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LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS
AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS

BRUCE E. SAGAN

Abstract. We prove that various sequences of elementary and complete ho-

mogeneous symmetric functions are log concave or PF. As corollaries we show

that certain sequences of «/-binomial coefficients and 17-Stirling numbers have

these properties. The principal technique used is a combinatorial interpretation

of determinants using lattice paths due to Gessel and Viennot [G-V 85].

1. Introduction

Let Z and N denote the integers and nonnegative integers respectively.

Throughout this paper, indices for sequences and sums will range over N. Also

let R and R+ stand for the reals and nonnegative reals.

A sequence of real numbers,

(fl«c)«c>0 = ao, ai , Ü2, ...

is log concave if

at-iflfc+i < a\   forall«t>0.

Log concave sequences arise in combinatorics, algebra, and geometry. Stanley

offers a good survey of the subject in [Sta 89]. If the a^ are all positive, then

log concavity is equivalent to the seemingly stronger condition

afc-iû/+i < ükü¡   for all 0 < k < I.

This, in turn, is clearly equivalent to the determinantal formula

a¡     al+i

ak-\       ak
> 0   for all 0 < k < I

which is reminiscent of a 2x2 Jacobi-Trudi determinant (see Macdonald [Mad

79, p. 25] or Sagan [Sag 90; Sag 91, pp. 154-159]).
Now let q be an indeterminate. Recently there has been much interest in the

^-analog of log concavity [But 90, Kra 89, Ler 90, Sag pr] as defined by Stanley
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796 B. E. SAGAN

[private communication]. We must first define the «^-analog of the relation <

which will be denoted <q . Given two polynomials f(q), g(q) £ R[q], we write

fid)<qgiQ)    if and only if   g(q) - f(q) £ R+[q].

Equivalently, for every k > 0, the coefficient of qk in f(q) is less than or

equal to the corresponding coefficient in g(q). This is a partial order on R[q].

Now consider a sequence of polynomials in R[q]: ifkiq))k>o ■ This sequence is

said to be q-log concave if

(1) fik-xid)fk+xiq)<qfkiQ)2   forallÄ;>0

and it is strongly q-log concave if

fk-xiq)fii+xiQ) <q fkiQ)ftiq)   for all 0 < fc < /.

It is not hard to show that these two notions are not equivalent for general q

[Sag pr].
As examples, let [n] = 1 + q + q2 + ■■ ■ + qn~x for n £ N. Define the q-

analogs of the binomial coefficients and the Stirling numbers of the first and

second kinds by

\l\-
n- 1

k-1
+ qk n- 1

k
for n > 1, with J0,k

c[n, k] =c[n - 1, k - l] + [n - l]c[n - 1, k] for n > 1, with c[0, k] = ô0,k,

S[n, k] =S[n - 1, k - 1] + [k]S[n - 1, k]        for n > 1, with S[0 ,k] = S0<k,

where <5n, * is the Kronecker delta. These definitions are meant to apply for all

k £ Z and n £ N. The nonzero polynomials in each of these three families

can be arranged in a triangle like Pascal's triangle for binomial coefficients.

Considering the sequences formed by lines parallel to each side of each triangle,
one can prove

Theorem 1.1. The following sequences are all strongly q-log concave,

1. for fixed n:([nk])k>0, (c[n,k])k>0, (S[n,k])k>0,

2. for fixed k: ([£])„><>. (S[n, k])n>0,

3. for fixed n,k: ([£+}]) ;->0, (c[n + j, k + j])j>0, (S[n + j, k + j])j>0.   a

All of the authors cited previously have contributed to proving parts of this

theorem. (Butler and later Krattenhaler considered the ^-binomial coefficients

while Leroux and Sagan worked on the «^-Stirling numbers.)

It is easy to see that the ^-binomials and «j-Stirlings are just specializations

of elementary and complete symmetric functions. (We will make this explicit
in §2.) As Stanton [private communication] pointed out, certain parts of the

Theorem 1.1 now follow immediately from the nonnegativity of the coefficients

of the Jacobi-Trudi determinants. In [Sag ta] we found other symmetric func-

tion identities that specialized to the rest of the cases above. Unfortunately, the

principal technique used was induction, which is not very enlightening.
The purpose of the present work is to give combinatorial proofs of general-

izations of these results. The crucial tool will be a method due to Gessel [Ges

urn] and Gessel-Viennot [G-V 85] for interpreting determinants as lattice paths.

In the following section we will review some background material on symmetric
functions. Next, the Gessel-Viennot approach will be outlined. Section 4 will
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DETERMINANTS OF SYMMETRIC FUNCTIONS 797

contain the proofs of our main results, Theorems 4.1 and 4.3. In §5 we will

consider the implications of these methods for PF (Pólya frequency) sequences.

Our concluding section will contain some related results and open questions.

2. Symmetric functions

Let x = {xi, X2, ...} be a countably infinite set of variables. Let M be
a multiset (= "set" with repetitions allowed) with elements from the positive

integers. The monomial corresponding to M is the product

xM= l[xm
m£M

having degree equal to the cardinality of M. For example, if M = {{1, 1,2,

4,4,4}} then

X      — Xi X2Xa .

The Âcth elementary symmetric function is

■?jt(-*i > x2 > • • • > x„) = y   x

s

where the sum is over all subsets of {1,2,...,«} of cardinality k. Alterna-

tively, it is the sum of all square-free monomials of degree k in the variables

Xi, X2,... , xn. We will usually abbreviate ek(xi ,X2, ... ,x„) to ek(n). To
illustrate,

i?2(3) = X1.X2 + XiXi + X2X3 •

The kth complete homogeneous symmetric function is

A*(*i»*2» ••• ,xn) = hk(n) = YJXM
M

where the sum is over all multisets of cardinality k with elements from {1,2,

...,«}. It is the sum of all possible monomials of degree k in x\, X2,..., xn.
As an example,

h2(3) = X1X2 + X1X3 + X2X3 + x2 + x\ + x\.

It is easy to see from the definitions that the elementary and complete ho-
mogeneous symmetric functions satisfy the following recurrence relations and
boundary conditions.

Proposition 2.1. For k £ Z we have ek(0) = hk(0) = S0 k. Further, for all
n > 1,

1. ek(n) = ek(n - I) + x„ek_i(n - 1),

2. hk(n) = hk(n - 1) + x„hk_i(n).   U

Comparing this proposition with the definitions of the «7-binomial coefficients
and «^-Stirling numbers a simple induction proves

Corollary 2.2. For n, k e N,

1. [£] = q-®ekil, q, q2 , ... , qn~l) = hk(l, q, q2, ... , q"~k),

2. c[n,k] = en_ki[l],[2],..-,[n-l]),
3. S[n,k] = hn_k<[l],[2],...,[k]).   D

We now state a very special case of the Jacobi-Trudi Theorem.
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798 B. E. SAGAN

Proposition 2.3. If 0 < k < I then the following determinants are polynomials
in N[x]

1.
e¡(n)     e,+i(n)

ek_i(n)    ek(n)

D

(«® i;i)

h,(n)     hM(n)

hk-iin)    h(n)

It follows immediately from Corollary 2.2 and Proposition 2.3 that

Corollary 2.4. The following sequences are strongly q-log concave

(["])      ,       ic[n, k])k>0,       iS[n,k])n>0.   a
'k>0 \LKl/n>o

Thus three of the sequences from Theorem 1.1 can be handled using Jacobi-

Trudi determinants. The rest will be taken care of by our analogs.

Note that in Proposition 2.3, the number of variables for each determinant
entry is fixed while the degree varies. This raises the question: what happens if

the degree is constant while the number of variables changes, or if both vary?
These determinants no longer have nonnegative coefficients (in fact, they are no

longer symmetric functions) but there is a sense in which they can be considered

positive. The important concept in this connection is the definition of a standard

partial order on the polynomial ring R[x].

Definition 2.5. A partial order < on R[x] is standard if

1. /(x)eR+[x]^/(x)>0,
2. fix) < gix) =► fix) + h(x) < gix) + h(x) for all A(x) G R[x],
3. fix) < gix) => f(x)h(x) < g(x)h(x) for all A(x) > 0.

For example, the relation <q defined in the last section is a standard partial
order on R[q]. More generally, <x defined by

/(i)<,«(i)    if and only if   g(x) - fi(x) £ R+[x]

is standard.
Also, given any partial order < on R[x] we can define strong log concavity

with respect to < as in equation (1) with <q replaced by < and q replaced

by x. With this convention, Proposition 2.3 can be reformulated.

iekin))k>o ana" (Afc(n))fc>o are strongly log concave with respect to <x.

We can now state our principal result.

Theorem 2.6. If < is standard and the sequence (x„)„>o is strongly log concave
with respect to <, then so are the sequences

1. for fixed k: (efc(«))„>0 and (hk(n))„>0,
2. for fixed n,k: (ek_j(n +j))j>0 and (hk_j(n + j))j>0-

To prove this theorem, we will use the machinery of Gessel and Viennot [G-V

85].

3. Gessel-Viennot paths

Consider a lattice path P in Z x Z which uses only steps, s of unit length

north (N) or east (E). For example, we show such a path in Figure 1.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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S7

P =

Sñ

Si

52 S-j

Ë6

Figure 1. A lattice path

e-labeling

/«.-labeling

Figure 2. Labelings of a path

Let P = Si, S2, ... , sn. We will label the northern steps of P using one of

two labelings. If s¡ is a step north then the e-labeling assigns the label

L(s¡) = i

while the h-labeling gives the label

L(si) = (the number of eastern Sj preceding s¡) + 1.

Intuitively, in the A-labeling all the northern steps on the line through the origin
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



800 B. E. SAGAN

of P are labeled 1, all those on the line one unit to the right are labeled 2, etc.
Figure 2 displays the e- and A-labelings for the path in Figure 1. Note that

these labelings are invariant under translation.
Associated with each path, P, are two monomials corresponding to the two

labelings, namely

xp=n xl^ and xp=n *m
Sj€P S¿€P

where each product is taken over those s¡ = N. If P has initial vertex u and
p

final vertex v then we will write u —► v . From these definitions we clearly

have

(2) ek(n) = Y,xP
p

p
where the sum is over all paths (a, b) —y (a + n-k, b + k) for any fixed initial

vertex (a, b). Similarly

hk(n) = J2xP
p

p
where the sum is now over all paths of the form (a, b) —> (a + n — 1, b + k).

The fundamental tool in the Gessel-Viennot theory is an involution on pairs

of paths that we will call i.

P Pi
Definition 3.1. Given  ux  —U v\   and  «2 —> V2  then define  «"(Pi, P2) =

(P[, Pf) where
1. if Px n P2 = 0 then P; = P- and P{ = P2,

2. if P, n P2 / 0 then

P[ = ux —U vo -^-y v2   and   P'2 = «2 —^ v0 —U vx

where v0 is the last (NE-most) vertex of Pi n P2, i.e., switch the portions of

Pi and P2 after v0.

By way of illustration, Figure 3 shows the effect of 1 on a particular pair Pi

(solid lines) and P2 (dashed lines).
Now fix an ordered pair of initial vertices «i, «2 and an ordered pair of final

ones Vi, i>2. Assuming that path P, always departs from w, for i = 1,2,

define the sign of the pair Pi, P2 to be

r_np,i>2 _ J+1    if "i-^* «1 and «2-^ ^2,
^        ' 1 . x» P\ J ft

1,-1   if «i —^ 172 and «2 —► vi.

Also let the e-monomial of the pair be

xPlP2   =XPlXP2

and similarly for the A-monomial. It follows that

•?*(«)      <?*(«+1]
■?fc("-l)      -?fc(n)

E(-!)PlP2xP,Pl

Pi, Pi
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«Ö «o

1
Pi P[

I
I

1
Pi

Figure 3. The involution i

ÜI- AA¿
n

1
Ui        u2

Figure 4. Initial and final vertices

where the sum is over all pairs Pj, P2 having

Mi = (0,0);        «2 = (1,0);        Vi = (n-k,k);        v2 = (n - k + 1, k).

This configuration is given schematically in Figure 4.

4. Main results

We are now in a position to demonstrate Theorem 2.6. For ease of reference,
we restate the portion we will prove at this juncture.

Theorem 4.1. Fix A:eN. If < is standard and the sequence (x„)„>o is strongly
log concave with respect to <, then so are the sequences

iekin))„>o   and   (hk(n))„>0.

Proof. We will show that

ek(nf-ek(n-l)ek(n + l)>0

and then indicate what modifications need to be made for the general case and
for the hk(n).

Let u\,ui,v\ and V2 be situated as indicated at the end of the previous
section. Thus it suffices to prove that if Pi, P2 is a path pair with sign -1,

then i(Pi, Pf) = (P,, P2) (which must have sign +1) satisfies

pi pi ip^>0.
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Since (x„)„>o is strongly log concave, the above inequality must hold because
we can write the two monomials involved as

(3)

(4)

*p'Pl =yYlxa¡-ixb¡+i,
i

xp¡p> =y]Jxaixb.,

where y is a fixed monomial and a¡ < b¡ for all i. In particular, y corresponds

to the portions of Pi and P2 which are fixed by 1 (everything SW of vf) while

the product represents the parts that are switched. The indices change as they

do due to the fact that Pi starts one unit west of P2 .

To show that

ek(m)ek(n) - ek(m - l)ek(n + 1) > 0

for m < n , merely use the initial point U2 = (n - m + 1, 0). The correspond-

ing inequality for the complete homogeneous symmetric functions follows from

choosing vi = (n - 1, k) and V2 = (n, k) (with u2 as in the previous sen-

tence).   D

For example, if the path pair and its image are as given in Figure 5, then

XPlPl = X¡X2X4(X4Xi)(x6Xs) ,

XP¡P¡ _ x2X2X4(X5X6)(x-jX-j) ,

where the pairs of the products in (4) and (3) are enclosed in parentheses.

As an immediate corollary we obtain several more parts of Theorem 1.1.

Corollary 4.2. The following sequences are all strongly q-log concave,

(Ck ])B>o'        icln + J>k + Jl)j>o>        iS[n + j,k + j])j>0.

To examine the case where both k and n vary, we will borrow an idea from

Butler [But 90] which has also been used by Leroux [Ler 90]. Let rd denote

translation by one unit in the direction d = N or E. Apply this function to a
path pair by acting on the first component only:

T¿(Pi,P2) = (TrfPi,P2).

vo \V<)

Pi

1¡

1
p PI P'

Figure 5. The involution of Theorem 4.1
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PI

P'* 2

Figure 6. The involution a

Also consider the switching involution o defined by

a(Px,Pf) = (P[,P'1)

where P[ is the path P2 translated to start at the initial point of Pi and vice

versa for P[ . An example is given in Figure 6. Maps of the form r^iXd and

GX~2xiTd (functions compose right to left) are the injections that we will need.

Theorem 4.3. Fix k, n £ N. If < is standard and the sequence (x„)„>o is
strongly log concave with respect to <, then so are the sequences

(ek_j(n + j))j>o   and   (hk_j(n + j))j>0.

Proof. This time we will demonstrate

(5) hk(n)2-hk-i(n + l)hk+i(n-l)>0,

giving the necessary modifications for the other cases at the end.
Use initial points

«i = (0,0);    m2 = (1,-1)

and final ones

vi = (n-l,k);    v2 = (n,k-l)

as represented in Figure 7.

Uij

re-1 1
1

V-2

1
1

U2

Figure 7. More initial and final vertices
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By our selection of the m, and v¡, the left side of equation (5) is the gener-

ating function for corresponding path pairs with the A-labeling.

Consider the composition

(6) (Px, P2) _£^ (P[, Pi) ^AU (PC, P»).

Assume for the rest of the proof that (-l)p'Pl = -1, i.e.,  Mi —U u2  and

p
u2 —* vx. Then (P'x , P") has the same set of initial and final vertices with

sign +1. (The presence of the switching operator is to ensure that this continues

to hold in the more general case.)

Since our maps are all injections, we will be done if

XP"P2    -\P>P2   > 0.

But

(7) *™ < xpin

since the sequence (xf)n>o is strongly log concave and path Pi starts on a verti-

cal line one unit west of P2 (which is not affected by north/south translations).

Note that the northward translation of Px is necessary so that the resulting pair

of paths both end on the same horizontal line. This insures that, in the notation

of the previous theorem, each xa¡ has a matching x^ . Finally

(8) xpM = xpl'p2

for any values of the x„ because teÍP[) starts on the same vertical line as P'2 .

For the general case

(9) hk(n)h,(m) - hk_x(n + l)hl+x(m - 1) > 0

where k < I and k + n = I + m, the second initial point must be changed to

U2 = (n-m+l,m-n-l). It is also necessary to translate P[ by -cnfm+x t™~"

before performing / (and then translating back by the same amount). Thus the

translated path will start one unit due north of P'2, guaranteeing that x^' pï

will be a term of hk(n)h¡(m).
To show that (9) holds with the complete homogeneous symmetric functions

replaced by elementaries, use

Mi =(0,0); U2 = (2(n-m+l),m-n-l);

vx=(n-k,k);        v2 = (n - k + 2, k - 1).

The translation used for Pi should now be t^'tat so that the translate takes

exactly one more step than P2 to get to one of their intersections. Lastly, P[

should be translated by ■z2En~2m+lT%~" prior to applying 1.   D

Note that if (Px, Pf) has sign -1 in (6), then xp'P2, xpíp2 and xp"p* are

terms in hk_x(n + l)hk+x(n - 1), hk_i(n)hk+i(n) and hk(n)2 respectively. It

follows from the proof of (7) and (8) that

hk_i(n + l)hk+i(n - 1) < hk_x(n)hk+x(n)

and
hk-i(n)hk+x(n) < hk(n)2.
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(Of course, together these imply (5).) Intuitively, the map (Pi, Pf) -» (P[, Pf)

corrects the number of variables while (P{, Pf) -* (Pf, P") corrects the degree.
More generally we have the following result whose proof, being similar to that

of the previous theorem, is omitted. Dennis Stanton has pointed out [private

communication] that parts 1 and 2 of this theorem are merely special cases of

the Jacobi-Trudi determinant for flagged Schur functions [Ges urn, Wac 85]

Theorem 4.4. Fix natural numbers k < I and m < n. If < is standard then

1. ek_i(n)eM(m) < ek(n)e¡(m),

2. hk_i(n)hl+i(m)<hk(n)h¡(m).
If, the addition, the sequence (x„)„>o is strongly log concave with respect to <,

then
3. ek(n + l)e¡(m- 1) <ek(n)e¡(m),

4. hk(n + l)h¡(m- 1) < hk(n)h¡(m).   D

We can also complete the list of sequences from Theorem 1.1 shown to be

«7-log concave.

Corollary 4.5. The following sequences are all strongly q-log concave

{q&[n~kk])      ■    {[nk])k>0>    ic[n+j,k + 2j])j>0,    iS[n,k))k>0.   d

5. PF SEQUENCES

Although the definition of a PF sequence is usually stated for sequences of

real numbers [Bre 88], there is nothing to prevent us from generalizing it to

polynomials. Let < be a partial order on R[x]. A sequence ifn)„>o where

each fin £ R[x] is PF with respect to < if all minors of the infinite matrix

/fio   f\    fii     ■\
.. [ 0    fio   fi    ••■
Uj-i)i,j>o=     0    0    fio   ••■

Vi   ;   :  ■-.;
are > 0. It is a consequence of the full Jacobi-Trudi Theorem that

(10) i^kin))k>o and (A^(«))fc>0 are PF with respect to <x .

Note that if a sequence is PF with respect to < then it is strongly log concave
since the 2x2 minors include the determinants for log concavity.

The Gessel-Viennot machine takes care of d x d determinants by using d-

tuples of paths. Let u\,U2, ... ,u¿ and v\, v2, ... , vd be fixed sets of initial
and final vertices. Consider a family of paths & = (Pi, P2, ... , P¡¡) where,

for each /',
p¡

u¡ —'-> vai

for some o £ S¿ , the symmetric group on d elements. Define

(-i)^ = (-ir
(the sign of 0) and

x-=nx
i

with a similar definition for xf .

The involution 1 can now be extended to this situation.
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V\ V2
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l>3
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.   t

Vi Vl VA

PB t.

va VA

l

l

1
l

I

1
I

U]
1

"2 "3

.L.

t
U]

I
I

l
U-2 «3

.1__

t
ti.[

Figure 8. The involution i for ¿/-tuples

Definition 5.1. Given 9e as above, define i£P = £P' where

1. if P, n Pj« = 0 for ail i, ;' then 9o = 9°',
2. else find the smallest index j such that the path P¡ = PCT-i7 to v.j inter-

sects some other path. Let v0 be the last (NE-most) intersection on P¡ and let

Pm be the other path through Vo . (If there is more than one, choose Pm so

that om is minimal.) Now define

3»' = 3s with (P,, Pm) replaced by i(P¡, P„).

It is not hard to verify that this is really an involution (although it is crucial
in the proof that we define i in terms of the final vertices Vj rather than the

initial u,). An example is given in Figure 8.

The analog of Theorem 4.1 in this setting is

Theorem 5.2. Fix k e N. If < is standard and xk_ix¡+í = xkx¡ for 0 < k < I,
then the sequences (ek(n))„>o and (hk(n))n>o are PF with respect to <.

Proof. In the matrix (ek(j -<")), the minor with rows i¡, i2, ... , id and col-

umns ji, J2, ■■■ , jd counts paths with

uc = (f - h • 0)   and   vc = (jc -ix-k,k)

for all 1 < c < d. Figure 9 illustrates this arrangement.

-HL 30- J¡¿3

Ji -«l 32-31 33 -32

12 - ?1 n -12
U\ V-2 U3

Figure 9. Initial and final vertices for Theorem 5.2
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Now given a family of paths ¿P with sign -1, we can apply i to get a family

3°' with sign +1. The monomials for £P and ¿P' are given by yYlixa¡Xi,¡ and

yIlixa¡-iXbi+i or vice versa (y fixed and a, < b¡ for all i). It is for this reason

that we need the strong assumption about the sequence (x„)„>o ■

For the hk(n), the final vertices are changed to

vc = Uc -h-l,k)

for all c. Everything else remains the same.   D

It is a pity that we are forced to strengthen the hypothesis in passing from

Theorem 4.1 to Theorem 5.2. Because of this, we can only get a corollary for

the ^-binomial coefficients.

Corollary 5.3. Fix k £ N. Then the sequence

\lk\)n>0
is PF with respect to <q .   a

Unfortunately, the methods used to prove Theorem 4.3 cannot be extended

to the PF case. We will discuss this more fully in the next section.

On the bright side, there are several other infinite matrices that also have

every minor nonnegative even though they are not associated with any sequence.

In what follow, the variables i and j always give the row and column of the
matrix. Note that this result generalizes Theorem 4.4.

Theorem 5.4. Fix k, I, m £ N. Then all minors of the following matrices are
in N[x], i.e., are > 0 for any standard partial order.

1. (e}_kl(li + m)),
2. (hj_ki(li + m)).

If the sequence (x„)„>o is strongly log concave with respect to <, then all 2x2

minors of the following matrices are nonnegative. If in addition, Xk-iX¡+i = xkxi
for all 0 < k < I, then all minors of these matrices are nonnegative.

3. ieij+mii - kj)),

4. ihlj+mii - kj)).

Proof. All parts of the theorem follow by applying i to a given family of paths,

so we need only give the initial and final vertices for each case. In these defi-
nitions, c varies between 1 and d (where d is the number of paths) while ic
and jc stand for the cth row and column of the minor.

L uc = Uc - ji, j\ - jf) ; Vc = iik + l)ic -ji+m, ji - kic) ;
2. uc = {0, ji - jf) ; vc = (lic + m - 1, ji - kic) ;

3. uc = ((k + l)(jc -ji), l(ji - jc)) ; vc = (ic -(k + l)ji - m, Iji + m) ;

4. uc = (k(jc -jf), l(ji - jc)) ; vc = (ic - kji -l,lj{+m).    D

Specializing to our «^-analogs, we obtain

Corollary 5.5. Fix k, /, m £ N. All the minors of the following matrices are in

Nfe].
M^)[^]);(^)[ÍS]);
2- ([>+(^;+m]);([/+(^+m]);

3. (c[li + m,(k + l)i -j + m]) ; (S[(l - k)i + j + m,li + m]) ;
In addition, all 2x2 minors of the following matrices are nonnegative.

4. (c[i - kj, i-(k + l)j + m]) ; (S[i + (I - k)j + m,i- kj]).   D
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6. Comments and open questions

This work raises several interesting problems listed below.

1. Proposition 2.3 and Theorems 4.1 and 4.3 show log concavity of symmet-

ric function sequences when n,k or n + k is constant. It would be interesting

to see for which linear relations between n and k we obtain log concave se-

quences. Perhaps there is some analog of Theorem 5.4 in this regard.
2. We have already remarked that for polynomials, log concavity and strong

log concavity are not equivalent (unlike the situation for sequences of positive
real numbers). Is there a nice condition that could be added to log concavity in

the general case which would then imply strong log concavity?

3. The reader may have noticed that there is a sequence missing from Theo-

rem 1.1, namely {c[n, k])n>o . It is absent because it is not ¿/-log concave even

in the case q = 1 (as can be seen by taking k = 1). Pierre Leroux [Ler 90]

conjectured that an "almost" log-concave condition holds, namely

(11) c[n - 1, k]c[n + 1, k] < [2]c[n, k]2.

this was proved when q = 1 by Anne de Médicis [Méd 89]. On the basis of

(11), we were led to conjecture the following result which has been recently

proved by Laurent Habsieger [Hab pr].

Theorem 6.1. Let < be standard. Suppose there exists a fixed b £ R[x] such

that bx„ > xn+i for all n > 1. Then for all n > 0 and 0 < k < I we have

ek-i(n + k- l)el+i(n + 1+1) < bl~k+xek(n + k)e¡(n + 1).   a

Note that Leroux's equation is the special case where k = I, x„ = [n] and

b = [2]. It is possible to find an analogous theorem for "almost" PF sequences?
4. There are a number of reasons why the proof of Theorem 4.3 does not

generalize to the PF case. For one thing, the compositions are not injective when

applied to ¿-tuples. This is because the translations and switching operators

create and destroy the intersections which tag the pair of paths to be used.
Another problem is that the path pair through Vo may have sign +1 even
though 3s has sign -1. In this case applying these maps will not preserve the

terminal points of the pair.
Nevertheless, we conjecture that the following is true.

Conjecture 6.2. Fix k, n £ N. If < is standard and Xk-iX¡+i = XkX¡ for all
0 < k < I, then the sequence (ek-j(n + j))j>o is PF with respect to < .

5. It follows from (10) in §5 that the following sequences are <?-PF, i.e., PF

with respect to <q :

([*])„V      («(S)[*]L„-      M».*lfc».      («I»» *»*••

The first of these was also derived from Theorem 5.2. It would be interesting to
find out which of the other sequences in Theorem 1.1 are also q-PF. Christian

Krattenthaler has pointed out that

(12) a;])
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is not q-PF since

0

q3 + 3q2 + q - 1

Thus Conjecture 6.2 cannot be true for the sequence (hk_j(n + j))j>o since it

becomes (12) under the usual substitution. However, the elementary symmetric

function sequence in the conjecture specializes to

ikf) n + j

k-j j>o

and we have checked by computer that all 3x3 minors for this sequence are

polynomials with nonnegative coefficients for n + k < 1. John Stembridge
has also computer-verified that all 3x3 minors of (S[n + j, k + J])jzn are
nonnegative for 1 < k, n - k < 5. It would be nice to prove such a fact

as a corollary to results like Theorem 5.2 and Conjecture 6.2, however their

hypotheses would have to be weakened to apply to the Stirling numbers.

6. Let X = (Xi, À2, ... , If) be a partition of n , i.e., a sequence of weakly
decreasing nonnegative integers whose sum is n . The Jacobi-Trudi determinants
are the d x d determinants

\eXi+j-i\   and   |AA/+J_,|.

Let S„ denote the symmetric group on n letters. The Schur function corre-
sponding to X, Sx(n), is the cycle indicator generating function for the irre-

ducible character of S„ associated with X. In fact

(13)

and

sxin) = \hi+j-i\

(14) sx>(n) = \eXi+j.i\,

where X' is the conjugate of X. Thus both Jacobi-Trudi determinants are poly-
nomials with nonnegative coefficients.

For any sequence {fn)n>o where each f„ e R[x] we can define the generalized

Jacobi-Trudi determinant corresponding to a partition X as |^i+J_,|. Note that

these are just the minors of ifj-t) obtained by taking adjacent columns. Clearly,
if ifn)n>o is PF with respect to > then all of its Jacobi-Trudi determinants are

nonnegative. Brenti [Bre 88, Theorem 7.4.1] (and later Stembridge [private
communication]) provided the following proof that the converse also holds. In

fact, Price has shown [Pri 65] that a sequence is PF if and only if all minors
obtained from adjacent rows and columns are nonnegative.

Theorem 6.3. Let < be standard. Then (fn)n>o is PF with respect to < if and

only if \fVi+]-t\ > 0 for all partitions v.

Proof. It is only necessary to prove the "if direction.

Suppose X = (Xi, X2,..., Xd) and p = (pi, p2,... , Pd) are partitions such
that X¡ > pi for all /. Then there is an associated skew Schur function, sX/ß(n),
which is the generating function for an induced representation of Sn . We can
also express this as a determinant

(15) Sk/ßiri) = [hx^j+j-il.
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Now the ordinary Schur functions form a basis for the space of symmetric

functions, so we can write

(16) sx/fl(n) = J24^in)
V

for certain constants c¿„ 6 R. Furthermore, since the representation corre-

sponding to Sx/nin) is not virtual, we have c¿„ > 0 for all X, p,v. Finally,

substituting equations (13) and (15) into (16) we have a polynomial identity

involving the complete homogeneous symmetric functions. But the hm(n) are

algebraically independent, so we may replace them by arbitrary elements of

R[x] without disturbing the equality.

Now choose any minor M of (/}_,-), say with rows i'i, 12, ... , i¿ and

columns j\, h,..., jd ■ Define partitions X and p by

h = Jd-ik-d + k   and   p¡ = jd - ji - d +1.

Then

M = \fkk-ßl+i-k\

and so substituting fim for hm(n) in equation (16) we have expressed M as a

nonnegative linear combination of generalized Jacobi-Trudi determinants. The

theorem follows.   D

7. The Schur function Sx(n) can also be interpreted as the ordinary generat-

ing function for semistandard Young tableaux of shape X [Mad 79, p. 42; Sag

90; Sag 91, p. 151]. This can be seen by interpreting the labels on each path
of a nonintersecting ¿-tuple counted by a Jacobi-Trudi determinant as a row

(in the case of equation (13)) or column (for (14)) of a tableau. It would be

interesting to find a similar interpretation for the minors in Theorem 5.2.

References

[Bre 88] F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem.

Amer. Math. Soc, no. 413, 1989.

[But 90] L. M. Butler, The q-log concavity of q-binomial coefficients, J. Combin. Theory Ser. A 54

(1990), 54-63.

[Ges urn] I. Gessel, Determinants and plane partitions, unpublished manuscript.

[G-V 85] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv.

in Math. 58(1985), 300-321.

[Hab pr] L. Habsieger, Inégalités entre fonctions symétriques élémentaires : applications à des pro-

blèmes d'unimodalité, preprint.

[Kra 89] C. Krattenthaler, On the q-log-concavity of Gaussian binomial coefficients, Monatsh. Math.

107 (1989), 333-339.

[Ler 90] P. Leroux, Reduced matrices and q-log concavity properties of q-Stirling numbers, J. Com-

bin. Theory Ser. A 54 (1990), 64-84.

[Mad 79] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, Oxford,

1979.

[Méd 89] A. de Médicis, Unimodalité et concavité logarithmique pour des suites de nombres clas-

siques et leurs q-analogues, Masters thesis, Université du Québec à Montréal, Montréal,

1989.

[Pri 65] H. S. Price, Monotone and oscillating matrices applied to finite difference approximation,

Ph.D. thesis, Case Institute of Technology, Cleveland, 1965.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DETERMINANTS OF SYMMETRIC FUNCTIONS 811

[Sag 88] B. E. Sagan, Inductive and injective proofs of log concavity results, Discrete Math. 68 ( 1988),

281-292.

[Sag 90] _, The ubiquitous Young tableau, Invariant Theory and Tableaux (Dennis Stanton, ed.),

IMA Vol. Math. Appl. 19 (1990), 262-298.

[Sag 91] _, The symmetric group:  representations, combinatorial algorithms, and symmetric

functions, Wadsworth & Brooks/Cole, Pacific Grove, 1991.

[Sag ta] _, Inductive proofs of q-log concavity, Discrete Math, (to appear).

[Sta 89] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry,

Graph Theory and Its Applications: East and West, Ann. New York, Acad. Sei. 576 (1989),

500-535.

[Wac 85] M. L. Wachs, Flagged Schur functions, Schubert polynomials, and symmetrizing operators,

J. Combin. Theory Ser. A 40 (1985), 276-289.

Department of Mathematics, Michigan State University, East Lansing, Michigan

48824-1027

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


