CL-
shellability is equivalent to having a recursive atom ordering [BW83, Theorem 3.1], defined
as follows. Let A(P ) be the atoms of a finite poset with a 0̂ and a 1̂. A linear ordering
a1, a2, . . . , at of A(P ) is a recursive atom ordering or RAO if

(R1) For all j, the interval [aj, 1̂] admits an RAO where the atoms coming first are those
covering some ai for i < j

(R2) For all i < k, if ai, ak < y for some y then there exists aj with j < k and an x ∈ P
with

aj, ak � x ≤ y.

We wish to give an explicit RAO for Ωn. Sagan [Sag86, Lemma 3] proved the following
lemma which will be useful.

Lemma 2.4 ([Sag86]). Suppose P is a poset such that [a, 1̂] is a semimodular lattice for all
a ∈ A(P ). Then P admits an RAO if and only if some ordering of the atoms of P satisfies
condition (R2) above.

Theorem 2.5. The poset Ωn has an RAO and is thus both CL-shellable and Cohen-Macaulay.

Proof. From Theorem 2.1 (d) we have that [a, 1̂] is semimodular for all atoms a ∈ Ωn. So,
by the previous lemma, it suffices to show (R2) for A(Ωn). By Theorem 2.1 (b), each atom
has the form a = (p1, p2, . . . , pn) and so can be identified with the permutation p1p2 . . . pn.

We claim that the lexicographic order ≤l on permutations satisfies (R2). For take atoms
ai, ak ≤ ω where ai <l ak so that i < k. Write

ai = (p1, p2, . . . , pn),

ak = (r1, r2, . . . , rn).

Take any ω ≥ ai, aj. Let s be the first index such that ps ̸= rs. Since ai is lexicographically
smaller than ak we must have ps < rs Also, these two elements are in the same positions in
their respective atoms and so they must be in the same block B of ω.
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Now let pl, pl+1, . . . , pm and rl, rl+1, . . . , rm be the elements of B listed as they appear in
ai and ak, respectively. By minimality of s, the element ps must appear after rs in ak. Since
ps < rs, there must must be a descent in the permutation rs, rs+1, . . . rt where rt = ps. In
other words, there is an index u ∈ [s, t− 1] such that ru > ru+1. Let aj be ak with elements
ru and ru+1 switched. So, by the previous inequality, aj ≤l ak. Furthermore

ψ := aj ∨ ak = (r1, . . . , ru−1, ruru+1, ru+2, . . . , rn)

so that aj, ak � ψ. Finally, since ψ is formed by merging two elements in the same block B
of ω we have ψ ≤ ω, verifying (R2).

3 Combinatorial properties of Ω
(d)
n

In this section, we will see that many of the properties of Ωn carry over to Ω
(d)
n . Throughout,

we will assume that d ≥ 1 is a divisor of n ≥ 0. We start with an analogue of Theorem 2.1.
To state it, we will need the d-divisible Stirling numbers of the second kind which are

S(d)(n, k) = the number of unordered partitions of n into k blocks all of size divisible by d.

The proofs are analogous to the d = 1 case and so are omitted. Alternatively, one can use
the fact that Ω

(d)
n is a join sublattice of Ωn.

Theorem 3.1. If d divides n then the poset Ω
(d)
n satisfies the following.

(a) It has 1̂ = ([n]).

(b) Its atoms are the ω with #B = d for all blocks B of ω.

(c) It is ranked. The rank of ω = (B1, . . . , Bk) is

rkω = n/d− k + 1.

The number of ω at corank k is (k + 1)!S(d)(n, k + 1).

(d) For any ω = (B1, . . . , Bk) we have

[ω, 1̂] ∼= Bk−1.

(e) For any ψ, ω ∈ Ω
(d)
n we have

[ψ, ω] ∼= Brk(ψ,ω),

(f) The poset Ω
(d)
n is an atomic lattice but it is not semimodular in general.
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To calculate µ(Ω
(d)
n ) we will need a generalization of the Euler numbers. The (ordinary)

Euler numbers, En, can be defined as by the generating function∑
n≥0

En
xn

n!
= tanx+ secx.

These constants have a long and venerable history in combinatorics and number theory. Now
given d ≥ 1 we let ζd be a primitive dth root of unity. Define the d-divisible Euler numbers,
E (d)
n , by ∑

n≥0

E (d)
n

xn

n!
=

d

ex + eζdx + eζ
2
dx + · · ·+ eζ

d−1
d x

=
1

1 + xd/d! + x2d/2d! + · · ·
. (9)

The E (d)
n was first considered by Leeming and MacLeod [LM81] who called them generalized

Euler numbers. They have since been studied by several people [Ges83, KL25, LM83, Sag25].
It is not hard to show that

E (2)
n =

{
(−1)n/2En if n is even.
0 if n is odd.

More generally, E (d)
n = 0 if d does not divide n. Note also that

E (1)
n = (−1)n = µ(Ω(1)

n ).

As we will see shortly, this is not an accident. If Sn be the symmetric group on [n] then the
descent set of π = π1π2 . . . πn ∈ Sn is

Des π = {i | πi > πi+1}.

Let
A

(d)
dn = {π ∈ Sdn | Des π = {d, 2d, . . . , (n− 1)d}. (10)

Sagan [Sag25, Theorem 3.1] proved the following.

Theorem 3.2 ([Sag25]). Suppose n ≥ 0 and d ≥ 1.

(a) We have

E (d)
n =

∑
ω|=d [n]

(−1)ℓ(ω).

(b) We have

E (d)
dn = (−1)n#A

(d)
dn .

The other ingredient we will need is a variant of the notion of poset product introduced
by Sundaram [Sun94a, pp. 287-288]. Let (P,≤P ) and (Q,≤Q) be two posets, each having a
minimum element. For any such poset P we let P− = P \ {0̂}. Then the reduced product of
P and Q is

P ×̇Q = { (0̂P , 0̂Q) } ⊎ (P− ×Q−),
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where × is the usual poset product. Equivalently, P ×̇Q is the subposet of P ×Q obtained
by removing all elements of the form (0̂, q) or (p, 0̂). The notion of reduced product extends

to products of three or more posets in the expected manner. It is easy to see that if ω ∈ Ω
(d)
n

has typeω = (α1, α2, . . . , αk) then

[0̂, ω] ∼= Ω(d)
α1
×̇Ω(d)

α2
×̇ · · · ×̇Ω(d)

αk
. (11)

We will need the following result of Sundaram [Sun94a, Remark 2.6.1].

Theorem 3.3 ([Sun94a]). Let P,Q be posets both having a 0̂ and a 1̂. Then

µ(P ×̇Q) = −µ(P )µ(Q).

We now have everything in place to compute µ(Ω
(d)
n ).

Theorem 3.4. In Ω
(d)
n where d divides n we have the following Möbius values.

(a) For ψ, ω ordered partitions, ψ ≤ ω,

µ(ψ, ω) = (−1)rk(ψ,ω).

(b) For the full poset
µ(Ω(d)

n ) = E (d)
n

(c) For an ordered partition ω with typeω = (α1, α2, . . . , ak)we have

µ(0̂, ω) = (−1)k−1

k∏
i=1

E (d)
αi
.

Proof. (a) This follows immediately from Theorem 3.1, parts (d) and (e).

(b) Using part (a) and Theorem 3.2 (a) give

µ(Ω(d)
n ) = −

∑
0̂<ω≤1̂

µ(ω, 1̂)

= −
∑

ω|=d [n]

(−1)ℓ(α)−1

= E (d)
n .

(c) This is an easy consequence of part (b), equation (11), and Theorem 3.3.

We will now show that Ω
(d)
n admits an RAO.

Theorem 3.5. The poset Ω
(d)
n where d divides n has an RAO and is thus both CL-shellable

and Cohen-Macaulay.
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Proof. As in the proof of Theorem 2.5, by combining Theorem 3.1 (d) and Lemma 2.4, it

suffices to show that some ordering of the atoms of Ω
(d)
n satisfies condition (2) in the definition

of an RAO. And by Theorem 3.1 (b), these atoms are of the form a = (B1, B2, . . . , Bn/d)
where #Bi = d for all i. Write the elements of each Bi in decreasing order and let Bi ≤l Bj

if Bi is less than or equal to Bj lexicographically. Finally, let a ≤l a
′ if the first blocks in

which they differ are B and B′, respectively, where B ≤l B
′.

Now suppose that ai, ak ≤ ω where i < k and

ai = (P1, P2, . . . , Pn/d),

ak = (R1, R2, . . . , Rn/d),

Letting s be the first index in which ai differs from ak, we must have Ps <l Rs. Let p ∈ Ps
and r ∈ Rs be the largest elements in which they differ. This forces p < r.

Since ai, ak < ω, there must be a block B ∈ ω with Ps, Rs ⊆ B. Let Pℓ, Pℓ+1, . . . , Pm
and Rℓ, Rℓ+1, . . . , Rm be the blocks of ai and ak, respectively, which are subsets of B where
ℓ ≤ s ≤ m. Since p ̸∈ Rs and we are comparing atoms lexicographically, there must be a
t > s with p ∈ Rt. If there is a lexicographic descent in the sequence Rs, Rs+1, . . . , Rt then
we proceed as in the proof of the d = 1 case, Theorem 2.5.

Otherwise, we have Rs < Rs+1 <l . . . <l Rt. Letting mi = maxRi for all i, this implies
that ms < ms+1 < . . . < mt. Combining this with the fact that p < r ∈ Rs gives us
p < ms ≤ mt−1. Now consider the sets

R′
t = (Rt − {p}) ∪ {mt−1},

R′
t−1 = (Rt−1 − {mt−1}) ∪ {p}.

Note that since R′
t−1 was constructed by removing the maximum of Rt−1 and replacing it

with a smaller element, we must have R′
t−1 <l Rt−1. Finally, let aj be the atom obtained from

ak by replacing Rt−1 and Rt by R
′
t−1 and R

′
t, respectively. From the inequality on the (t−1)st

blocks, it follows that we must have aj <l ak. Also, the fact that Rt∪Rt−1 = R′
t∪R′

t−1 shows
that aj < ω. Now, aj and ak only differ in two adjacent blocks so that aj, ak � ψ for some
ψ. Finally, since aj, ak < ω we are forced to have ψ = aj ∨ ak ≤ ω, finishing the proof.

4 The action of the symmetric group

In this section, we will study the action of the symmetric group Sn on various homology
groups associated with Ω

(d)
n . For more about the theory of symmetric group representations

see the books of James [Jam78], James and Kerber [JK81], Sagan [Sag01], or Serre [Ser77].
Let P be a bounded poset and consider the proper part of P which is

P = P − {0̂, 1̂}.

The set of all chains in P forms a simplicial complex called the order complex of P and
denoted ∆(P ). We write the ith (reduced) homology group of ∆(P ) over the rationals as
H̃i(P ).
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Suppose that P is Cohen-Macaulay. Then P is graded, so suppose rk 1̂ = r. In this
case, all its homology groups vanish except in the top dimension, r − 2, and H̃r−2(P ) is a
vector space of dimension |µ(P )|. Furthermore, any group of automorphisms of P induces
an action on H̃r−2(P ).

Now consider the poset Ω
(d)
n . By Theorem 3.5, this poset is Cohen-Macaulay. Clearly Sn

is the group of automorphisms of P and so acts on its homology. We first consider the case
when d = 1 which is particularly simple.

Proposition 4.1. The symmetric group Sn acts on H̃n−2(Ωn) like the sign.

Proof. By equation (6), H̃n−2(Ωn) is one-dimensional. So, the character of the Sn-action is
completely determined by the trace of any transposition, say σ = (1, 2). By the Hopf trace
formula (e.g. [Sun94a]), this trace is (−1)n−2µ(Ωσ

n) where Ωσ
n is the subposet of Ωn fixed by

σ = (1, 2). Now σ fixes an ordered set partition ω if and only if 1 and 2 are in the same
block of ω. It follows that Ωσ

n is isomorphic to Ωn−1. Hence, using equation (6) again,

tr(σ, H̃n−2(Ωn)) = (−1)n−2µ(Ωn−1) = −1,

which proves the proposition.

For all d, we know that intervals in Ω
(d)
n are reduced products by (11). Because of this,

we will need a key technical fact about how reduced products behave under group actions,
which was established in [Sun94a, Proposition 2.5, Proposition 2.6].

Proposition 4.2. [Sun94a] Let P1 and P2 be Cohen-Macaulay posets of ranks r1 and r2,
respectively, Let Gi be a finite group of automorphisms of Pi for i = 1, 2. Then P1×̇P2 is
Cohen-Macaulay, and there is a (G1 ×G2)-isomorphism

H̃r1−2(P1)⊗ H̃r2−2(P2) ∼= H̃r1+r2−3(P1×̇P2).

The Whitney homologyWHi(P ) of a poset P was originally defined by Baclawski [Bac75].
The following equivalent definition of Whitney homology, due to Anders Björner, was shown
to be useful for determining group actions on poset homology by Sundaram [Sun94b]. Let P
be a ranked poset with least element 0̂, and let r be the length of a longest chain in P . The
ith Whitney homology of P is related to the usual order homology of P by isomorphisms
establishing that, for 0 ≤ i ≤ r,

WHi(P ) ∼=
⊕

rk(x)=i

H̃i−2(0̂, x).

Note that this implies that WH0(P ) is the trivial module and

WHr(P ) ∼= H̃r−2(P ).

These isomorphisms can be shown to commute with any group of automorphisms of P . See
[Sun94a, Sun94b] . Because of this, we will replace ∼= with = when dealing with Whitney
homology and the corresponding simplicial homology groups. We will use the following
important acyclicity property of Whitney homology, proved in [Sun94b, Lemma 1.1], which
will permit us to obtain an expression for WHr(P ) as an alternating sum of G-modules.
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Proposition 4.3 ([Sun94b]). Let P be a bounded poset, and let G be a group of automor-
phisms of P . Assume that the Whitney homology is free in all degrees. Then each Whitney
homology module is a G-module, and as a virtual sum of G-modules one has

WHr(P )−WHr−1(P ) + · · ·+ (−1)rWH0(P ) = 0,

where r is the length of a longest chain in P .

It is often useful to examine the Whitney homology of the dual poset. For example, as
noted in Theorem 3.1 (d), in the case of Ω

(d)
n , the intervals [ω, 1̂] have a simple description as

Boolean lattices. As in [Sun94b], we define the dual Whitney homologyWH∗(P ) of a graded
poset P of rank r to be the Whitney homology of the dual poset P ∗, so that, for 0 ≤ i ≤ r,

WH∗
i (P ) =

⊕
crk(x)=i

H̃i−2(x, 1̂).

We emphasize that ranks and coranks are all taken in P itself. As in the ordinary case, we
have that WH∗

0 (P ) is the trivial module and

WH∗
r (P )

∼= H̃r−2(P ). (12)

Now assume P is a Cohen-Macaulay poset of rank r. Then for every open interval (x, y)
in P , nonvanishing homology can occur only in the top dimension. We will often simply
write H̃(x, y) for that homology group. Proposition 4.3 gives the following two formulas for
the homology H̃r−2(P ), which we will use repeatedly in what follows.

H̃r−2(P ) = WHr−1(P )−WHr−2(P ) + · · ·+ (−1)r−1WH0(P ). (13)

H̃r−2(P ) = WH∗
r−1(P )−WH∗

r−2(P ) + · · ·+ (−1)r−1WH∗
0 (P ). (14)

The action of the symmetric group Ωn is most conveniently described using its Frobenius
characteristic and symmetric functions. See the texts of Macdonald [Mac95], Sagan [Sag01],
or Stanley [Sta99] for more information about these topics. Writing ch for the Frobenius
characteristic, we see from Proposition 4.1 that

ch H̃n−2(Ωn) = en

where en is the elementary symmetric function of degree n in a countably infinite set of
variables (which we will suppress).

Write
β
(d)
dm := ch H̃m−2(Ω

(d)
dm). (15)

Our goal is to derive a formula for β
(d)
dm by first deriving the Frobenius characteristic for

the Whitney homology modules of Ωd
dm. To do so, we will need the complete homogeneous

functions hn. As usual, if λ = (λ1, . . . , λk) is a partition then we let

hλ = hλ1 · · ·hλk .
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We extend this definition to compositions α = (α1, . . . , αk) by letting

hα = hα1 · · ·hαk
.

We use the same conventions to define elementary symmetric functions eλ and eα as well as
the Frobenius characteristics β

(d)
λ and β

(d)
α , where in the last two cases λ and α must have

all parts divisible by d. Note that, although we use parentheses for both partitions and
compositions, context should make it clear which is meant. Finally, if d is a positive integer
and α = (α1, . . . , αk) is a composition then we let

dα = (dα1, . . . , dαk)

and similarly for partitions dλ.
It will be convenient to have a notation for the set of compositions of a given integer of

a given length. So we let
C(n, k) = {α |= n | ℓ(α) = k}.

Theorem 4.4. Let n = dm and consider Ω
(d)
dm.

(a) The dual Whitney homology of Ω
(d)
dm is given, for 0 ≤ k ≤ m− 1, by

chWH∗
k(Ω

(d)
dm) =

∑
α∈C(m,k+1)

hdα,

and in the top dimension by

chWH∗
m(Ω

(d)
dm) = β

(d)
dm.

In particular, it is a permutation module except in the top dimension.

(b) The Whitney homology of Ω
(d)
dm is given, for 0 ≤ k ≤ m− 1, by

chWHm−k(Ω
(d)
dm) =

∑
α∈C(m,k+1)

β
(d)
dα ,

and in the bottom dimension by

chWH0(Ω
(d)
dm) = hdm.

(c) The top homology of Ω
(d)
dm is given by

β
(d)
dm =

m∑
k=1

(−1)m−k
∑

α∈C(m,k)

hdα. (16)

It has dimension
dim H̃m−2(Ω

(d)
dm) =

∑
ω∈Ω(d)

dm

(−1)m−ℓ(ω). (17)
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(d) The top homology of Ω
(d)
dm is also given by the recurrence

β
(d)
dm = (−1)m+1hdm +

m∑
k=2

(−1)k
∑

α∈C(m,k)

β
(d)
dα . (18)

Proof. (a) The formula in the top dimension follows immediately from (15) together with

equation (12) applied to Ω
(d)
dm.

For the summation formula, note first that, since WH∗
0 (P ) is always the trivial module,

chWH∗
0 (Ω

(d)
dm) = hdm

which agrees with the sum at k = 0. So assume k ≥ 1 and consider an upper interval [ω, 1̂]

in Ω
(d)
dm, where ω = (B1, . . . , Bk+1). Then ω has type dα where #Bi = dαi for all i, and thus

α ⊨ m. By Theorem 3.1 (d) we have [ω, 1̂] ∼= Bk, so its homology is one-dimensional. The
stabiliser subgroup of ω is the Young subgroup

Gω := ×k+1
i=1SBi

, (19)

where SBi
is the group of permutations on the elements of the block Bi. Arguing as in

Proposition 4.1, one sees that Gω acts trivially on the homology, because the group fixes
all ordered partitions in [ω, 1̂]. The orbit of such a ω under the Sdm-action consists of all
ordered partitions ψ of type dα. This is a transitive action, and therefore we have⊕

typeψ=dα

H̃k−2(ψ, 1̂) = 1 ↑Sdm
Gω

,

which has Frobenius characteristic
∏k+1

i=1 hdαi
. It follows that, for 1 ≤ k ≤ m− 1,

chWH∗
k(Ω

(d)
dm) =

∑
rkψ=m−k

ch H̃k−2(ψ, 1̂) =
∑

α∈C(m,k+1)

hdα,

since elements at corank k have k + 1 blocks.

(b) The formula for dimension 0 follows immediately from the fact that WH0(Ω
(d)
dm) is the

trivial module.
For the other dimensions, we need to examine the lower intervals [0̂, ω]. Again, suppose

ω = (B1, . . . , Bk) with composition type dα = (dα1, . . . , dαk) where #Bi = dαi and thus
α ⊨ m. By the isomorphism (11) we have that

[0̂, ω] ∼= Ω
(d)
dα1

×̇ · · · ×̇Ω
(d)
dαk
.

Also, from equation (19), we have that Gω = ×k
i=1SBi

is the stabilizer of ω, and hence of
[0̂, ω]. By definition (15), each SBi

acts on the homology of the corresponding component

Ω
(d)
dαi

of the reduced product like the representation whose Frobenius characteristic is β
(d)
dαi

.
Now we invoke Proposition 4.2. It follows, by collecting orbits as in (a), that the action

of Sdm on the orbit of ω is the induced module ⊗k
i=1H̃(Ω

(d)
dαi

) ↑Sdm
Gω

, and hence its Frobenius

16



characteristic is β
(d)
dα . Since a partition with k blocks has rank m − k + 1, we have shown

that
chWHm−k+1(Ω

(d)
dm) =

∑
α∈C(m,k)

β
(d)
dα ,

and reindexing gives the desired result.

(c) Combining definition (15), equation (14), and part (a), we obtain

β
(d)
dm =

m−1∑
k=0

(−1)m−k−1 chWH∗
k(Ω

(d)
dm) =

m−1∑
k=0

(−1)m−k−1
∑

α∈C(m,k+1)

hdα,

which is equivalent to (16) after re-indexing. Taking dimensions in (16) gives (17), since

#{ω |=d [dm] | ℓ(ω) = k} =
∑

α∈C(m,k)

(
dm

dα

)
,

and the multinomial coefficient is the dimension of the induced module 1 ↑Sdm
Gω

.

(d) We use equation (13) and the fact that WH0(Ω
(d)
dm) is the trivial module to obtain

β
(d)
dm =

m−1∑
k=0

(−1)k chWHm−1−k(Ω
(d)
dm)

= (−1)m−1hdm +
m−2∑
k=0

(−1)k
∑

α∈C(m,k+2)

β
(d)
dα

= (−1)m+1hdm +
m∑
k=2

(−1)k
∑

α∈C(m,k)

β
(d)
dα .

This completes the proof.

Before moving on, we would like to make some remarks about this result. First, it is easy
to use equation (16) to calculate the β

(d)
dm in terms of complete homogeneous functions. As

an example, here are the expressions for the first three values of m:

β
(d)
d = hd, β

(d)
2d = h2d − h2d, β

(d)
3d = h3d − 2hdh2d + h3d.

Next, combining (17) with Theorem 3.2 we see that

dim H̃m−2(Ω
(d)
dm) = (−1)mE (d)

dm. (20)

The special case d = 1 reflects the duality between the elementary and complete homo-
geneous functions. It also can be used to prove a known symmetric function identity as we
will see shortly. So, we will state this special case of the previous theorem.

Theorem 4.5. For n ≥ 0, we consider Ωn.
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(a) The dual Whitney homology of Ωn is given, for 0 ≤ k ≤ n− 1, by

chWH∗
k(Ωn) =

∑
α∈C(m,k+1)

hα,

and in the top dimension by
chWH∗

m(Ωn) = en.

In particular, it is a permutation module in all but the top dimension.

(b) The Whitney homology of Ωn is given, for 0 ≤ k ≤ m− 1, by

chWHm−k(Ωn) =
∑

α∈C(m,k+1)

eα,

and in the bottom dimension by

chWH0(Ω
(d)
dm) = hn.

(c) As Sn-modules, the Whitney homology and the dual Whitney homology are related via
the sign representation sgnn of Sn by the equation

WHn−k(Ωn) = sgnn⊗WH∗
k(Ωn).

From part (a) of the previous theorem and the dual version of Proposition 4.3 we imme-
diately have

en =
n∑
k=1

(−1)n−k
∑

α∈C(n,k)

hα (21)

We can rewrite this as an n× n determinant

en = det(h1−i+j). (22)

Indeed, when expanding the determinant about the first row, the term in the sum corre-
sponding to hj gives all the hα whose first factor is hj. But this last equation is the special
case of the Jacobi-Trudi determinant for en = s(1n) where sλ is the Schur function corre-
sponding to the partition λ = (1n). Similarly, part (b) of the previous result gives the dual
Jacobi-Trudi determinant for hn = sn. Alternatively, it can be derived from (22) by ap-
plying the standard involution on symmetric functions See the texts of Macdonald [Mac95,
Chapter 1], Sagan [Sag01, Chapter 4], or Stanley [Sta99, Chapter 7] for more information.
Combinatorial proofs of equation (22) can be given, for example, by using lattice paths and
the Lindström-Gessel-Viennot method [GV85, Lin73], or by using brick tabloids as done by
Eğecioğlu and Remmel in [ER91].

Our conventions for Ferrers diagrams of integer partitions and standard Young tableaux
follow [Mac95, Sag01, Sta99], increasing left to right along rows, and increasing top to
bottom down the columns. A rim hook (or border strip) [Mac95, Sta99] is a skew shape
whose Ferrers diagram has the property that consecutive rows share exactly one column.
Generalizing the previous observations, we show that the symmetric function β

(d)
dm is the

Schur function indexed by a rim hook.
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Theorem 4.6. Fix m ≥ 0 and d ≥ 1. Let λm,d and µm,d be the partitions whose parts are
defined, for 1 ≤ i ≤ m, by

λm,di = (d− 1)(m− i+ 1) + 1,

µm,di = (d− 1)(m− i),

so that the skew shape λm,d/µm,d is the rim hook consisting of m rows of length d. Then

β
(d)
dm = sλm,d/µm,d .

In particular,
dim H̃m−2(Ω

(d)
dm) = (−1)mE (d)

dm.

Proof. By the same argument used to establish the equivalence of (21) and (22), we see that

det(hd(1−i+j)) =
m∑
j=1

(−1)m−j
∑

α∈C(m,j)

hdα.

By the Jacobi-Trudi identity again, however, we have

sλm,d/µm,d = det(hλm,d
i −i−µm,d

j +j).

A simple calculation shows that

λm,di − i− µm,dj + j = d(1− i+ j).

and hence
sλm,d/µm,d = det(hd(1−i+j)).

The first claim of the theorem now follows from (16).
For the dimension result, note that the number of standard Young tableaux of shape

λm,d/µm,d is the number of permutations in π ∈ Sdm with descent set {d, 2d, . . . , (m− 1)d}.
By Theorem 3.1 (e) in [Sag25], this number is (−1)mE (d)

dm. The dimension formula now follows

from the expression for β
(d)
dm.

Note that the dimension formula just proved gives another demonstration of Theorem 3.4
(b).

Next we construct the ordinary generating function for the β
(d)
dm. Recall the exponential

generating function used to define the E (d)
dm in (9). One can see that it is precisely the

exponential specialization in the sense of Stanley [Sta99, Proposition 7.8.4] of the generating
function below.

Corollary 4.7. Fix d ≥ 1. Then we have the generating function∑
m≥0

(−1)mβ
(d)
dmx

dm =
1

1 + hdxd + h2dx2d + · · ·
. (23)

In particular, the symmetric functions {β(d)
dm | m ≥ 1} form an algebraically independent set

of generators for the ring of symmetric functions generated by {hdm | m ≥ 1}.
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Proof. For any formal power series 1 + c1x+ c2x
2 + · · · we have

1

1 + c1x+ c2x2 + · · ·
=

1

1− (−c1x− c2x2 − · · · )
=

∑
k≥0

(−c1x− c2x
2 − · · · )k

=
∑
k≥0

(−1)k
∑
m≥0

xm
∑

α∈C(m,k)

cα1 · · · cαk
,

where the last equality comes from the fact that a term involving xm in the expansion of
(c1x+ c2x

2 + · · · )k comes picking the term cαi
xαi from the ith factor for 1 ≤ i ≤ k. We now

get the desired generating function by substituting xd for x, ci = hdi for i ≥ 1, and using
equation (16).

There is a striking resemblance between the Sdm-action on the top homology of Ω
(d)
dm and

the Smd−1-action on the top homology of the (unordered) d-divisible partition lattice Πd
dm.

In particular, compare (23) above with (24) below. The next result was derived in [Sun94b,
Example 1.6(ii), Proposition 5.2]. And (24) was originally due to [CHR86], implicitly and in
a different form. Let πdm denote the Frobenius characteristic of the Sdm-action on the top
homology of the d-divisible lattice Πd

dm.

Proposition 4.8 ([[CHR86], [Sun94b]]). We have the plethystic identity

∑
m≥0

(−1)mπdm =
∑
i≥1

(−1)iπi

[∑
j≥1

hdj

]
.

We have the generating function

∑
m≥0

(−1)m(πdm) ↓Sdm−1
=

∑
j≥1 hdj−1∑
j≥0 hdj

, (24)

where (πdm) ↓Sdm−1
denotes restriction of the representation πdm to Sdm−1. Moreover, the

Smd−1-representation (πdm)↓Smd−1
is the skew Schur function indexed by the rim hook whose

top row has length d− 1, and whose remaining m− 1 rows have length d.

There is also a connection with rank selection in the Boolean lattice Bdm. Define B(d)
dm to

be the rank-selected subposet of Bdm consisting of sets of cardinality divisible by d. Results
of Solomon [Sol68, Section 6] implicitly and Stanley [Sta82, Theorem 4.3] explicitly imply

that the representation of Sdm on the homology of B(d)
dm is given precisely by the Specht

module for the skew shape λm,d/µm,d of Theorem 4.6. We discuss rank-selection in more
detail later in the next section, but first we elucidate this connection.

Consider the order complex ∆(B(d)
dm). As in [Sta82, Ex. 3.18.9], we have a bijection

mapping a chain X1 ⊂ X2 ⊂ · · · ⊂ Xk in ∆(B(d)
dm) to the ordered partition

ω = (X1, X2 \X1, X3 \X2, . . . , [dm] \Xk).
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Since every cardinality |Xi| is a multiple of d we have that ω ∈ Ω
(d)
dm. This map is also order

reversing and so the face poset of ∆(B(d)
dm) is isomorphic to Ω

(d)
dm

∗
with its maximal element

removed. This poset isomorphism clearly commutes with the action of Sdm. More precisely,
because the order complex of the face lattice of ∆(P ) is the barycentric subdivision sd∆(P )
of ∆(P ) (see, e.g., [Sta82, §8]), there is an Sdm-equivariant homeomorphism

sd∆(B
(d)
dm) ≃ ∆(Ω

(d)
dm

∗
) (25)

and hence we have an Sdm-isomorphism of homology modules

H̃(B
(d)
dm)

∼= H̃(Ω
(d)
dm).

This gives, in effect, another proof of Theorem 4.6. It also establishes that Ω
(d)
dm is Cohen-

Macaulay, because B
(d)
dm is Cohen-Macaulay, and hence the homotopy type of ∆(Ω

(d)
dm) is a

wedge of spheres in the top dimension.
An examination of the Sdm-action on the maximal chains leads to the following.

Proposition 4.9. The action of Sdm on the maximal chains of Ω
(d)
dm has Frobenius charac-

teristic
(m− 1)!hmd .

In particular, the number of maximal chains is

(m− 1)!

(
dm

d, . . . , d

)
.

Proof. Let ω = (B1, . . . , Bm) be an atom in Ω
(d)
dm. Since ω has m blocks each of size d, its

stabilizer is the Young subgroup

Gω := SB1 × · · · ×SBm
∼= Sm

d .

Also, because of the isomorphism in Theorem 3.1 (d), there is a bijection between the
maximal chains from ω to 1̂ and the maximal chains from 0̂ to 1̂ in the Boolean algebra
Bm−1. It follows that there are (m− 1)! such chains.

The action of Sdm permutes the chains from an atom to 1̂ in Ω
(d)
dm. Also, because the

blocks are ordered, all chains corresponding to a given chain in Bm−1 are in one orbit of
Sdm. The vector space of maximal chains therefore decomposes into a direct sum of (m−1)!
orbits, and each orbit is isomorphic to the induced module 1 ↑Sdm

Gω
. This immediately gives

the desired Frobenius characteristic and chain count.

5 Rank-selection

Now we turn to rank-selection. For any bounded and graded poset P of rank r, the trivial
ranks are rank 0 and rank r. The same terminology applies to coranks. For any subset
S of the nontrivial ranks {1, . . . , r − 1}, we define the rank-selected subposet PS to be the
bounded and graded poset

PS = {x ∈ P : rk(x) ∈ S} ∪ {0̂, 1̂}.
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It is known that rank-selection preserves the Cohen-Macaulay property [Bac80, Theorem

6.4]. For a subset of ranks S ⊆ [m − 1], write β
(d)
dm(S) for the Frobenius characteristic of

H̃(Ω
(d)
dm(S)).

Let P be an arbitrary Cohen-Macaulay poset of rank r and let S be a subset of the ranks
{1, . . . , r − 1}. Let G be a group of automorphisms of P , and let αP (S) and βP (S) denote,
respectively, the G-modules arising from the action of G on the maximal chains of P (S) and
on the top homology of P (S). Then from [Sta82] one has, as virtual G-modules,

βP (S) =
∑
T⊆S

(−1)|T |−|S|αP (T ). (26)

Let sd(P ) denote the poset of chains in P , including the empty chain. We append an
artificial top element to make sd(P ) bounded. Then the order complex of the poset sd(P ) is
the barycentric subdivision of the order complex of P , and hence the two order complexes
are homeomorphic. Thus sd(P ) inherits the Cohen-Macaulay property from P , and any
group of automorphisms G of P acts also on sd(P ).

Stanley [Sta82, §8] gave an elegant formula for the action of G on the rank-selected
homology of sd(P ), in terms of the action on P . The relevance of this result comes from the

observation (25) that the order complex of Ω
(d)
dm is the barycentric subdivision of the order

complex of the d-divisible Boolean lattice B(d)
dm.

In order to state Stanley’s theorem we require some results about the Boolean algebra.
The following result of Solomon [Sol68] and Stanley [Sta82] completely determines the Sn-
action on the rank-selected homology in the Boolean lattice Bn. If T = {1 ≤ t1 < · · · < tr ≤
n− 1} is a nonempty subset of the nontrivial ranks of Bn, define the following.

� ρT is the rim hook (border strip) of size n whose rows, top to bottom, have lengths
n− tr, tr − tr−1, tr−1 − tr−2, . . . , t2 − t1, t1, and

� fρT is the number of standard Young tableaux of the skew shape ρT . This is also the
number of permutations in Sn with descent set equal to {t1, t2, . . . , tr}.

Recall that the rank of an element in the Boolean lattice is its cardinality as a set. The
following explicit description is equivalent to the formulation of Stanley [Sta82, Theorem
4.3].

Theorem 5.1. Let T = {1 ≤ t1 < · · · < tr ≤ n−1} be a subset of the nontrivial ranks of Bn.
The representation of Sn on the homology of the rank-selected subposet Bn(T ) is isomorphic
to the Specht module indexed by the rim hook ρT , and hence has dimension fρT .

For example, when the rank set is {1, 2, . . . , j}, 1 ≤ j ≤ n−1, the rank-selected homology
representation for the Boolean lattice Bn is the irreducible indexed by the hook (n − j, 1j).
For the rank set {k, k+1, . . . , n−1}, 1 ≤ k ≤ n−1, the representation given by the previous
theorem is the one indexed by the skew partition (kn−k+1)/((k− 1)n−k). This can be shown
to be the same as the irreducible representation corresponding to the partition (k, 1n−k).

Now let P be a Cohen-Macaulay poset of rank r and G a group of automorphisms of P .
Following [Sta82], for each i = 0, 1, . . . , r − 1, define ηi(P ) to be the G-module

ηi(P ) =
⊕

T⊆[r−1]
|T |=i

βP (T ).
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Also define, for each i = 0, 1, . . . , r− 1 and each subset T of [r− 1], the nonnegative integer
ci,r(T ) to be

ci,r(T ) = #{σ ∈ Sr : σ(r) = r − i and Desσ = T}.
Stanley’s elegant formula is the following.

Theorem 5.2 ([Sta82, Theorem 8.1]). Let P be a Cohen-Macaulay poset of rank r and let
T ⊆ [r − 1]. The rank-selected homology representation of the barycentric subdivision sd(P )
is given by the formula

βsd(P )(T ) =
r−1⊕
i=0

ci,r(T ) ηi(P ).

When P = Bn, ηi(Bn) is the Foulkes representation, namely, the direct sum of the
Specht modules indexed by ρT for all subsets of ranks T of cardinality i, and the Frobenius
characteristic ch ηi(Bn) is the sum of the Schur functions indexed by ribbons ρT for all T of
cardinality i.

Stanley’s theorem and the homeomorphism (25) now imply the following result. It can

be used to give another proof of Theorem 4.6. When P = Ω
(d)
dm we write

βP (T ) = β
(d)
dm(T ).

Corollary 5.3. Let T ⊆ [m−1]. The rank-selected homology representation of Ω
(d)
dm is given

by the formula

β
(d)
dm(T ) =

m−1⊕
i=0

ci,m(T ) ηi(B(d))
dm ).

Using the structure of the Whitney homology determined in the previous section, we also
derive a recurrence for the homology representations of Ω

(d)
dm. Equation (28) below is the

analogue of the general rank-selection formula for the unordered partition lattice in [Sun94b,
Theorem 2.13]. The equivalence with Corollary 5.3 is not immediately obvious.

As in the preceding sections, when G is the symmetric group, for ease of notation we
will write αP (S) and βP (S) for both the modules and their Frobenius characteristics. The
context will make the distinctions clear.

Recall that the corank of an element τ ∈ Ω
(d)
dm is crk(τ) = m − rk(τ). In order to give

less encumbered formulas for the homology representation, we describe our rank sets in Ω
(d)
dm

using the corank rather than the rank.
If τ has corank t, 0 ≤ t ≤ m − 1, then it has t + 1 blocks, and the interval [τ, 1̂] is

isomorphic to a Boolean lattice Bt by Theorem 3.1 (d). The important fact is that the
isomorphism (as described in the proof of Theorem 2.1 (d) for the case d = 1 and which
generalizes easily to all d) maps coranks in [τ, 1̂] to ranks in Bt. It will be clearest to state
our result in terms of coranks. We will use the same notation for corank selection as for rank
selection. Context will also make it clear which of the two is meant.

Theorem 5.4. Let T = {1 ≤ t1 < · · · < tr ≤ m − 1} be a nonempty subset of the coranks
[m − 1] of Ω(dmd). Consider the action of the symmetric group Sdm on the corank selected

poset Ω
(d)
dm(T ).

23



(a) The Frobenius characteristic of the action on the maximal chains of Ω
(d)
dm(T ) is

α
(d)
dm(T ) = aT

∑
α∈C(m,tr+1)

hdα (27)

where

aT =
tr!

t1!(t2 − t1)! · · · (tr − tr−1)!
.

So, it is a polynomial in {hdi | 1 ≤ i ≤ m} with nonnegative integer coefficients.

(b) The Frobenius characteristic of the action on the top homology of Ω
(d)
dm(T ) satisfies

β
(d)
dm(T ) + β

(d)
dm(T \ {tr}) = δ(T )

∑
α∈C(m,tr+1)

hdα, (28)

where
δ(T ) = #{σ ∈ Str | Desσ = {t1, . . . , tr−1}}.

So, it is a polynomial in {hdi : 1 ≤ i ≤ m} with integer coefficients.

Proof. (a) For the single corank T = {t1}, 1 ≤ t1 ≤ m− 1, it is easy to see that the action

on the maximal chains of Ω
(d)
dm(T ) is given by

α
(d)
dm({t1}) =

∑
α∈C(m,t1+1)

hdα.

Let T = {1 ≤ t1 < · · · < tr ≤ m− 1} be a nonempty set of coranks. Let τ ∈ Ω
(d)
dm be an

element at corank tr; then τ has tr + 1 blocks and composition type α of length tr + 1. We
examine upper intervals [τ, 1̂]T in the corank-selected subposet Ω

(d)
dm(T ). From Theorem 3.1

(d), one sees that each such upper interval is isomorphic to a rank -selected subposet of a
Boolean lattice, consisting of the subsets of [tr] of sizes t1 < t2 < · · · < tr−1, that is,

[τ, 1̂]T ∼= Btr({t1, . . . , tr−1}). (29)

The stabiliser of τ is the Young subgroup isomorphic to ×tr+1
i=1 Sαi

, and acts trivially
on the chains in the interval [τ, 1̂]T . It follows by collecting orbits that the action on the

maximal chains of Ω
(d)
dm(T ) has Frobenius characteristic

α
(d)
dm(T ) = aT

∑
α∈C(m,t1+1)

hdα,

where aT is the number of maximal chains in the rank-selected Boolean lattice Btr({t1, . . . , tr−1}),
and thus

aT =
tr!

t1!(t2 − t1)! · · · (tr − tr−1)!
.

(b) Again, in the case of a single corank T = {t1}, 1 ≤ t1 ≤ m− 1, it is easy to see that

the action on the homology of Ω
(d)
dm(T ) is given by

β
(d)
dm({t1}) =

∑
α∈C(m,t1+1)

hdα − hdm. (30)
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Noting that H̃(Ω
(d)
dm(T )) is the trivial Sdm-module when T = ∅ and that the identity per-

mutation is the only one with empty descent set, we have verified the recurrence in this
case.

We now claim that

β
(d)
dm(T ) + β

(d)
dm(T \ {tr}) = ch

⊕
crk(τ)=tr

H̃(τ, 1̂)T .

The argument is similar to (a), except that now we exploit the implication of the poset
isomorphism (29) for the homology

H̃([τ, 1̂]T ) ∼= H̃(Btr({t1, . . . , tr−1})).

Since the stabiliser of τ fixes every element in the interval [τ, 1̂]T , the action on the homology
is just the trivial action, but with multiplicity equal to its dimension. Theorem 5.1 tells us
that the homology of Btr({t1, . . . , tr−1}) is the Specht module for Str indexed by the rim
hook ρT with tr cells, whose rows, top to bottom, have lengths

tr − tr−1, tr−1 − tr−2, . . . , t2 − t1, t1.

Its dimension fρT is precisely the number δ(T ). Again, by collecting elements into orbits,
we see that the Frobenius characteristic of

⊕
crk(τ)=tr

H̃(τ, 1̂)T is the right-hand side of (28),
and we are done.

We note that this proof can be adapted to give a proof of Stanley’s formula in Theo-
rem 5.2.

We have the following pleasing consequence of this theorem and its proof. Define the
ring homomorphism

Ψd : hk 7→ hdk

in the ring of polynomials Z[h1, h2, . . .] using the formal variables {hk}k≥0.

Corollary 5.5. Let f and g be the Frobenius characteristics of the Sm-action on the ho-
mology and on the maximal chains, respectively, of a corank-selected subposet Ωm(T ) of Ωm.
Write f and g as polynomials in the complete homogeneous symmetric functions {h1, h2, . . .}.
Then for any d ≥ 1, the Frobenius characteristics of the Sdm-action on the corresponding
modules in Ω

(d)
dm are given by Ψd(f) and Ψd(g), respectively.

We end this section with a brief digression regarding the case d = 1.

Proposition 5.6. Let S ⊆ [m− 1] be a subset of ranks of Ωm, and let S be its complement
in [m− 1]. Then

H̃(Ωm(S)) ∼= H̃(Ωm(S)) sgnSm
.

Proof. By equation (7) we know that Ωm is Eulerian. Also this poset is Cohen-Macaulay
by Theorem 2.5. So its order complex is homotopy equivalent to a sphere Sm−2. The result
now follows from Alexander duality in a sphere, as in [Sta82, Theorem 2.4].
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6 Multiplicity of trivial representation

In this section we examine two enumerative invariants that arise in rank-selection for Ωm,
namely, the multiplicities of the trivial representation for the actions of Sm and Sm−1. Here
we are viewing Sm−1 as the subgroup of Sm which fixes m. Our motivation is the case of the
analogous numbers in the unordered partition lattice Πn, which are known to refine the Euler
numbers [Sta82], [Sun94b]. A systematic study was undertaken in [Sun94b], giving results
and conjectures about their positivity. Some of these were subsequently resolved by Hanlon
and Hersh in [HH03], using a partitioning of the quotient complex and spectral sequences.
A complete list of currently known results for Πn appears in [Sun16, Theorem 2.12].

For Πn, the question of determining the multiplicity of the trivial representation in the
rank-selected homology is a difficult one. Stanley had originally raised this question in
[Sta82]. The first vanishing result is due to Hanlon [Han83] and additional results were
given by Sundaram, e.g. [Sun94b, Proposition 3.4, Theorems 4.2-4.3 and 4.7]. By contrast,
Theorem 6.1 below determines this multiplicity completely for the Sm-action on corank-
selected subposets of Ωm and Ωdm.

Inspired by Stanley’s question, the paper [Sun94b] also examined the multiplicity of the
trivial representation for the action ofSn−1 on the rank-selected homology of Πn, and showed
that it exhibits interesting enumerative properties. Again in contrast to the situation for Πn,
for Ωm and Ωdm we are able to give a complete determination of this restricted multiplicity
in Theorem 6.3.

Consider Ω
(d)
dm and a subset of coranks T ⊆ [m− 1] as in Theorem 5.4. Let bm(T ) denote

the multiplicity of the trivial representation of Sdm in the homology of the corank-selected
subposet Ω

(d)
dm(T ). From (28) and the fact that #C(m, i + 1) =

(
m−1
i

)
, one sees that these

numbers satisfy the recurrence

bm(T ) + bm(T \ {tr}) = δ(T )

(
m− 1

tr

)
(31)

with initial condition bm(∅) = 1. Moreover, since the quantities δ(T ) depend only on the
subset T of [m−1], the invariants bm(T ) are independent of d. We therefore assume without
loss of generality that d = 1.

From (26) and Proposition 4.9, we see that the numbers {bm(T ) : T ⊆ [m − 1]} refine
the factorials (m− 1)! ∑

T⊆[m−1]

bm(T ) = (m− 1)!. (32)

We have the following combinatorial description of the multiplicities bm(T ). Note that
part (b) can be expressed as in part (a) since the number of σ ∈ Sm−1 with m − 1 in its
descent set is zero. These results have a topological explanation that we discuss at the end
of this section.

Theorem 6.1. Let T be a subset of the nontrivial coranks of Ωm.

(a) If m− 1 /∈ T , then
bm(T ) = #{σ ∈ Sm−1 : Desσ = T}.

Hence bm(T ) ≥ 1 in this case.
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(b) If m− 1 ∈ T , then bm(T ) = 0.

Proof. Both parts are obtained from Corollary 5.3, by putting d = 1. This gives, for Ωm,

βΩm(T ) =
m−1⊕
i=0

ci,m(T ) ηi(Bm).

Recall from Theorem 5.1 that ηi(Bm) is the sum of Sm-irreducibles indexed by ribbons ρT
for all T of size i. The multiplicity of the trivial representation in the representation indexed
by the ribbon ρT is nonzero if and only if ρT consists of a single row, and hence the nonzero
contribution comes from the term i = 0 in the above sum. Thus we have

bm(T ) = c0,m(T ) = #{σ ∈ Sm : σ(m) = m and Desσ = T}. (33)

Now for (a), observe that for any subset T = {i1 < · · · < ik} ⊆ [m − 2], it is easy
to exhibit a permutation σ ∈ Sm with σ(m) = m and descent set T . For example, let
σ(ij) = m − j, 1 ≤ j ≤ k, and, in one-line notation, fill the remaining slots of σ with the
letters in [m − 1] \ T in increasing order from left to right. As far as part (b), note that
if m − 1 ∈ T then m − 1 would have to be a descent of σ. But this is impossible since
σ(m) = m.

It is interesting to compare the symmetry result below with the sign-twisted symme-
try of the homology representations resulting from Alexander duality, Proposition 5.6. In
particular, bm(T ) is also the multiplicity of the sign representation in βm([m− 1] \ T ).

Corollary 6.2. Let T be a subset of the nontrivial coranks of Ωm. The multiplicity of
the trivial representation in H̃(Ωm(T )) is nonzero if and only if m − 1 /∈ T . Moreover, if
T ⊆ [m− 2] then one then has the following symmetry:

bm(T ) = bm([m− 2] \ T ).

Proof. The first statement is immediate from the two parts of Theorem 6.1.
For the second statement, given σ ∈ Sm−1, let τ be the permutation defined by letting

τ(i) = m − σ(i). The map σ 7→ τ is clearly a bijection. It also has the property that
Des τ = [m− 2] \Desσ. The result now follows from Part (a) of Theorem 6.1.

Next we consider the action of Sdm−1 on Ω
(d)
dm. We follow the notation in [Sun94b]. Let

b′m(T ) denote the multiplicity of the trivial representation of Sdm−1 on the corank-selected

homology H̃(Ω
(d)
dm(T )), for every subset T of [m− 1].

From (28) one sees that these numbers satisfy the initial condition b′m(∅) = 1 and the
recursion

b′m(T ) + b′m(T \ {tr}) = δ(T )(tr + 1)

(
m− 1

tr

)
, (34)

since the restriction of hdα to Sdm−1 is
∑ℓ(α)

i=1 hdαi−1 (
∏

j ̸=i hdαj
), and the inner product of

each term in the previous sum is 1. Again these numbers are independent of d, so that b′m(T )
is also the multiplicity of the trivial representation of Sm−1 on the corank-selected homology
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H̃(Ωm(T )), for every subset T of [m−1]. Thus, as in the case of bm(T ), it suffices to analyse
the case d = 1.

From (26) and Proposition 4.9, we see that the numbers {b′m(T ) : T ⊆ [m− 1]} give the
following refinement of the factorials m!∑

T⊆[m−1]

b′m(T ) = m! (35)

Let γm(T ) = b′m(T ) − bm(T ). By Frobenius reciprocity, γm(T ) is the multiplicity of the
irreducible indexed by (m− 1, 1) in H̃(Ωm(T )), and hence it is nonnegative. In other words,
b′m(T ) ≥ bm(T ). From (31) and (34) we have the recurrence

γm(T ) + γm(T \ {tr}) = δ(T ) tr

(
m− 1

tr

)
, (36)

with γm(∅) = 0. Since tr
(
m−1
tr

)
= (m− 1)

(
m−2
tr−1

)
, this shows that γm(T ) is divisible by (m− 1)

for all T .
In [Sta82] and [Sun94b, §4], it was shown that for the rank-selected homology of the

unordered partition lattice Πn, the multiplicities of the trivial representation of Sn and
Sn−1 refine the Euler numbers En−1 and En, respectively, as sums over subsets of [n − 2].
Thus equations (32) and (35) are the corresponding analogues for Ωm, respectively refining
the factorials (m− 1)! and m! by subsets of [m− 1].

For Πn it was conjectured in [Sun94b, Conjectures, p. 289], and proved in [HH03, The-
orems 2.1, 2.2], that the restricted multiplicity b′n(S) is always positive. Table 1 shows that
this is not true of the restricted multiplicities b′m(T ) for Ωm. In fact, the data suggests that
b′m(T ) = 0 if and only if T contains both the coranks m − 2,m − 1 and this is the case.
Indeed, we have the following theorem.

Theorem 6.3. Let T be a set of coranks, T ⊆ [m − 1].Then b′m(T ) = 0 if and only if T
contains both the coranks m− 2,m− 1. More precisely, we have the following:

(a) If {m− 2,m− 1} ⊆ T , then b′m(T ) = 0.

(b) If m− 1 ∈ T , m− 2 /∈ T , then b′m(T ) ≥ 1. In fact

b′m(T ) = γm(T ) = (m− 1)bm−1(T \ {m− 1}).

(c) If m− 1 /∈ T , then b′m(T ) ≥ 1. In fact,

b′m(T ) = mbm(T )− (m− 1)bm−1(T ).

Proof. Since
b′m(T ) = γm(T ) + bm(T ) (37)

we wish to determine γm(T ). This is the multiplicity of the irreducible indexed by (m−1, 1)
in the right-hand side of Corollary 5.3 when d = 1

βΩm(T ) =
m−1⊕
i=0

ci,m(T ) ηi(Bm). (38)

28



m,T bm(T) b′
m(T)

T ⊆ [m− 1]

3, ∅ 1 1
3, {1} 1 3
3, {2} 0 2
3, {1,2} 0 0

4, ∅ 1 1
4, {1} 2 5
4, {2} 2 8
4, {3} 0 3
4, {1,2} 1 4
4, {1,3} 0 3
4, {2,3} 0 0
4, {1,2,3} 0 0

5, ∅ 1 1
5, {1} 3 7
5, {2} 5 17
5, {3} 3 15
5, {4} 0 4
5, {1,2} 3 11
5, {1,3} 5 25
5, {1,4} 0 8
5, {2,3} 3 15
5, {2,4} 0 8
5, {3,4} 0 0
5, {1,2,3} 1 5
5, {1,2,4} 0 4
5, {1,3,4} 0 0
5, {2,3,4} 0 0
5, {1,2,3,4} 0 0

m,T bm(T) b′
m(T)

T ⊆ [m− 1]

6, ∅ 1 1
6, {1} 4 9
6, {2} 9 29
6, {3} 9 39
6, {4} 4 24
6, {5} 0 5
6, {1,2} 6 21
6, {1,3} 16 71
6, {1,4} 11 66
6, {1,5} 0 15
6, {2,3} 11 51
6, {2,4} 16 96
6, {2,5} 0 25
6, {3,4} 6 36
6, {3,5} 0 15
6, {4,5} 0 0
6, {1,2,3} 4 19
6, {1,2,4} 9 54
6, {1,2,5} 0 15
6, {1,3,4} 9 54
6, {1,3,5} 0 25
6, {1,4,5} 0 0
6, {2,3,4} 4 24
6, {2,3,5} 0 15
6, {2,4,5} 0 0
6, {3,4,5} 0 0
6, {1,2,3,4} 1 6
6, {1,2,3,5} 0 5
6, {1,2,4,5} 0 0
6, {1,3,4,5} 0 0
6, {2,3,4,5} 0 0
6, {1,2,3,4,5} 0 0

Table 1: The multiplicities bm(T ) and b
′
m(T ) by corank subsets T , for 3 ≤ m ≤ 6.

The second column adds up to (m− 1)! and the third column to m!.
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The multiplicity of (m− 1, 1) in the irreducible indexed by a ribbon ρ(T ) is nonzero if and
only if the ribbon has only two rows, in which case it is 1. There are m− 1 such ribbons of
size m, and hence the multiplicity of (m− 1, 1) in (38) equals

(m− 1) c1,m(T ) = (m− 1)#{σ ∈ Sm : σ(m) = m− 1 and Desσ = T},

and
b′m(T ) = bm(T ) + (m− 1) c1,m(T ). (39)

If m − 1 ∈ T then, by Theorem 6.1 (b), we have bm(T ) = 0. We also see that when
m− 1 ∈ T and σ ∈ Sm we have

σ(m) = m− 1 and Des σ = T ⇐⇒ σ(m) = m− 1, σ(m− 1) = m and Desσ = T.

Hence
c1,m = #{σ ∈ Sm−2 : Desσ = T \ {m− 1}}.

So, c1,m = 0 if and only if m− 2 ∈ T . Substituting all this information into (37) proves both
(a) and (b).

For (c), suppose m− 1 /∈ T . It follows that T ⊆ [m− 2]. We claim that

c1,m(T ) + bm−1(T ) = bm(T ). (40)

First note that if σ is counted by c1,m then σ(m) = m− 1 > σ(m− 1) since m− 1 /∈ T . So,
by definition, c1,m counts the number of bijections τ : {1, . . . ,m− 2} → {1, . . . ,m} \ {σ(m−
1),m− 1} such that τ(j) > τ(j + 1) if and only if j ∈ T .

On the other hand, by equation (33), bm(T ) counts the number of permutations σ in
Sm with σ(m) = m and Desσ = T . This set can be decomposed according to the image of
m− 1. By the preceding paragraph, the permutations with σ(m− 1) < m− 1 are counted
by c1,m(T ). And if σ(m − 1) = m − 1 then the permutations are counted by bm−1. This
completes the proof of (40).

Combining (39) and (40) gives the equation in part (c) of the theorem. As far as the
inequality, we have b′m(T ) ≥ bm(T ) from (39). And, by Theorem 6.1 (a), we have bm(T ) ≥ 1
in this case. Combining the two inequalities finishes the proof.

We now give the promised topological explanation for Theorem 6.1. The reader may
have noticed that the multiplicities bm(T ), T ⊆ [m − 1], coincide with the rank-selected
Betti numbers for the Boolean lattice Bm−1. This is no accident, as we now explain. We
refer to [HH03] for some background on quotient complexes and to [Sta12, §3.13] for flag f -
and h-vectors.

Recall that we write P ∗ for the dual of the poset P . If P has a 0̂ and a 1̂ and G is a
group of automorphisms of P , the quotient complex ∆(P )/G consists of the G-orbits of the
faces of ∆(P ), i.e., the G-orbits of the chains of the proper part P . See, e.g., [HH03, p.
522]. Furthermore, the multiplicity of the trivial representation of G in the rank-selected
homology of P (T ) for a rank-set T is given by the flag h-vector hT (∆(P )/G) of the quotient
complex [HH03, p. 523].

Define the orbit poset P/G as follows. Its elements are the G-orbits Ox of the elements
x of P , with order relation Ox < Oy in P/G if there exist x′ ∈ Ox and y′ ∈ Oy such
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{1} {2}{1, 2}

Figure 2: The quotient complex ∆(Ω3)/S3

that x′ < y′ in P . The quotient complex ∆(P )/G does not usually coincide with the order
complex ∆(P/G) of the orbit poset P/G. In general the quotient complex may not even
be a simplicial complex; an example is the ordinary partition lattice Πn with the Sn-action
[HH03, p. 522]. But when P = Ωdm the quotient complex is not only a simplicial complex,
but also equals the order complex of the orbit poset, as we show in Proposition 6.4 below.

Let [Bm−1] denote the face lattice of the (m − 2)-dimensional ball on m − 1 vertices,
or equivalently the (m − 2)-dimensional simplex on (m − 1) vertices, with an artificially
appended 1̂. Hence, as a poset, [Bm−1] consists of all 2m−1 subsets of [m − 1], with an
additional 1̂ appended.

The order complex of [Bm−1] is the barycentric subdivision of the (m − 2)-dimensional
simplex. It is therefore contractible. We record the following observations.

1. [Bm−1] is a ranked Cohen-Macaulay poset, of rank m.

2. The proper part of [Bm−1] then has a unique maximal element, the set [m − 1] of all
m− 1 elements, and hence the order complex of [Bm−1] is contractible.

3. For the same reason, the order complex of any rank-selected subposet [Bm−1](T ) where
m− 1 ∈ T is also contractible.

4. The rank-selected subposet [Bm−1](T ) for a rank-set T not containing rank m − 1
coincides with the rank-selected subposet Bm−1(T ) of Bm−1. In particular, when T =
[m− 2], [Bm−1](T ) coincides with the Boolean algebra Bm−1.

As an example we compute the quotient complex of ∆(Ω3) by the action of S3. Figure 1
illustrates Ω3. The 6 ordered partitions at corank 1 are of the form ({a, b}, c) or (a, {b, c})
where {a, b, c} = [3], and hence fall into two S3-orbits that we label {1} and {2} respectively.
The atoms at corank 2 constitute a single orbit that we label {1, 2}. The twelve chains
between coranks 1 and 2 also fall into two orbits, corresponding to the two edges in Figure 2.
Hence the quotient complex looks like the one-dimensional simplicial complex shown in
Figure 2. This is precisely the order complex of the (dual of the) poset [B2]. Note that
coranks in Ω3 correspond to ranks in [B2].

The proof of the next result highlights the precise mapping between Sdm-orbits of chains
in the dual of Ωdm, and chains in [Bm−1]. It will be convenient to use compositions α =
(α1, . . . , αr) of m. Let Cm denote the set of compositions of m. For two compositions
α, β ∈ Cm, we say β is a refinement of α = (α1, . . . , αr) if β is obtained from α by replacing
each αi with a composition of αi. For example, the composition (1, 2, 1, 1, 3, 2) is a refinement
of the composition (1, 4, 5). With respect to this order, Cm is a poset with minimal element
(1m), where (1m) is the composition of all 1’s, and maximal element (m). There is a well-
known bijection (see [Sag20, Theorem 1.7.1]) mapping compositions with r parts to subsets
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of [m− 1] of size r − 1, namely

α = (α1, . . . , αr) 7→ {α1, α1 + α2, . . . ,
r−1∑
j=1

αj}. (41)

This makes the poset Cm isomorphic to the dual of the Boolean algebra Bm−1, with the mini-
mal composition (1m) mapping to the maximal subset [m−1], and the maximal composition
(m) mapping to the empty set.

Finally, define [Cm] to be the poset Cm augmented with an additional 0̂ appended, i.e.,

[Cm] = Cm ∪ {0̂}.

Thus [Cm] is poset-isomorphic to the dual of [Bm−1] as defined above.

Proposition 6.4. For m ≥ 0 and d ≥ 1 we have the following.

(a) There is an order-preserving isomorphism between the faces of the quotient complex
∆(Ωdm)/Sdm and the faces of the order complex of the augmented composition poset
[Cm].

(b) The quotient complex ∆(Ω∗
dm)/Sdm is isomorphic to the order complex of [Bm−1]. In

particular, it is contractible.

(c) The quotient complex ∆(Ωdm)/Sdm coincides with the order complex ∆(Ωdm/Sdm) of
the orbit poset.

Proof. (a) We will show that the chains of the quotient complex ∆(Ωdm)/Sdm are in order-
preserving bijection with the chains in Cm \ {[m]}, the proper part of [Cm]. We will do this
when d = 1. The proof carries over to arbitrary d almost verbatim, since compositions of
dm with all parts divisible by d are in bijection with compositions of m.

Let c = ω1 < ω2 < · · · < ωr be a chain in the proper part of Ωm, so ωr ̸= [m]. Let
ωi = (Bi

1, . . . , B
i
ti
), with block sizes bi1, . . . , b

i
ti
. Then the composition type βi = (bi1, . . . , b

i
ti
)

of ωi is a composition of m with βi ̸= [m] for all i, i.e., an element of Cm \ {[m]}. Moreover
the definition of the order relation in Ωm implies that βi < βi+1 in the poset of compositions
Cm. Note that if ω1 is an atom, then its composition type is β1 = (1m). Now recall that
the order complex of a poset consists of simplices which are chains in the proper part of the
poset. Hence we have a surjection f : ∆(Ωm) −→ ∆([Cm]). Note that f can be viewed as an
extension of the bijection in the proof of Theorem 2.1 (d) to chains, where Bm−1 takes the
place of Cm.

This is clearly an order-preserving (and rank-preserving) surjection, and the equivalence
classes under this surjection are precisely the Sm-orbits of ∆(Ωm). This can be seen by
observing that an orbit representative of a chain c is uniquely determined, for example, by
writing the elements in each block of the bottom element of the chain in increasing order.

It is best to illustrate this with an example. In Ω9, consider the chain

c = (1, 2, 345, 6, 7, 89) < (12, 3456, 789) < (123456, 789).
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It maps to the following chain of compositions in [C9]

f(c) = (1, 1, 3, 1, 1, 2) < (2, 4, 3) < (6, 3)

Any other chain in the preimage of the chain f(c) has the form

(a1, a2, a3a4a5, a6, a7, a8a9) < (a1a2, a3a4a5, a6, a7a8a9) < (a1a2a3a4a5a6, a7a8a9).

Hence the permutation σ defined by σ(i) = ai takes the chain c to the chain c′ in ∆(Ω9).
We have shown that the preimage of the chain f(c) is in fact the Sm-orbit of the chain

c. It follows that the quotient complex ∆(Ωm)/Sm is homotopy equivalent to ∆([Cm]).

(b) Combining (a) with the bijection (41) between Cm and Bm−1, it follows that coranks
in Ωm correspond to ranks in [Bm−1]. Hence we have the poset isomorphism

∆(Ω∗
m)/Sm

∼= ∆([Bm−1)].

(c) The demonstration of (a) shows that the orbit poset Ωdm/Sdm coincides with the
composition poset [Cm]. This finishes the proof of the proposition.

By the discussion preceding the proposition, this implies that the multiplicities bm(T ),
T ⊆ [m − 1], of the trivial representation in the homology of the corank -selected subposet
Ωdm(T ) coincide with the flag h-vector (indexed by ranks) of ∆([Bm−1]). But, from Theo-
rem 5.1, when m−1 /∈ T , the latter are precisely the rank-selected invariants for the Boolean
lattice Bm−1. Again, see [Sta12, §3.13] for details. Similarly, when m− 1 ∈ T , the multiplic-
ity bm(T ) is zero because the corresponding rank-selected subposet in [Bm−1] is contractible.
This concludes our topological explanation of Theorem 6.1.

Finally we remark that Theorem 6.3 determines the flag h-vector for the quotient complex
∆(Ωm)/(Sm−1 ×S1). We have not investigated the structure of this quotient complex and
this would be interesting to do. See [HH03, §4] for the analogous analysis for Πn.

7 Block sizes with remainder 1

Rather than just considering ordered set partitions where all blocks have size divisible by
d, one could look at those where each block size has remainder 1 when divided by d. Such
ordered partitions of n are partially ordered as a subset of Ωn. Adding a 0̂, we get the poset

Ω̆(d)
n = {0̂} ⊎ {ω = (B1, . . . , Bk) |= [n] | #Bi ≡ 1 (mod d) for all 1 ≤ i ≤ k}.

Note that Ω̆
(1)
n = Ωn.

In this section, we will analyze this poset. To do this, we need a generalization of the
Boolean algebra. A run in a set S ⊆ [n] is a maximum sequence of consecutive integers. For
example, the runs in S = {2, 3, 4, 6, 8, 9} are 2, 3, 4; 6; and 8, 9. Let

B(d)
n = {S ⊆ [n] | every run of S has length divisible by d},

ordered by inclusion of sets.
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Theorem 7.1. The poset Ω̆
(d)
dm+1 satisfies the following.

(a) It has 1̂ = ([dm+ 1]).

(b) Its atoms are the ω with #B = 1 for all blocks B of ω.

(c) Every ω ∈ Ω̆
(d)
dm+1 has dk + 1 blocks for some k ≥ 0.

(d) It is ranked. The rank and corank of ω = (B1, . . . , Bdk+1) are

rkω = m− k + 1 and crkω = k.

In particular
rk Ω̆

(d)
dm+1 = m+ 1.

(e) For any two ordered partitions ψ, ω ∈ Ω̆
(d)
dm+1 we have

[ψ, ω] ∼= B(d)
rk(ψ,ω),

(f) The poset Ω̆
(d)
dm+1 is not a lattice for d ≥ 2.

Proof. (a)–(e) These proofs follow the same lines as in the demonstrations of Theorems 2.1
when d = 1 and so are omitted.

(f) We provide a counterexample, using the notation in (1). Consider the elements of
rank 2 given by

(1, [2, d+ 2], d+ 3, . . . , dm+ 1) and (1, 2, [3, d+ 3], d+ 4, . . . , dm+ 1).

Then these are covered by both

([1, 2d+ 1], 2d+ 2, . . . , dm+ 1) and (1, [2, 2d+ 2], 2d+ 3, . . . , dm+ 1)

so they have no join.

We will now show that the Möbius function on intervals in Ω̆
(d)
dm+1 not containing 0̂ is

given, up to sign, by a k-Catalan number as defined below. This follows from Lemma 3A
about lattice paths in Chapter 1 in Narayana’s book [Nar79] for which he indicates two
proofs, one by inclusion-exclusion and one using determinants. In Stanley’s text [Sta15],
he asks for a proof of the same formula for an isomorphic poset in Problem A18. This
problem was solved using algebraic manipulations by Kim and Stanton [KS25]. We will give
a combinatorial proof using a sign-reversing involution on lattice paths. For simplicity, we
will begin with the case d = 2. We will need the following lemma.

Lemma 7.2. Let a ∈ Ω̆
(2)
2m+1 be an atom. Then

#{ω ∈ [a, 1̂] | crkω = k} =

(
m+ k

2k

)
.
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Proof. If ω ∈ Ω̆
(2)
2m+1 then every block of ω has odd size. And we know from part (d) of the

previous theorem that ω has an odd number of blocks. We will first look at the number of
compositions which could be the type of such an ω.

Fix k and m and consider the quantity

Am,k := #{α = (α1, . . . , α2k+1) | α |= 2m+ 1 and all αi are odd}.

Letting βi = αi + 1 for all i we see that

Am,k = #{β = (β1, . . . , β2k+1) | β |= 2m+ 2k + 2 and all βi are even}.

Now defining γi = βi/2 for 1 ≤ i ≤ 2k + 1 gives

Am,k = #{γ = (γ1, . . . , γ2k+1) | γ |= m+ k + 1} =

(
m+ k

2k

)
. (42)

We now return to the problem of counting the number of ω ∈ [a, 1̂] of corank k. By
Theorem 7.1 we know that ω has 2k + 1 blocks. So its type is one of the compositions in
the set defining Am,k above. But each such type corresponds to a unique ω in the interval
because once the type is specified, the blocks must be filled consistent with the fact that
ω ≥ a. It follows that the binomial coefficient in equation (42) also enumerates the ordered
set partitions in question.

We now review the necessary facts about sign-reversing involutions and lattice paths.
Let S be a finite set and let ι : S → S be an involution, i.e., a bijection such that ι2 = ι.
Considering ι as a permutation of S, it can be decomposed into cycles. And ι is an involution
if and only if each of these cycles has length 1 (a fixed point), or length 2. Now suppose
that S is signed in that one is given a function sgn : S → {+1,−1}. We say that ι is sign
reversing if

(i1) For every fixed point (s) we have sgn s = 1, and

(i2) For every 2-cycle (s, t) we have

sgn s = − sgn t.

It follows that ∑
s∈S

sgn s = #Fix ι (43)

where Fix ι is the set of fixed points of ι. This is because, by (i1), all fixed points have
positive sign. And, by (i2), the summands corresponding to elements in 2-cycles cancel in
pairs.

A lattice path is a sequence of points P : p0, p1, . . . , pk in the integer lattice Z2. These
points are connected by line segments called steps. The length of P , ℓ(P ), is the number of
steps. We will use the following steps, called north (N), east (E), and diagonal (D), which
go from p = (x, y) to (x, y + 1), (x + 1, y), and (x + 1, y + 1), respectively. A Motzkin path
is a lattice path, M , satisfying
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M =

y = x

M ↓=

y = x

Figure 3: The restriction of a Motzkin path

(m1) M starts at (0, 0) and ends at (n, n) for some n, using steps N , E, and D, and

(m2) M never goes below the line y = x.

We will often specify a Motzkin path by listing its sequence of steps. In such a sequence, a
consecutive pair of steps of the form NE will be called a corner. To illustrate, the Motzkin
path M of Figure 3 has a unique corner formed by the seventh and eighth steps. A Dyck
path is a Motzkin path with no diagonal steps. The restriction of a Motzkin path M is
the Dyck path M ↓ obtained by removing all the diagonal steps of M and concatenating
what remains. An example can be found in Figure 3 where M = NNDEDDNEE and
M ↓= NNENEE.

The last bit of notation we need is that for the Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
.

It is well known that Cn is the number of Dyck paths P ending at (n, n), equivalently, those
with ℓ(P ) = 2n.

Theorem 7.3. For any ordered set partitions ψ ≤ ω in Ω̆
(2)
2m+1 with rk(ψ, ω) = k we have

µ(ψ, ω) = (−1)kCk

Proof. By Theorem 7.1, it suffices to prove the result for intervals of the form [ψ, 1̂]. We
will induct on crkψ, where the base case is easy. By induction, we can assume that ψ is an
atom. Now µ(ψ, 1̂) is uniquely defined as the solution to the equation∑

ω∈[ψ,1̂]

µ(ω, 1̂) = 0
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Figure 4: The involution ι of Theorem 7.3 when m = 2

where the values µ(ω, 1̂) for ω > ψ are already known by induction. Since the solution is
unique, it suffices to prove that ∑

ω∈[ψ,1̂]

(−1)crkω Ccrkω = 0. (44)

But using Lemma 7.2 we obtain∑
ω∈[ψ,1̂]

(−1)crkω Ccrkω =
m∑
k=0

∑
ω∈[ψ,1̂]
crkω=k

(−1)kCk =
m∑
k=0

(−1)k
(
m+ k

2k

)
Ck.

The (unsigned) kth term in this last sum is just the number of Motzkin paths M ending at
(m,m) with m+ k steps such that M ↓ has length 2k. Indeed, start with the Motzkin path
M0 consisting of m+ k diagonal steps. Now choose 2k of them to be replaced by N and E
steps. Finally, given one of the Ck Dyck paths P , there is a unique Motzkin path M such
that M ↓= P and the orthogonal projection of the D steps of M onto the line y = x are the
ones not chosen to be replaced in M0. Also, note that the sign associated to M is (−1)ℓ(P )/2.

By (43) we will be done if we can find a sign-reversing involution, ι, without fixed points.
Scan one of the Motzkin paths, M , in question from left to right until one finds the first
occurrence of either a diagonal step or a pair of steps forming a corner. Define ι(M) = M ′

where M ′ is formed by switching this first occurrence from a diagonal step to a corner or
vice-versa. See Figure 4 for an example where the paths of positive sign are on the left
and those of negative sign are on the right. By the definition of the map, it is clearly an
involution. And it is also sign-reversing since the lengths of M ↓ and M ′ ↓ differ by 2. Since
any nontrivial Motzkin path has either a diagonal step or a corner, ι has no fixed points.
This completes the proof.
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To describe the Möbius function of intervals in Ω̆
(d)
dm+1 not containing 0̂ for all d, we need

a generalization of the Catalan numbers. For n ≥ 0 ad k ≥ 1, the k-Catalan numbers are

Cn,k =
1

(k − 1)n+ 1

(
kn

n

)
.

Note that Cn,1 = 1 and Cn,2 = Cn. The associated generating function

Ck(x) =
∑
n≥0

Cn,kx
n

satisfies the implicit relation
Ck(x) = 1 + x(Ck(x))

k.

To describe the associated lattice paths, define a k-diagonal step, D(k), to be one which
goes from a lattice point (x, y) to (x + 1, y + k − 1). So D(2) = D. A k-Motzkin path is
defined by

(M1) M starts at (0, 0) and ends at (n, (k − 1)n) for some n, using steps N , E, and D(k),
and

(M2) M never goes below the line y = (k − 1)x.

A k-corner in such a path is k−1 steps N followed by 1 step E. A k-Dyck path is a k-Motzkin
path with no k-diagonal steps. It is well known that the number of k-Dyck paths ending
at (n, (k − 1)n) is Cn,k. The restriction of a k-Motzkin path is defined similarly to the case
k = 2.

Theorem 7.4. For all d ≥ 1 and ordered set partitions ψ ≤ ω in Ω̆
(d)
dm+1 with rk(ψ, ω) = k

µ(ψ, ω) = (−1)kCk,d. (45)

Proof. The case d = 1 is equation (7), so we assume that d ≥ 2. Much of the demonstration
parallels that of the case when d = 2, so we will only provide details for the differences.
Again, we need to prove equation (44) where now ψ lies in Ω̆

(d)
dm+1. Using a d-analogue of

Lemma 7.2, we see that this is equivalent to

m∑
k=0

(−1)k
(
(d− 1)k +m

dk

)
Ck,d = 0.

Now the terms in the sum count d-Motzkin paths ending at (m, (d− 1)m) with (d− 1)k+m
steps such that M ↓ has dk steps. The involution switches a d-diagonal step with a d-corner
in the same way as when d = 2. The reader should now be able to fill in the details.

We will now discuss the Möbius values µ(0̂, ω) in Ω̆
(d)
dm+1. It is easy to see that if ω =

(B1, . . . , Bl) then we have the reduced product

[0̂, ω] ∼= Ω̆
(d)
#B1

×̇ · · · ×̇ Ω̆
(d)
#B1

. (46)
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So, by Theorem 3.3, it suffices to compute µ(Ω̆
(d)
dm+1). Motivated by Theorem 3.4 (b), let us

define the remainder 1 Euler numbers by

Ĕ (d)
n = µ(Ω̆(d)

n ) (47)

where µ is zero if n ̸≡ 1 (mod d). This notation is extended to ordered set partitions
ω = (B1, . . . , Bl) by letting

Ĕ (d)
ω = Ĕ (d)

#B1
· · · Ĕ (d)

#Bl
.

On the generating function level, we let

Ĕd(x) =
∑
n≥1

Ĕ (d)
n

xn

n!
.

We will also need the series

Fd(x) =
∑
m≥0

xdm+1

(dm+ 1)!
.

Other notation includes
ω|̆=d [n]

to indicate that ω is an ordered set partition of [n] where all parts have size congruent to
1 modulo d. Finally we will need the round up and round down functions ⌈ℓ/d⌉ and ⌊ℓ/d⌋,
respectively. Here are some of the properties of the Ĕ (d)

n .

Theorem 7.5. Suppose d, n ≥ 1 and n ≡ 1 (mod d).

(a) We have

Ĕ (d)
n =

∑
ω|̆=d [n]

(−1)⌈ℓ/d⌉ C⌊ℓ/d⌋,d

where ℓ = ℓ(ω).

(b) We have

Ĕ (d)
n = −1 +

∑
ω|̆=d [n]

ω ̸=([n])

(−1)ℓ Ĕ (d)
ω

where ℓ = ℓ(ω).

(c) We have
Ĕd(x) = −Fd(x) · Cd(−Fd(x)d).

(d) We have
Ĕd(x) = −Fd(x) · (1− (−1)dĔd(x)d).
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Proof. (a) Recall definitions (47) and (5), equation (45), as well as the fact that in Ω̆
(d)
n we

have crkω = ⌊ℓ/d⌋ where ℓ = ℓ(ω). Putting these together gives

Ĕ (d)
n = µ(Ω̆(d)

n )

= −
∑

ω|̆=d [n]

µ(ω, 1̂)

= −
∑

ω|̆=d [n]

(−1)⌊ℓ/d⌋ C⌊ℓ/d⌋,d

and bringing the negative sign inside the sum completes the proof of this part.

(b) Using definition (47), equation (46), and Theorem 3.3 we see that if an ordered set
partition has type(ω) = (α1, . . . , αℓ) then

µ(0̂, ω) = (−1)ℓ−1µ(Ω̆(d)
α1
) · · ·µ(Ω̆(d)

αℓ
) = (−1)ℓ−1Ĕ (d)

ω .

Noting that this also applies to ω = ([n]) and that µ(0̂, 0̂) = 1, we can bring all the terms in
the desired equality over to the left side and write it as∑

x∈Ω̆(d)
n

µ(0̂, x) = 0.

where x runs over both the ordered set partitions and 0̂ in Ω̆
(d)
n . But this is true by defini-

tion (4).

(c) Similar to the proof of Corollary 4.7 we have, for any exponential generating function
of the form E(x) = c1x/1! + c2x

2/2! + · · · ,

E(x)ℓ =
∑
n≥ℓ

 ∑
α=(α1,...αℓ)|=n

cα1x
α1

α1!
· · · cαℓ

xαℓ

αℓ!


=

∑
n≥ℓ

∑
α|=n

(
n

α

)
cα1 . . . cαℓ

 xn

n!

=
∑
n≥ℓ

 ∑
ω=(B1,...,Bℓ)|=[n]

c#B1 . . . c#Bℓ

 xn

n!
(48)

where the last equality comes from the fact that the number of ordered set partitions ω with
typeω = α is the multinomial coefficent.

Write n = dm + 1 and note that if ω ∈ Ω̆
(d)
n then ℓ(ω) and the size of its blocks are

congruent to 1 modulo d. Combining these facts with part (a) and the computations in the
previous paragraph gives

Ĕd(x) = −C0,dFd(x) + C1,d(x)Fd(x)
d+1 − C2,dFd(x)

2d+1 − · · · .
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Factoring out −Fd(x) and simplifying completes the proof of part (c).

(d) From part (b) we have

0 = −1 +
∑

ω|̆=d [n]

(−1)ℓ Ĕ (d)
ω

Let n = dm+ 1, multiply the previous displayed equation by xdm+1/(dm+ 1)!, sum over m,
and use (48) to get

0 = −Fd(x) +
∑
m≥0

(−1)dm+1Ĕd(x)dm+1 = −Fd(x)−
Ĕd(x)

1− (−1)dĔd(x)d
.

Solving for Ĕd(x) finishes the demonstration of (d) and of the theorem.

One could hope that Ω̆
(d)
n has an RAO. Unfortunately, this is not the case, at least if one

uses the same lexicographic order employed for Ω
(d)
dn in the proof of Theorem 3.5. Consider

what happens when n = 7 and d = 2. By Theorem 7.1 (f), Ω̆
(d)
n need not be a lattice,

much less semimodular. So we need to show that condition (R1) in the definition of an

RAO holds for the full poset Ω̆
(2)
7 . Consider the atom a = (4, 1, 2, 3, 5, 6, 7). Then the

interval [a, 1̂] contains the atoms and ψ = (4, 1, 2, 653, 7) and ω = (421, 3, 5, 6, 7). Note that

lexicographically ψ <l ω since 4 <l 421. But a is the smallest atom of Ω̆
(2)
7 below ψ since all

such atoms are of the form (4, 1, 2, a, b, c, 7) where abc is a permutation of 3, 5, 6, And 356
as it appears in a is the lexicographically smallest such permutation. On the other hand, ω
covers (1, 2, 4, 3, 5, 6, 7) which is lexicographically smaller than a. So (R1) is violated.

It would be natural to consider posets derived from ordered set partitions of n where all
block sizes are congruent to r modulo d for r > 1 and with a 0̂ added. Unfortunately, these
posets do not seem to be well behaved. In fact, they are not even graded. For example, take
r = 2, d = 3, and n = 14. Then, using the notation in (1), one maximal chain in this poset
is

0̂ < ([1, 5], [6, 10], [11, 12], [13, 14]) < 1̂

which is of length 2. On the other hand, the maximal chains containing the atom

([1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14])

all have length 3.
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