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Abstract

We prove a lemma, which we call the Order Ideal Lemma, that can be used to
demonstrate a wide array of log-concavity and log-convexity results in a combinato-
rial manner using order ideals in distributive lattices. We use the Order Ideal Lemma
to prove log-concavity and log-convexity of various sequences involving lattice paths
(Catalan, Motzkin and large Schröder numbers), intervals in Young’s lattice, order
polynomials, specializations of Schur and Schur Q-functions, Lucas sequences, descent
and peak polynomials of permutations, pattern avoidance, set partitions, and noncross-
ing partitions. We end with a section with conjectures and outlining future directions.

1 Introduction

Let
(an)n≥0 = a0, a1, a2, . . .

be a sequence of real numbers. The sequence is log-concave if

a2n ≥ an−1an+1 (1)

for all n ≥ 1. A log-convex sequence is one satisfying

a2n ≤ an−1an+1 (2)
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for all n ≥ 1. Log-concave and log-convex sequences abound in combinatorics, algebra, and
geometry. See the survey articles of Stanley [Sta89], Brenti [Bre94], and Brändén [Br15] for
more information. The purpose of the present work is to provide a new combinatorial tool
for proving log-concavity and log-convexity using order ideals in distributive lattices.

Let us review some basic concepts from the theory of partially ordered sets (posets). More
comprehensive treatments can be found in the books of Sagan [Sag20] or Stanley [Sta12].
All of our posets will be finite. A lower order ideal in a poset (P,⪯) is I ⊆ P such that if
x ∈ I and y ⪯ x then y ∈ I. Similarly, an upper order ideal is J ⊆ P satisfying x ∈ J and
y ⪰ x implies y ∈ J . We will use “order ideal” to refer to a subset which could be either.
Say that poset L is a lattice if every pair x, y ∈ L has a greatest lower bound or meet, x∧ y,
as well as a least upper bound or join, x ∨ y. The lattice is distributive if it satisfies either
of the two equivalent distributive laws that, for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

and
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

We can now state our fundamental result which we call the Order Ideal Lemma. It is an
easy consequence of the FKG Inequality [FKG71]. But since its proof involves concepts not
needed in the rest of this paper, we postpone the demonstration until Subsection 8.1. For a
set S we will use both |S| and #S for its cardinality.

Lemma 1.1 (The Order Ideal Lemma). Let L be a distributive lattice and suppose that
I, J ⊆ L are ideals.

(a) If I, J are both lower ideals or both upper ideals then

|I| · |J | ≤ |I ∩ J | · |L|.

(b) If one of I, J is a lower order ideal and the other is upper then

|I| · |J | ≥ |I ∩ J | · |L|.

Our general strategy for proving log-convexity of a sequence (an)n≥0 will be to construct
lattices Ln with |Ln| = an. If we can find inside Ln+1 two lower order ideals I, J such that
|I| = |J | = an and |I∩J | = an−1 then we will be done by part (a) of the Order Ideal Lemma.
Similarly, part (b) can be used to prove log-concavity.

The rest of this paper is structured as follows. In the next section we will use lattice
paths to prove log-convexity of sequences involving the Catalan, Motzkin, and large Schröder
numbers. In Section 3 we use various intervals in Young’s lattice to give log-concavity and
log-convexity results. Some of these specialize to the fact that show that various sequences of
binomial coefficients are log-concave. We begin Section 4 by showing that for any poset, the
sequence obtained by evaluating its (enriched) order polynomial at nonnegative integers is
always log-concave. As a consequence, we obtain log-concavity of sequences of specializations
of Schur and Schur Q-functions. Section 5 is dedicated to generalized Lucas sequences which
are those satisfying an = an−1 + an−2 for n ≥ 2. We show that any such sequence which has
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Figure 1: The poset D3

positive initial conditions alternates between satisfying (1) and (2). In Section 6 we consider
various sequences related to permutations, including those defined by pattern avoidance as
well as sequences of descent and peak polynomials. The focus of Section 7 is set partitions
and we show log-concavity of sequences involving Stirling numbers of the second kind and
Narayana numbers. The last section contains a proof of the Order Ideal Lemma as well as
directions for future research.

2 Lattice paths

In this section we will use lattice paths together with the Order Ideal Lemma to give unified
proofs of the log-convexity of the sequences of Catalan, Motzkin, and large Schröder numbers.
We begin with a review of some basic definitions.

A lattice path is a sequence P : p0, p1, . . . , pn of points in the integer lattice so pi ∈ Z2

for all i. A step of P is the vector [xi, yi] from pi−1 to pi. When the initial vertex p0 of P is
known, we can specify P by listing its steps. An up step is a step U = [1, 1] and a down step
is D = [1,−1]. A Dyck path of semilength n is a lattice path P satisfying

1. P starts at p0 = (0, 0) and ends at p2n = (2n, 0),

2. P uses steps U and D and never goes below the x-axis.

Figure 1 displays the five Dyck paths of semilength 3. Let

Dn = {P | P is a Dyck path of semilength n}.

It is well known that the cardinality of Dn is the Catalan number

Cn =
1

n+ 1

(
2n

n

)
. (3)

3



We wish to turn Dn into a distributive lattice. If P ∈ Dn then we let A(P ) be the area
of P which is the set of all points of R2 between P and the x-axis. In Figure 1 the areas are
shaded. We now define a partial order on Dn by

P ⪯ Q if and only if A(P ) ⊆ A(Q). (4)

The Hasse diagram for D3 is in Figure 1. We note that Dn is a distributive lattice. This
follows from the fact that it is isomorphic to an interval in Young’s lattice and we will discuss
various interesting intervals in the next section. It is also a consequence of a more general
theorem of Ferrari and Pinzani [FP05] giving a criterion for a family of lattice paths ordered
by (4) to be a distributive lattice. The next result follows from easy algebraic manipulations
of (3). But our proof is combinatorial and will generalize to other families of paths where a
closed-form formula is not known.

Theorem 2.1. The sequence (Cn)n≥0 of Catalan numbers is log-convex.

Proof. We begin with the distributive lattice Dn+1 and note that |Dn+1| = Cn+1.
Let

I = {P ∈ Dn+1 | P = UDP ′ for some translated Dyck path P ′ of semilength n}.

it follows that I is a lower order ideal because if P ∈ I and Q ⪯ P then (4) forces Q = UDQ′

for some Q′. Furthermore, we have an isomorphism of posets I ∼= Dn given by P = UDP ′ 7→
P ′. Thus |I| = Cn.

Now consider

J = {P ∈ Dn+1 | P = P ′UD for some Dyck path P ′ of semilength n}.

Similar considerations to those in the previous paragraph show that |J | = Cn. Furthermore

I ∩ J = {P ∈ Dn+1 | P = UDP ′UD for some Dyck path P ′ of semilength n− 1}

so that |I ∩ J | = Cn−1. Now applying part (a) of the Order Ideal Lemma gives

C2
n = |I| · |J | ≤ |I ∩ J | · |L| = Cn−1Cn+1

finishing the proof.

We now consider the Motzkin numbers. A Motzkin path of length n is a lattice path P
which satisfies

1. P starts at p0 = (0, 0) and ends at pn = (n, 0),

2. P uses steps U , D, and horizontal H = [1, 0] and never goes below the x-axis.

Let
Mn = {P | P is a Motzkin path of length n}

so that
|Mn| =Mn,
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the nth Motzkin number. The set Mn ordered by (4) is a distributive lattice as demonstrated
in [FP05]. Showing that the Motzkin sequence is log-convex is much like the proof of the
previous theorem, with I and J replaced by

I = {P ∈ Mn+1 | P = HP ′ for some translated Motzkin path P ′ of length n},
and

J = {P ∈ Mn+1 | P = P ′H for some Motzkin path P ′ of length n}.
So, we leave the details to the reader.

Theorem 2.2. The sequence (Mn)n≥0 of Motzkin numbers is log-convex.

Finally, we investigate the large Schröder numbers. A Schröder path of semilength n is a
lattice path P satisfying

1. P starts at p0 = (0, 0) and ends at pn = (n, 0),

2. P uses steps U , D, and twice horizontal T = [2, 0] and never goes below the x-axis.

If we let
Sn = {P | P is a Schröder path of semilength n}

then
|Sn| = Sn,

the nth large Schröder number. As usual, we order Sn using (4). However, this poset is not
covered by the general theorem of [FP05], although they remark that it can be shown that
the poset is a lattice. It is, in fact, distributive.

Lemma 2.3. The poset Sn is a distributive lattice.

Proof. We first wish to show the existence of meets and joins. Suppose K,L ∈ Sn. We claim
that there is K ∧ L ∈ Sn such that

A(K ∧ L) = A(K) ∩ A(L).
To see this, consider any Schröder path L : p0, p1, . . . , pn. Since L starts at (0, 0) and uses
steps U,H, T it must be that the coordinates of each pi have the same parity. It follows that
K and L can only intersect at points which are endpoints of steps in both paths and cannot
cross in the middle of a step. From this, the assertion that A(K) ∩ A(L) is the area under
some Schröder path follows. Similarly, there is K ∨ L defined by

A(K ∨ L) = A(K) ∪ A(L).
It is now an easy matter to verify that K ∧ L and K ∨ L are indeed greatest lower bounds
and least upper bounds. And distributivity follows from the fact that intersection distributes
over union.

Using the ideals

I = {P ∈ Sn+1 | P = TP ′ for some translated Schröder path P ′ of semilength n},
and

J = {P ∈ Sn+1 | P = P ′T for some Schröder path P ′ of semilength n},
the next result follows in the way to which we have become accustomed.

Theorem 2.4. The sequence (Sn)n≥0 of Schröder numbers is log-convex.
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3 Young’s lattice

In this section we collect various log-concavity and log-convexity results which can be proved
using closed intervals in Young’s lattice, Y . Since Y is a distributive lattice, so is every closed
interval and we need not check that part of the hypothesis of the Order Ideal Lemma. We
start by establishing some standard definitions and notation, including

[n] = {1, 2, . . . , n}.

An integer partition is a weakly decreasing sequence λ = (λ1, λ2, . . . , λk) of nonnegative
integers called parts. Note that we allow zero as a part. The Young diagram of λ consists
of left-justified rows of boxes or cells with λi boxes in row i. We will use English notation
for Young diagrams with the first row on top and make no distinction between a partition
and its Young diagram. For example, the shape of λ = (5, 3, 1) is shown in the upper left in
Figure 4. Young’s lattice, Y , is the set of all partitions with partial order λ ⪯ µ if the Young
diagram of λ is contained in that of µ.

We first show how our proof of the log-convexity of the Catalan numbers can be viewed
in this setting. Consider the interval

Cn = [∅, (n− 1, n− 2, . . . , 0)]

The southeast boundary of any λ ∈ Cn can be considered as a lattice path of length 2n from
the lower left corner to the upper right corner of (n − 1, n − 2, . . . , 0) using the edges of
squares as unit steps north or east. And the lattice path must stay above the line y = x if
its initial point is taken as (0, 0). Such paths are another of the standard ways of describing
Dyck paths. So the proof of Theorem 2.1 could have been given in the language of partitions.

For our next result, if λ = (λ1, λ2, . . . , λk) is a partition and n0 is an integer then we
define

λ+ n = (λ1 + n, λ2 + n, . . . , λk + n). (5)

Theorem 3.1. For any partition λ, the sequence ( #[λ, λ+ n] )n≥0 is log-concave.

Proof. Let In = [λ, λ+ n] and consider the following as subsets of In+1:

I = [λ, λ+ n]

and
J = [λ+ 1, λ+ n+ 1].

As in the previous proof, I is an lower order ideal, J is an upper order ideal, and I = In ∼= J .
As expected, I ∩ J = [λ+ 1, λ+ n] ∼= In−1. So we are done by the Order Ideal Lemma.

Note that even more generally, λ could be replaced by a skew partition in the previous
result and the proof would go through without change. As an application, suppose that
λ = (1k) where we us the notation im to indicate that i is repeated m times Then the
µ ∈ [λ, λ+n] are precisely the k-element multisubsets of [n+1]. These are counted by

(
n+k
k

)
and so we immediately get the following specialization of Theorem 3.1.

Corollary 3.2. For any k ≥ 0, the sequence
( (

n+k
k

) )
n≥0

is log-concave.
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1 3

Figure 2: A poset P on [3]

4 Order polynomials

The order polynomial of a labeled poset was introduced by Stanley in his thesis [Sta71]
and has since been shown to be a fundamental invariant. In this section we prove that
the sequence of values of the order polynomial of any labeled poset is log-concave. This
permits us to prove log-concavity of sequences formed by specializing the Schur function
corresponding to any partition. The enriched order polynomials of Stembridge [Ste97] are
also shown to give rise to log-concave sequences, again independent of the underlying poset.
This gives rise to log-concave sequences of specializations of Schur Q-functions. We begin, as
usual, with the necessary definitions. Note that some of the inequalities have been reversed
from Stanley’s original definitions, but this does not change the theory in any substantive
way.

Let (P,⪯) be a poset on [p]. The reader should be sure to distinguish the use of ⪯ for
the partial order on P and ≤ for the total order on the integers. A poset on [3] is displayed
in Figure 2. A P -partition with range [n] is a map f : P → [n] such that for all x ≺ y we
have

1. f(x) ≤ f(y) (that is, f is order preserving), and

2. if x > y then f(x) < f(y).

Define
OP (n) = {f | f is a P -partition with range n}.

Returning to the example poset in Figure 2 we have

OP (n) = {f : P → [n] | f(2) < f(1) and f(2) ≤ f(3)}.

The order polynomial of P is
ΩP (n) = #OP (n).

Theorem 4.1 ([Sta71]). For any P on [p] we have ΩP (n) is a polynomial in n.

We now turn Op(n) into a poset by ordering P -partitions component-wise, that is,

f ≤ g if and only if f(x) ≤ g(x) for all x ∈ P .

Even though we are using ≤ for both the partial order on functions and the total order on
integers, context should should distinguish them. Continuing to use the poset in Figure 2, we
have displayed the partial order on OP (3) in Figure 3. Note that the values of the functions
f are displayed outside the circles containing the elements of P itself. The following result
was proved in the special case that P is naturally labeled (that is, x ≺ y implies x < y) by
Chan, Pak and Panova [CPP23].
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Figure 3: The poset OP (3) where P is in Figure 2

Theorem 4.2. For any P on [p], the sequence (ΩP (n))n≥0 is log-concave.

Proof. We first need to prove that OP (n) is a distributive lattice. Given f, g ∈ OP (n) we
define a new function f ∧ g : P → [n] by taking component-wise minima

(f ∧ g)(x) = min{f(x), g(x)}

for all x ∈ P . This will clearly be a greatest lower bound provided that f ∧g is a P -partition.
Checking the two axioms are similar, so we only do the second. So suppose that x ⪯ y and
x > y. Then f(x) < f(y) and g(x) < g(y). Without loss of generality we can assume that
f(y) ≤ g(y). So,

min{f(x), g(x)} ≤ f(x) < f(y) = min{f(y), g(y)}

as desired.
Similarly, we define f ∨ g by

(f ∨ g)(x) = max{f(x), g(x)}

for all x ∈ P . The fact that this is a least upper bound is much like what was done for
the meet. And the distributive law follows from the fact that maximum distributes over
minimum.

To apply the Order Ideal Lemma, let

L = OP (n+ 1)
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λ = T = 1 1 1 2 4

2 2 5
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Figure 4: The shape λ = (5, 3, 1), a semistandard Young tableau, T of that shape, as well
as the corresponding poset Pλ and P -partition.

so that |L| = ΩP (n+ 1). Now define

I = {f ∈ L | f(x) ≤ n for all x ∈ P}.

Clearly I is a lower order ideal since we are applying an upper bound on f . Furthermore,
I = OP (n) so that |I| = Ωp(n). Also consider

J = {f ∈ L | f(x) ≥ 2 for all x ∈ P}.

This is an upper order ideal and J ∼= OP (n) where the isomorphism is obtained by subtracting
one from each f(x). It follows that |J | = ΩP (n). Similar consideration show that I ∩ J ∼=
OP (n− 1) so that |I ∩ J | = ΩP (n− 1). This completes the proof.

We now use the well-known connection between order polynomials and Schur functions
to derive an interesting special case of the previous theorem. If λ is an integer partition
then a semistandard Young tableau (SSYT) of shape λ is a filling of the boxes of λ with
positive integers such that rows weakly increase left-to-right and columns strictly increase
top-to-bottom. The partition λ = (5, 3, 1) and a semistandard Young tableau T of that
shape are displayed in the first row of Figure 4. We let (i, j) be the cell of λ in row i and
column j where rows and columns are indexed as in a matrix. Given an SSYT of shape λ
we denote by Ti,j the element of T in box (i, j). In the tableau of Figure 4 we have T2,3 = 5.
Consider

SSYTλ = {T | T is an SSYT of shape λ}.
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Figure 5: The poset Oe
P (2) where P is in Figure 2

Let x = {x1, x2, . . .} be a set of variables indexed by the positive integers. The Schur function
corresponding to λ is the generating function

sλ(x) =
∑

T∈SSYTλ

∏
(i,j)∈λ

xTi,j
.

The Schur functions are symmetric and form an important basis for the algebra of sym-
metric functions. For more information about them, see the texts of Sagan [Sag01] or
Stanley [Sta24].

To make the connection with P -partitions, we first turn λ = (λ1, λ2, . . . , λk) into a poset
component-wise, that is

(i, j) ⪯ (i′, j′) if and only if i ≤ i′ and j ≤ j′. (6)
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We now make this a poset Pλ on the interval [|λ|] where |λ| =
∑

l λl by labeling the last row
of λ with 1, 2, . . . , λk left-to-right (viewing λ as its original Young diagram). Then labeling
the penultimate row left-to-right with λk+1, λk+2, . . . , λk+λk−1, and so forth. This labeling
is displayed in Figure 4 at the bottom left. It is easy to see that a Pλ-partition is the same as
an SSYT of shape λ. The partition for the SSYT T in Figure 4 is displayed directly below
the tableau. It should now be clear that we have

sλ(1
n) = ΩPλ

(n)

where 1n indicates the specialization

xi = 1 for i ≤ n and xi = 0 for i > n.

As an immediate consequence of Theorem 4.2, we have the following result.

Corollary 4.3. For any partition λ, the sequence (sλ(1
n))n≥0 is log-concave.

We can also apply the Order Ideal Lemma to the enriched P -partitions of Stembridge [Ste97].
We put an unusual total order on the nonzero integers, where we denote −n by n,

1 ◁ 1 ◁ 2 ◁ 2 ◁ 3 ◁ 3 ◁ . . . (7)

and also let
⟨n⟩ = {1, 1, 2, 2, . . . , n, n}.

An enriched P -partition with range ⟨n⟩ is a map f : P → ⟨n⟩ such that for all x ≺ y we have

(E1) f(x) ⊴ f(y),

(E2) f(x) = f(y) > 0 implies x < y, and

(E3) f(x) = f(y) < 0 implies x > y.

We now let
Oe

P (n) = {f | f is an enriched P -partition with range ⟨n⟩}.

with corresponding enriched order polynomial

Ωe
P (n) = #Oe

P (n).

As with the ordinary order polynomial, the enriched one is well named.

Theorem 4.4 ([Ste97]). For any P on [p] we have Ωe
P (n) is a polynomial in n.

We now turn Oe
P (n) into a poset in exactly the same way as the ordinary case:

f ≤ g if and only if f(x) ⊴ g(x) for all x ∈ P .

Figure 5 shows the partial order Oe
P (2) using our canonical poset P in Figure 2. The proof

of the next result is much like that of Theorem 4.2 and so is omitted.

Theorem 4.5. For any P on [p], the sequence (Ωe
P (n))n≥0 is log-concave.
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Figure 6: The shifted Young diagram of λ = (6, 5, 3, 2) and a shifted semistandard Young
tableau of that shape

The appropriate tableaux for the enriched setting arise from shifted shapes. An integer
partition λ = (λ1, λ2, . . . , λk) is strict if λ1 > λ2 > . . . > λk. A strict partition has an
associated shifted Young diagram obtained from the ordinary Young diagram by shifting the
ith row i− 1 boxes to the right for i ∈ [k]. The shifted shape of λ = (6, 5, 3, 2) is shown on
the left in Figure 6. A semistandard Young tableau of shifted shape λ is a filling T of the
cells of λ with nonzero integers such that the following are satisfied.

(T1) The rows and columns of T are weakly increasing with respect to the total order 7.

(T2) For each m > 0 there is at most one m in each row and at most one m in each column.

We let

SSYTSλ = {T | T is a semistandard Young tableau of shifted shape λ}

with generating function

Qλ(x) =
∑

SSYTSλ

∏
(i,j)∈λ

x|Ti,j |

which is called a Schur Q-function. These functions play a role in the projective representa-
tion theory of the symmetric group analogous to sλ(x) for ordinary representations.

The partial order on shifted shape is just the restriction of (6) to those cells in the shifted
Young diagram. And the labeling to get a corresponding partition P e

λ on [|λ|] is exactly the
same as in the unshifted case, starting with the bottom row and working up. Now axiom (E1)
for enriched P -partitions implies condition (T1) for semistandard shifted Young tableaux.
And axioms (E2) and (E3) translate into condition (T2). Thus

Qλ(1
n) = ΩP e

λ
(n)

and the next result is a special case of Theorem 4.4.

Corollary 4.6. For any strict partition λ, the sequence (Qλ(1
n))n≥0 is log-concave.

5 Generalized Lucas sequences

A sequence (ln)n≥0 of real numbers is a generalized Lucas sequence if it satisfies the recursion

ln = ln−1 + ln−2 (8)
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for n ≥ 2. These sequences were originally studied by Lucas [Luc78a, Luc78b, Luc78c].
Both the sequences themselves and their q-analogues have many wonderful combinatorial
properties, see [BP09, BCMS20, SS10, ST20]. Of course, the two most famous examples of
such sequences are the Fibonacci numbers, (Fn)n≥0, and (ordinary) Lucas numbers, (Ln)n≥0,
with initial conditions F0 = F1 = 1 and L0 = 2, L1 = 1, respectively.

In this section we will study positive Lucas sequences which are generalized Lucas se-
quences with l0, l1 > 0. In order to state our result precisely, call a sequence (an)n≥0 log-
concave at index n if

a2n ≥ an−1an+1.

Note that this definition says nothing about indices other than n. Similarly define log-
convexity at index n. We will show that any positive Lucas sequence, suitably reindexed,
alternates between being log-concave at odd indices and log-convex at even ones.

It will be convenient in our approach to restrict the initial values even further. But we
wish to first show that this restriction will be, in some sense, without loss of generality. To
do this, we extend a generalized Lucas sequence to negative indices by insisting that the
recurrence relation (8) continue to hold for n < 0 to give an extended Lucas sequence (ln)n∈Z.
Call two extended Lucas sequences (ln)n∈Z and (l′n)n∈Z shift equivalent if there is k ∈ Z such
that

ln = l′n+k

for all n ∈ Z.
Proposition 5.1. Suppose that (ln)n≥0 is a positive Lucas sequence. Then its extension is
shift equivalent to an extended Lucas sequence (l′n)n∈Z such that

0 < 2l′0 ≤ l′1.

Proof. Consider the reverse subsequence l1, l0, l−1, . . . of the given Lucas sequence. Suppose
first that this sequence contains a weak ascent lj ≤ lj−1 where lj, lj−1 > 0. But then

lj+1 = lj + lj−1 ≥ 2lj > 0,

as desired.
Now suppose this sequence contains a weak ascent with lj = 0, Then lj−1 > 0 since

otherwise all entries in the original Lucas sequence are nonpositive. But now

lj+2 = lj+1 + lj = lj+1,

where
lj+1 = lj + lj−1 = lj−1 > 0.

So
lj+3 = lj+2 + lj+1 = 2lj+2 > 0,

again giving the correct conclusion.
If there are no such weak ascent, then the sequence is strictly decreasing and so must

eventually become negative. Letm be the index of minimum absolute value such that lm < 0.
It follows that lm+1 ≥ 0 and

0 ≤ lm+2 = lm+1 + lm ≤ lm+1.

But this is a weak ascent which is a contradiction.
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Figure 7: The poset L5(3, 7)

We will now introduce the posets whose lattices of order ideals will permit us to study
the behaviour of positive Lucas sequences (ln)n≥0. Say that such a sequence is well-indexed
if

0 < 2l0 ≤ l1.

Note that, by the previous proposition, every positive Lucas sequence is shift equivalent to
a well-indexed one. To simplify notation, we will relabel

r := l0 and s := l1 (9)

Define a poset Ln(r, s) to have elements x1, . . . , xs−1 and y2, . . . , yn and order relation ⪯
subject to the covers

1. x1 ≺ x2 ≺ . . . ≺ xs−1,

2. y2 ≺ y3 ≻ y4 ≺ y5 ≻ . . ., and

3. y2 ≺ xr.

So the xi form a chain Cs−1 and the yj form what we will call an alternating poset An−1. For
example, Figure 7 shows the poset L5(3, 7).

Let J(P ) denote the set of lower order ideals of a finite poset P . It is a fundamental
result that J(P ) is a distributive lattice for any P . This construction will permit us to prove
the following theorem. Note that since the Fibonacci sequence satisfies

F 2
n = Fn−1Fn+1 + (−1)n−1,

one sees immediately that the result is true in this case.

Theorem 5.2. A well-indexed Lucas sequence (ln)n≥0 is log-concave at odd indices and log-
convex at even ones.

Proof. We continue to use the notation in (9). We first verify log-concavity at index n = 1
since our approach with ideals will only start to work when n ≥ 2. Since r ≤ s/2 we have

l0l2 = r(r + s) ≤ s/2(3s/2) < s2 = l21.

14



For ease of notation, let Ln = Ln(r, s). We will show by induction that

#J(Ln) = ln (10)

for n ≥ 1. When n = 1 we have that L1 is a chain with s−1 elements so that #J(L1) = s = l1.
Poset L2 is obtained from L1 by placing y2 under the rth smallest element of the chain. So,
counting the ideals with 0, 1, 2, . . . elements we get

#J(L2) = 1 +

r−1︷ ︸︸ ︷
2 + · · ·+ 2+

s−r+1︷ ︸︸ ︷
1 + · · ·+ 1 = r + s = l2.

The induction step has two cases depending on whether n is odd or even. But they are
similar so we will only do the former. In this case we have yn−1 ≺ yn. Every ideal I ∈ J(Ln)
either contains yn or not. It follows that if yn ̸∈ I then I ∈ J(Ln−1). On the other hand, if
yn ∈ I then this forces yn−1 ∈ I and I − {yn−1, yn} ∈ J(Ln−2). From these observations and
induction

#J(Ln) = #J(Ln−1) + #J(Ln−2) = ln−1 + ln−2 = ln

which completes the proof of the claim.
We now construct the ideals In,Jn ⊆ J(Ln+1) needed to prove the theorem. Given a set

of constraints S on ideals I we will use the notation

Jn+1(S) = {I ∈ J(Ln+1) | I satisfies S}.

Define

In =

{
Jn+1(yn+1 ∈ I) if n is odd,
Jn+1(yn+1 ̸∈ I) if n is even.

Then
#In = ln. (11)

In fact we have an isomorphism In
∼= J(Ln) given by the identity map on individual elements

when n is even, and by removal of yn+1 when n is odd. So the claim follows from (10). Note
that the ideals in In form either an upper or lower order ideal in J(Ln+1) depending on
whether n is odd or even, respectively.

Now let
Jn = Jn+1(xr ̸∈ I) ∪ Jn+1(xs−r ̸∈ I and yn+1 ̸∈ I).

Note that Jn is a lower order ideal in J(Ln+1) regardless of the parity of n. We wish to show

#Jn = ln. (12)

In view of (11), it suffices to show that the set differences In \Jn and Jn \ In have the same
cardinality. Again, we merely provide details when n is even. Now

In \ Jn = Jn+1(xr ∈ I, and xs−r ∈ I, and yn+1 ̸∈ I).

But r ≤ s− r so that xr ≤ xs−r in Ln+1. This makes the condition xr ∈ I redundant and

In \ Jn = Jn+1(xs−r ∈ I, and yn+1 ̸∈ I).

15



Note that xs−r is greater than y2 and all the xi below it. So those elements are forced to
be in any ideal I we are considering. But then I must be constructed by adding to these
elements some ideal of the chain xs−r+1, . . . , xs−1 and, because n is even, an ideal of the
subposet of Ln+1 induced on y3, . . . , yn. It follows that we have a product poset

In \ Jn
∼= J(Cr−1)× J(An−2). (13)

Now directly from the definitions we have

Jn \ In = Jn+1(xr ̸∈ I, and yn+1 ∈ I).

Since xr ̸∈ I, any ideal in the difference breaks into two pieces. One is an ideal in the chain
x1, . . . , xr−1 and the other an ideal of the alternating poset on y2, . . . , yn+1 which contains
yn+1. Since by parity, yn+1 ≻ yn, we must also have yn ∈ I and so this part of I is determined
as an ideal in the alternating poset on y2, . . . , yn−1. Comparing this with (13) shows that
#In \ Jn = #Jn \ In.

There remains to calculate #(In ∩Jn). But directly from the definitions we see that the
identity map on elements gives an isomorphism In ∩ Jn

∼= Jn−1. So by (12) we have

#(In ∩ Jn) = ln−1

as desired.

6 Permutations

We now prove various log-concavity and log-convexity results concerning subsets of the
symmetric group Sn of permutations of [n]. Sequences of evaluations of descent and peak
polynomials will be shown to be log-concave. We will also use pattern avoidance to give
a third proof of the log-convexity of the Catalan numbers. In addition to the Order Ideal
Lemma, one of our main tools will be the recently-defined middle order distributive lattice
on Sn.

There are two standard partial orders on Sn: the weak and strong Bruhat orders. Re-
cently, Bouvel, Ferrari and Tenner [BFT24] defined a partial order which they call the middle
order because it refines the weak order and is refined by the strong. This order has the advan-
tage of being a distributive lattice and is built using inversions. Given π = π1π2 . . . πn ∈ Sn

in one-line notation, its set of inversion (values) is

Inv π = {(πi, πj) | i < j and πi > πj}.

We also say that πi is an inversion top if (πi, πj) ∈ Inv π for some πj. For example, if

π = 415632 (14)

then
Inv 415632 = {(4, 1), (4, 2), (4, 3), (5, 2), (5, 3), (6, 2), (6, 3), (3, 2)}
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Figure 8: The middle order on S3 both in terms of permutations and inversion tables

so 4 is an inversion top in 3 inversions, 5 and 6 are inversion tops in 2 inversions each, and
3 is an inversion top in one inversion. Clearly i can be an inversion top in anywhere from 0
to i− 1 inversions. The inversion table of π is

ι(π) = (ι1, ι2, . . . , ιn)

where
ιi = # of inversions in which i is an inversion top.

Returning to our example
ι(π) = (0, 0, 1, 3, 2, 2).

Let
In = {ι = (ι1, ι2, . . . , ιn) | 0 ≤ ιi < i for all i ∈ [n]}. (15)

It is well-known that there is a bijection Sn → In given by π 7→ ι(π).
We can now use the bijection just given to define the middle order (Sn,⪯) by

π ⪯ σ if and only if ι(π) ≤ ι(σ)

where the order on inversion tables is component-wise. Because of (15) we have that the
middle order is isomorphic to a product of chains

Sn
∼= [0, 0]× [0, 1]× · · · × [0, n− 1]

where [0, i] = {0, 1, . . . , i} with the usual total order on the integers. It follows that this order
is a distributive lattice. In Figure 8 we display this order both on the permutations in S3

on the left, as well as on their corresponding inversion tables on the right. It will sometimes
be convenient to work directly with (In,≤) rather than (Sn,≺). We begin by showing that
the sequence of factorials n! = #Sn is log-convex. Of course, this can be proved by simple
arithmetic. But our proof will serve as a model for later, more complicated ones, using the
middle order.

Theorem 6.1. The sequence (n!)n≥0 is log-convex
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Proof. Consider the two lower order ideals of In+1 given by

I = {ι ∈ In+1 | ιn+1 = 0}

and
J = {ι ∈ In+1 | 0 ≤ ιi < i− 1 for all 2 ≤ i ≤ n+ 1}.

Now I ∼= In
∼= J where the first, respectively second, isomorphism is obtained by removing

ιn+1, respectively ι1. Similarly I ∩ J ∼= In−1 and the Order Ideal Lemma once again finishes
the demonstration.

6.1 Descent polynomials

We now prove that sequences of evaluations of descent polynomials are log-concave. The
descent set of π ∈ Sn is

Des π = {i | πi > πi+1}.

Note that, unlike the inversion set, we are using the positions of the descents. If π is as
in (14) then

Des 415632 = {1, 4, 5} (16)

Let S be any finite set of positive integers and consider

Dn(S) = {π ∈ Sn | Des π = S}

as well as
dn(S) = #Dn(S)

where the latter is called the descent polynomial corresponding to S. For more information
about descent polynomials see [DLHI+19, O2̆0, GG21, Ben21, Ray23, JM23]. The following
is a classic result of MacMahon [Mac04].

Theorem 6.2 ([Mac04]). For any set S and all n > maxS we have that dn(S) is a polyno-
mial in n.

In order to prove that (dn(S))n≥0 is always log-concave we will need a variant of the
middle order which considers positions rather than values. The positional inversion table of
π ∈ Sn is

κ(π) = (κ1, κ2, . . . , κn)

where
κi = #{j > i | πj < πi}.

In other words, κi is the number of inversions with πk as inversion top. Continuing with our
example permutation

κ(415632) = (3, 0, 2, 2, 1, 0). (17)

Clearly 0 ≤ κi ≤ n− i for all i ∈ [n]. Consider

Kn = {κ = (κ1, κ2, . . . , κn) | 0 ≤ κi ≤ n− i for all i ∈ [n]}.
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The bijection Kn → Sn given by κ 7→ π where κ(π) = κ will be useful to us, so we describe
it explicitly. Assuming that π1, . . . , πi−1 have been constructed, we let

πi = the (vi + 1)st smallest element of [n] \ {π1, . . . , πi−1}. (18)

By way of illustration, suppose κ is as given in (17). Since κ1 = 3 we let π1 be the (3 + 1)st
smallest element of [6], that is π1 = 4. Now κ2 = 0 so π2 will be the smallest element of
[6]\{4} so that π2 = 1. Next κ3 = 2 so we pick the third smallest element of [6]\{1, 4} which
gives π3 = 5. Continuing in this way, we get π = 415632 which agrees with the permutation
which started this example.

We now define the κ-middle order (Sn,⊴) by

π ⊴ σ if and only if κ(π) ≤ κ(σ)

component-wise. In this partial order we have

Sn
∼= [0, n− 1]× [0, n− 2]× · · · × [0, 0]

so that, again, we have a distributive lattice. And, as with middle order, sometimes we will
choose to work directly with Kn rather than Sn. To do this, we need to be able to read
off Des π from κ(π) which turns out to be easy to do (and is one of the reasons for using κ
rather than ι). Define the descent set of κ ∈ Kn to be

Desκ = {i | κi > κi+1}.

Note that we do not include i in the descent set if κi = κi+1. If κ is as in (17) then

Desκ = {1, 4, 5}.

Note that this is the same descent set as in (16). This is not an accident.

Lemma 6.3. For any π ∈ Sn we have

Desκ(π) = Des π.

Proof. Say π = π1π2 . . . πn and κ(π) = (κ1, κ2, . . . , κn). Suppose first that i ∈ Desκ(π) so
that κi > κi+1. From (18) we have that πi is the (κi + 1)st smallest element of a set S and
πi+1 is the (κi+1+1)st smallest in S \ {πi}. But since κi+1 < κi we also have that πi+1 is the
(κi+1 + 1)st smallest in S itself. Using the inequality κi+1 < κi again shows that πi+1 < πi
so that i ∈ Des π. By a similar argument, if i ̸∈ Desκ(π) then i ̸∈ Des π which completes
the proof.

We now define a partial order (Dn(S),⊴) by restricting the κ-middle order on Sn to
Dn(S). We need to show that we still have a distributive lattice. In fact, we will show that
Dn(S) is a sublattice of Sn under ⊴. To do so, it will be convenient to extend the mini-
mum and maximum functions to two integer vectors κ = (κ1, . . . , κn) and χ = (χ1, . . . , χn)
component-wise so that

min{κ, χ} = (min{κ1, χ1}, . . . ,min{κn, χn}) (19)

and
max{κ, χ} = (max{κ1, χ1}, . . . ,max{κn, χn}). (20)
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Lemma 6.4. If κ, χ ∈ Kn have Desκ = S = Desχ then

Des(min{κ, χ}) = S = Des(max{κ, χ}).

Proof. We will prove the min statement as the max one is similar. It suffices to show that
if i ∈ S then i ∈ Des(min{κ, χ}) and similarly for i ̸∈ S.

If i ∈ S then we have κi > κi+1 and χi > χi+1 Without loss of generality, we can assume
κi ≤ χi so that min{κi, χi} = κi. Thus

min{κi+1, χi+1} ≤ κi+1 < κi = min{κi, χi}

which implies that i ∈ Des(min{κ, χ}). The analogous argument when i ̸∈ S is left to the
reader.

We now have everything in place to show that Dn(S) is a distributive lattice.

Lemma 6.5. For any S the κ-middle order on Dn(S) forms a distributive lattice.

Proof. Consider π, σ ∈ Dn(S). Define the meet and join operations by letting π ∧ σ and
π ∨ σ be the unique permutations such that

κ(π ∧ σ) = min{κ(π), κ(σ)}

and
κ(π ∨ σ) = max{κ(π), κ(σ)}.

We must first check that the meet and join are still in Dn(S), that is, have descent set
S. But Desπ = S = Desσ so that, by the previous lemma, Desκ(π) = S = Desκ(σ). Now
using both the previous lemmas

Desπ ∧ σ = Desκ(π ∧ σ) = Des(min{κ(π), κ(σ)}) = S.

The join case is similar.
We now show that the definition of meet actually gives a greatest lower bound, leaving

the least upper bound property as an exercise for the reader. First of all we note that
κ(π∧σ) = min{κ(π), κ(σ)} ≤ κ(π), κ(σ) component-wise so that π∧σ ≤ π, σ. Now suppose
that τ ≤ π, σ. By definition of the κ-middle order we have κ(τ) ≤ κ(π), κ(σ) component-
wise. But then κ(τ) ≤ min{κ(π), κ(σ)} so that τ ≤ π ∧ σ.

That meet distributes over join follows easily from the fact that min distributes over max
and so the proof is omitted.

Theorem 6.6. For any set S, the sequence (dn(S))n≥0 is log-concave.

Proof. Since Dn+1(S) is a distributive lattice, we just need to provide appropriate ideals.
Let

I = {π ∈ Dn+1(S) | κ(π) ∈ [0, n− 1]× [0, n− 2]× · · · × [0, 1]× [0, 0]× [0, 0]}.

Then I is clearly a lower order ideal isomorphic to D(S;n). Also define

J = {π ∈ Dn+1(S) | κ(π) ∈ [1, n]× [1, n− 1]× · · · × [1, 2]× [1, 1]× [0, 0]}.

Then J is an upper order ideal also isomorphic to Dn(S). A similarly simple check shows
that I ∩ J ∼= Dn−1(S) and so we are done by the Order Ideal Lemma.
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Note that in the special case S = [k] we have d(S;n) =
(
n−1
k

)
since any π ∈ D(S;n) can

be formed by putting 1 in the (k + 1)st position, then choosing k elements of [2, n] to put
before 1 in decreasing order, and arranging the rest after 1 in increasing order. Thus we
have obtained another proof of Corollary 3.2.

6.2 Peak polynomials

We now consider sequences of evaluations of peak polynomials. The peak set of π ∈ Sn is

Pk π = {i | πi−1 < πi > πi+1}.

Using our canonical example (14) we have

Pk 415632 = {4}.

As with the descent set, for a finite set of positive integers S we let

Pn(S) = {π ∈ Sn | Pk π = S}.

There are some sets S such that Pn(S) = ∅ for all n ≥ 0. But if S does not contain 1 and also
does not contain two consecutive integers, one can easily construct π ∈ Sn with Pkπ = S if
n > maxS. We call such S admissible. The following theorem was proved by Billey, Burdzy,
and Sagan [BBS13].

Theorem 6.7 ([BBS13]). If S is admissible then for n > maxS we have

#Pn(S) = pn(S)2
n−#S−1

where pn(S) is a polynomial in n.

The polynomial pn(S) is called the peak polynomial and more information about these
polynomials can be found in [BBPS15, BFT16, DLHIO17, O2̆0, GG21]. We note that the
peak set of π can be read off from the descent set since a peak is exactly a non-descent
followed by a descent. And the powers of two in #Pn(S) will cancel in a log-concavity
inequality. So the proof of the next result closely parallels the one already given for the
descent polynomial and the details are omitted.

Theorem 6.8. If S is admissible then the sequence (pn(S))n≥0 is log-concave.

6.3 Pattern avoidance

In this subsection we will give a third proof that the Catalan sequence is log-convex, this one
using pattern avoidance and the (ordinary) middle order. Say π ∈ Sn contains permutation
σ ∈ Sk as a classical pattern if there is a subsequence σ′ = πi1πi2 . . . πik of π, called a copy,
whose elements are in the same relative order as those of σ. In a bivincular pattern certain
pairs of elements of σ′ are specified to be in adjacent positions (indicated by a vertical bar
between the two in σ), or have adjacent values (indicated by a horizontal bar above the
smaller of the two in σ). For example, copies of σ = 231 in π = 643512 are 451, 452, 351,
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and 352. Only one of these is a copy of 2|31 namely 352. If σ is any bivincular pattern then
its avoidance set is

Avn(σ) = {π ∈ Sn | π contains no copy of σ}.

It is well-known that if σ ∈ S3 then

#Avn(σ) = Cn, (21)

the nth Catalan number.
From a result of Claesson [Cla01, Lemma 2] and a trivial Wilf equivalence we get the

following which will be useful in the sequel.

Lemma 6.9 ([Cla01]). For all n ≥ 0 we have
Avn(213) = Avn(213).

The next lemma will permit us to transfer results from Sn to In.

Lemma 6.10. For all n ≥ 0, we have π ∈ Avn(213) if and only if ι(π) is weakly increasing.

Proof. By the previous lemma, it suffices to show that π contains a copy of 213 if and only
if ι(π) has a descent.

Assume first that π contains ji(j + 1) where i < j and let π′ consist of all the elements
of π after j + 1. Then ιj+1 is the number of elements in π′ which are smaller than j, since j
comes before j + 1 in π. Also, ιj counts these same elements of π′ together with i < j and
possibly other elements between j and j + 1. Thus ιj > ιj+1 which is a descent.

Now suppose that in ι(π) we have ιj > ιj+1 for some some j. Then j + 1 must be to
the right of j since otherwise ιj+1 counts all the elements counted by ιj plus j itself forcing
ιj+1 > ιj. Furthermore, there must be an element i < j between j and j + 1 since if this is
not the case then, by an argument similar to that of the previous paragraph, ιj = ιj+1. This
gives the desired copy ji(j + 1) of 213.

We can now use (21) to reprove the log-convexity of the Catalan sequence.

Theorem 6.11. The sequence (#Avn(213))n≥0 = (Cn)n≥0 is log-convex.

Proof. We first show that the partial order on Avn(213) induced from the middle order is a
distributive lattice. We claim that this order, is in fact, a sublattice of the middle order of
Sn and thus must be distributive. The meet and join of π, σ ∈ Sn are obtained by taking
pairwise minima and maxima of ι(π) and ι(σ). From this it is easy to see that if ι(π) and ι(σ)
are weakly increasing then so are ι(π)∧ ι(σ) and ι(π)∨ ι(σ). The previous lemma completes
the proof of the claim.

We now choose two upper order ideals to finish the demonstration of the theorem. We
use multiplicity notation for inversion sequences in the usual way. In particular, let

I = {ι ∈ ι(Avn+1(213)) | ι ≥ (0, 1n)},

and
J = {ι ∈ ι(Avn+1(213)) | ι ≥ (0n, n)}.

The verification that these ideals and their intersection have the correct sizes is routine and
left to the reader. The Order Ideal Lemma completes the proof.
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We note that one can give a similar proof of the log-convexity of the Catalan sequence
using middle order restricted to Av(312). One can not apply the same technique to any
other permutation π ∈ S3 because, as is clear from Figure 8, the restriction of middle order
to Av(π) is not a distributive lattice.

7 Set partitions

For our last applications of the Order Ideal Lemma, we use set partitions and noncrossing
set partitions to prove log-concavity results about Stirling numbers of the second kind and
Narayana numbers. In both cases, it will be convenient to express the distributive lattices
in terms of restricted growth functions.

7.1 Stirling numbers of the second kind

We first set notation and basic definitions. A set partition of [n], β = B1/B2/ . . . /Bk ⊢ [n], is
a family of disjoint subsets Bi called blocks whose disjoint union is ⊎iBi = [n]. In examples,
we will eliminate the set braces and commas from the Bi. We will also always write our
partitions in standard form which means that

1 = minB1 < minB2 < . . . < minBk.

For example,
β = 12359/46/78 ⊢ [9]. (22)

We let
S([n], k) = {β | β ⊢ [n] with k blocks}.

The Stirling numbers of the second kind are

S(n, k) = #S([n], k).

Set partitions are in bijection with certain sequences called restricted grown functions. A
restricted growth function (RGF) is a sequence ρ = ρ1ρ2 . . . ρn of positive integers satisfying

1. ρ1 = 1, and

2. for i ≥ 2 we have
ρi ≤ 1 + max(ρ1ρ2 . . . ρi−1).

We call n the length of ρ and write |ρ| = n To illustrate

ρ = 111212331 (23)

is an RGF with |ρ| = 9, while τ = 111212431 is not since τ7 = 4 but 1 + max(111212) = 3.
We will use the notation

RGF(n, k) = {ρ | |ρ| = n and max ρ = k}.
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Figure 9: The partial order on RGF(4, 2) both in terms of RGFs and (F,R) pairs

There is a well-known bijection S([n], k) → RGF(n, k) defined by sending β = B1/B2/ . . . /Bk

to ρ = ρ1ρ2 . . . ρn where
ρi = j if and only if i ∈ Bj.

The reader can check that the partition in (22) is sent to the RGF in (23) under this map.
To describe the partial order on RGF(n, k) we will need two sequences. If ρ ∈ RGF(n, k)

then its sequence of first occurrences (firsts) is

F (ρ) = f1f2 . . . fk

defined by
fi = j where ρj is the first i in ρ.

Note that since ρ is an RGF we always have 1 = f1 < f2 < . . . < fk. We will also use the
rest of ρ which is

R(ρ) = ρ with its first occurrences removed.

Note that |R(ρ)| = n− k. Using our example ρ, we have

F (111212331) = 147 and R(111212331) = 111231.

Finally, we define a partial order (RGF(n, k),⪯) by

ρ ⪯ τ if and only if F (ρ) ≥ F (τ) and R(ρ) ≤ R(τ)

where the orders on F and R are component-wise. Figure 9 illustrates this order both on
the restricted growth functions ρ ∈ RGF(4, 2) on the left and on the pairs (F (ρ), R(ρ)) on
the right.

Lemma 7.1. The partial order (RGF(n, k),⪯) is a distributive lattice.

Proof. We first need to prove the existence of meets and joins. As usual, we only do the
former as the latter is similar. Recall the definitions of min and max for integer vectors
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as given in (19) and (20). We will use the notation F = f1f2 . . . fk, R = r1r2 . . . rn−k, and
similarly for other first and rest sequences.

Suppose that (F,R) and (G,S) are two first-rest pairs corresponding to ρ, σ ∈ RGF(n, k).
If we can show that (F (τ), R(τ)) = (max{F,G},min{R, S}) for some τ ∈ RGF(n, k) then
it is easy to see that τ is the greatest lower bound of ρ and σ. The proof that max{F,G}
is still an increasing sequence beginning with 1 is easy. So we need to show that if the
numbers 1, 2, . . . , k are placed in min{R, S} at the indices indicated in max{F,G} to form τ ,
then their positions will be the first occurrences of these numbers. This in turn immediately
implies that τ is an RGF. Let us consider what happens when inserting j. Without loss
of generality, suppose that fj ≥ gj so that max{fj, gj} = fj. Now consider any τi with
i < fj. There are now two cases depending on whether τi is a first occurrence or not. If it is,
then τi < j as desired because max{F,G} is increasing. If τi is not a first occurrence then
τi = min{rl, sl} for some l ≤ i. So rl comes before place fj in ρ which is an RGF, and this
implies rl < j. Thus

τi = min{rl, sl} ≤ rl < j

which is again what we wanted.
To finish the proof we note, as usual, that distributivity follows from the properties of

min and max.

We now show that a sequence of Stirling numbers of the second kind is log-concave.

Theorem 7.2. For any k ≥ 0, the sequence (S(n, k))n≥0 is log-concave.

Proof. Consider RGF(n + 1, k) which, by the previous lemma, is a distributive lattice. We
first look at the subset given by

I = {ρ ∈ RGF(n+ 1, k) | ρ = 11ρ3 . . . ρn+1}.

We claim that I is a lower order ideal. For suppose ρ ∈ I and σ ⪯ ρ. But then we
have F (σ) ≥ F (ρ) = 1f2 . . . fk where f2 ≥ 3 since ρ begins with two 1’s. It follows that
F (σ) = 1g2 . . . gk where g2 ≥ f2 ≥ 3. So, σ also begins with two 1’s as desired. It should be
clear from the definition of an RGF that there is an isomorphism I ∼= RGF(n, k) given by
removing the first 1 of ρ ∈ I.

Next consider

J = {ρ ∈ RGF(n+ 1, k) | ρ = ρ1ρ2 . . . ρnk and n+ 1 ̸∈ F (ρ)}.

we wish to show that this is an upper order ideal. So take ρ ∈ J and σ ⪰ ρ. The two
conditions on ρ being in J imply that ρn+1 = k is not a first occurrence. It follows that
R(ρ) = r1r2 . . . rn−kk. Now R(σ) ≥ R(ρ) implies that R(σ) also ends with k. And this means
that so does σ itself, and that this final k is not a first occurrence since it is from R(σ). So σ
satisfies the two conditions for inclusion in J . There is also an isomorphism J ∼= RGF(n, k)
gotten by removing the last k of ρ ∈ J since that k is not a first occurrence.

The reader should now find it easy to prove that I ∩ J ∼= RGF(n − 1, k). Thus we are
done by the Order Ideal Lemma.
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1112

1121

1211 1122

1221

1222

∼=

(14, {{1, 1}})

(13, {{1, 1}})

(12, {{1, 1}}) (13, {{1, 2}})

(12, {{1, 2}})

(12, {{2, 2}})

Figure 10: The partial order on NC(4, 2) both in terms of RGFs and (F,M) pairs

7.1.1 Narayana numbers

The Narayana numbers can be defined, for 1 ≤ k ≤ n, as

N(n, k) =
1

n

(
n

k − 1

)(
n

k

)
.

They refine the Catalan numbers in that

Cn =
n∑

k=1

N(n, k)

and count various refinements of the combinatoiral objects enumerated by Cn. We will prove
the log-concavity of sequences of Narayana numbers using their interpretation in terms of
non-crossing partitions.

Call a set partition β = B1/B2/ . . . /Bk crossing if there exist positive integers a < b <
c < d with a, c ∈ Bi and b, d ∈ Bj for some i ̸= j, and non-crossing otherwise. Clearly a
partition is non-crossing if and only if the associate restricted growth function ρ = r1 . . . rn
has no subsequence of the form ijij. We call such RGFs non-crossing as well. For example,
in Figure 9 on the left, all the partitions are non-crossing except 1212. We let

NC(n, k) = {ρ ∈ RGF(n, k) | ρ is non-crossing}.

It is well known that
N(n, k) = #NC(n, k).

Define M(ρ) to be the multiset underlying R(ρ). Using the example from the previous
subsection

M(111212331) = {{14, 2, 3}}.
We now partially order NC(n, k) by letting ρ ⊴ σ if and only if

F (ρ) ≥ F (σ) and M(ρ) ≤M(σ). (24)
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where we compare two multisets component-wise after writing them out in weakly increasing
order. In Figure 10 we have written out the order on NC(4, 2) in terms of RGFs (left) and
(F,M) pairs (right).

The following lemma will be useful in proving that the partial order on NC(n, k) is a
lattice.

Lemma 7.3. Let F = f1f2 . . . fk be an increasing sequence of integers with f1 = 1 and
let M = {{1m1 , 2m2 , . . . , kmk}} be a multiset. There is a an RGF ρ with F (ρ) = F and
M(ρ) =M if and only if for all i with 1 < i ≤ k we have

fi − i ≤ m1 +m2 + · · ·+mi−1. (25)

Furthermore, there is a unique such non-crossing ρ.

Proof. Suppose first that ρ exists. Then fi − i is the number places in ρ before fi which do
not contain a first element. And since ρ is an RGF, these places can only contain elements
smaller than i. Since the sum is the total number of elements smaller than i, the inequality
follows.

Now suppose the inequalities hold. We will build the desired RGF ρ. An example of this
construction follows the proof. First put 1, 2, . . . , k in the spaces dictated by F . Now fill
each remaining space from left to right while removing elements from M as follows. To fill
a given space, find the nearest first occurrence from F to its left, say that is i. Now pick the
largest element of the current version of M which is at most i, say that is is j ≤ i. Finally
put a j into the space of ρ and remove a copy of j from M . We see from the arguments
in the previous paragraph that there will always be an element available to fill the space
and so this algorithm terminates with all spaces filled. Furthermore, the RGF restriction is
satisfied by construction.

We claim that the RGF ρ constructed in the previous paragraph is noncrossing. Suppose,
to the contrary, the it contains a copy of ijij. There are now two cases depending on the
relative size of i and j. But they are similar so we will only do the case i < j. Note that
the second i and j in the copy are not first occurrences in ρ and so were added during the
procedure using M . Let k be the element in a position of F which is closest on the left to
the second i in ijij. So i was the largest element of the current M smaller than or equal
to k. But j > i and, by definition of an RGF and the choice of k, all elements up to the
i in question are at most k. In particular j ≤ k because of the first j in ijij. It follows
that there was no j in M when the second i was chosen since the algorithm always picks the
largest possible element. But now it is not possible to pick an element in a later place for
the second j.

For uniqueness, suppose that there is another associated noncrossing RGF ρ′. Consider
the first place where ρ and ρ′ differ and let i′ be the element of ρ′ in that place. The elements
of F are the same in both, so i′ must be a place filled byM in ρ. Let k be the first occurrence
closest to i′ on its left. By definition of how elements are chosen in ρ and the fact that this
is the first place where the two RGFs differ, there must be j′ ∈ M with i′ < j′ ≤ k which
comes later in ρ′. But from what we have established, neither the occurrence of i′, nor that
of j′ is first. It is now easy to see that ρ′ has a copy of i′j′i′j′ where the first i′, j′ are in
positions indexed by F and the second two are as constructed.
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To illustrate the building of the RGF ρ in the previous proof, suppose that

(F,M) = (137, {{13, 22, 3}})

We are to build ρ with |ρ| = |F |+ |M | = 3+6 = 9. We start by putting 1, 2, 3 in the spaces
dictated by F to get

ρ = 1 2 3 .

To fill the first space, we look for the closest first occurrence to its left which is 1. So we must
choose the largest element of M which is at most 1. Of course, this is 1 itself, so moving a
1 from M to ρ gives

ρ = 1 1 2 3 and M = {{12, 22, 3}}.

The next space is closest on the left to first occurrence 2. Since M contains a 2, we move it
to ρ to obtain

ρ = 1 1 2 2 3 and M = {{12, 2, 3}}.
Similarly the next space is filled with a 2

ρ = 1 1 2 2 2 3 and M = {{12, 3}}.

Now M no longer contains any 2’s so the next space gets the largest element of M less than
2 which is a 1

ρ = 1 1 2 2 2 1 3 and M = {{1, 3}}.
The final two spaces have 3 as their closest first occurrence, and both elements of M are at
most 3. So they are added to ρ in decreasing order to finally obtain

ρ = 1 1 2 2 2 1 3 3 1.

The next lemma will help us show that meets and joins exist in the partial order on
NC(n, k).

Lemma 7.4. Let (F,M) and (F ′,M ′) be set-multiset pairs satisfiying equation (25). Then
the pairs (max{F, F ′},min{M,M ′}) and (min{F, F ′},max{M,M ′}) satisfy the same in-
equalities.

Proof. We will only provide the details for (max{F, F ′},min{M,M ′}) as the other case is
similar. Let F ′′ = max{F, F ′} and M ′′ = min{M,M ′}. As usual, we use the notation
F = f1f2 . . . fk, M = {{1m1 , 2m2 , . . . , kmk}}, and similarly with primes or double primes for
the other pairs. Without loss of generality we can assume that fi ≥ f ′

i so that f ′′
i = fi. Also

M ≥ M ′′ component wise so that the number of elements less than i in M must be at at
most their number in M ′′, that is,

m1 +m2 + · · ·+mi−1 ≤ m′′
1 +m′′

2 + · · ·+m′′
i−1.

Thus
f ′′
i − i = fi − i ≤ m1 +m2 + · · ·+mi−1 ≤ m′′

1 +m′′
2 + · · ·+m′′

i−1

as desired.
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Lemma 7.5. The poset (NC(n, k),⊴) is a distributive lattice.

Proof. Suppose ρ, σ ∈ NC(n, k). By Lemma 7.3, the pairs (F (ρ),M(ρ)) and (F (σ),M(σ))
satisfy the inequalities (25). And by the previous lemma, (25) is still satisfied by the pair
(max{(Fρ), F (σ)}, min{M(ρ),M(σ)}). Using Lemma 7.3 again, there is a unique noncross-
ing RGF ρ ∧ σ with

F (ρ ∧ σ) = max{F (ρ), F (σ)} and M(ρ ∧ σ) = min{M(ρ),M(σ)}.

We claim that ρ ∧ σ is the greatest lower bound of ρ and σ. Indeed, F (ρ ∧ σ) =
max{F (ρ), F (σ)} ≥ F (ρ), F (σ) and M(ρ ∧ σ) = min{M(ρ),M(σ)} ≤ M(ρ),M(σ) so that
ρ ∧ σ ⊴ ρ, σ by (24). And if τ ⊴ ρ, σ then F (τ) ≥ F (ρ), F (σ) and M(τ) ≤ M(ρ),M(σ)
by (24) again. So F (τ) ≥ max{F (ρ), F (σ)} and M(τ) ≤ min{M(ρ),M(σ)}. Using the
definition of the partial order one last time we get τ ⊴ ρ ∧ σ as desired.

Similarly, one constructs ρ ∨ σ as the unique noncrossing RGF with

F (ρ ∨ σ) = min{F (ρ), F (σ)} and M(ρ ∨ σ) = max{M(ρ),M(σ)}

and shows that it is indeed a least upper bound. The fact that the resulting lattice is
distributive follows from the fact that max distributes over min and vice-versa.

We can finally prove our main result of this subsection.

Theorem 7.6. For fixed k, the sequence of Narayana numbers (N(n, k))n≥0 is log-concave.

Proof. Throughout this proof we will consider the elements ρ ∈ NC(n, k) as set-multiset
ordered pairs (F (ρ),M(ρ)) where F (ρ) = f1f2 . . . fk and M(ρ) = {{1m1 , 2m2 , . . . , kmk}}.

Consider the subset of NC(n+ 1, k) given by

I = {(F,M) ∈ NC(n+ 1, k) | f2 ≥ 3}.

Note that I is a lower order ideal since if (F,M) ∈ I and (F ′,M ′) ≤ (F,M) then F ′ ≥ F .
It follows that f ′

2 ≥ f3 ≥ 3 so that (F ′,M ′) ∈ I. We also claim that I ∼= NC(n, k). If
(F,M) ∈ I then f2 ≥ 3. Thus ρ, the associated RGF, must begin with at least two 1’s. This
forces m1 ≥ 1. Now map (F,M) to the pair (F ′,M ′) where

f ′
i =

{
1 if i = 1,
fi − 1 if i ≥ 2,

and

m′
i =

{
m1 − 1 if i = 1,
mi if i ≥ 2.

It is easy to check that this gives an isomorphism. So we have #I = N(n, k).
Now define

J = {(F,M) ∈ NC(n+ 1, k) | mk ≥ 1}.

This forces J to be an upper order ideal, for suppose (F,M) ∈ J and (F ′,M ′) ≥ (F,M).
Since mk ≥ 1, the nondecreasing rearrangement of M must end in k. So M ′ ≥M means the
same is true for M ′, and m′

k ≥ 1. Again, there is an isomorphism between J and NC(n, k).
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The fact that mk ≥ 1 implies fk ≤ n since there are at least two k’s in the associated ρ
and so the first one can not be in the final position n + 1. So the following function is well
defined. Map (F,M) to (F ′,M ′) where F ′ = F and

m′
i =

{
mk − 1 if i = k,
mi if i < k.

Again, it is not hard to show that this is an isomorphism. The fact that I∩J ∼= NC(n−1, k)
is similarly left to the reader.

8 Future directions

The purpose of this section is threefold. First, we will give a proof of the Order Ideal Lemma
using the FKG inequality. Next, we will describe various sequences to which it might be
possible to apply our method but which have so far resisted proof. Finally, we end with
some possible avenues for extending the Order Ideal Lemma.

8.1 Proof of the Order Ideal Lemma

Let R≥0 denote the nonnegative real numbers. For any poset (P,⪯) we call a function
f : P → R≥0 increasing if

x ⪯ y implies f(x) ≤ f(y).

Similarly define f to be decreasing. Now suppose (L,⪯) is a lattice. A function µ : L→ R≥0

is log-supermodular if for all x, y ∈ L we have

µ(x)µ(y) ≤ µ(x ∧ y)µ(x ∨ y).

Finally, given a function f : L→ R≥0 and a log-supermodular function µ : L→ R≥0, we use
the notation

S(f) =
∑
x∈L

f(x)µ(x).

In particular, if g : L→ R≥0 is another function then

S(fg) =
∑
x∈L

f(x)g(x)µ(x),

and, letting 1 : L→ R≥0 be the function defined by 1(x) = 1 for all x ∈ L,

S(1) =
∑
x∈L

µ(x).

We can now state the FKG inequality [FKG71].

Theorem 8.1 ([FKG71]). Suppose (L,⪯) is a finite distributive lattice and µ : L→ R≥0 is
a log-supermodular function. Suppose also that f, g : L→ R≥0 are two functions.
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(a) If f, g are both increasing or both decreasing then

S(f) · S(g) ≤ S(fg) · S(1).

(b) If one of f, g is increasing and the other decreasing then

S(f) · S(g) ≥ S(fg) · S(1).

The Order Ideal Lemma, which is restated here for convenience, is a corollary.

Lemma 8.2 (The Order Ideal Lemma). Let L be a distributive lattice and suppose that
I, J ⊆ L are ideals.

(a) If I, J are both lower ideals or both upper ideals then

|I| · |J | ≤ |I ∩ J | · |L|.

(b) If one of I, J is a lower order ideal and the other is upper then

|I| · |J | ≥ |I ∩ J | · |L|.

Proof. We will prove (b) as (a) is similar. Suppose that I is the lower order ideal and J is
the upper. Define indicator functions f, g : L→ R≥0 by

f(x) =

{
1 if x ∈ I,
0 else,

and

g(x) =

{
1 if x ∈ J ,
0 else.

Since I is a lower order ideal we have that f is decreasing and, by the same token, g is
increasing. Also define µ = 1 which is clearly log-supermodular. Now, by the FKG Theorem,
part (b),

|I| · |J | = S(f) · S(g) ≥ S(fg) · S(1) = |I ∩ J | · |L|
which finishes the proof.

8.2 Other sequences

In this subsection we discuss various sequences to which we hope the Order Ideal Lemma
might be applied.

A superset of the set of permutations (viewed as permutations matrices) is the set of
alternating sign matrices. An alternating sign matrix or ASM is a matrix such that

1. every entry is ±1 or 0, and

2. in each row and each column the nonzero entries alternate 1 and −1, beginning and
ending with 1.
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The number of n× n ASM’s is given by

asmn =
n−1∏
i=0

(3i+ 1)!

(n+ i)!
.

This formula was conjectured by Mills, Robbins, and Rumsey in 1983 [MRR83] and then
given two proofs in 1996, the first by Zeilberger [Zei96] and the second by Kuperberg [Kup96].
The same numbers count descending plane partitions, totally symmetric self-complementary
plane partitions, configurations of square ice with domain wall boundary conditions, and
various other mathematical objects. Using cancellation of factorials, it is easy to prove the
following result.

Theorem 8.3. The sequence (asmn)n≥0 is log-convex.

Striker [Str11] has introduced two posets which she calls pyramidal, Pn, and tetrahedral,
Tn, having subposets P such that various famous combinatorial sequences are given by the
number of elements in the corresponding distributive lattices J(P ). In particular, there is a
subposet Tn(S) ⊆ Tn such that #J(Tn(S)) = asmn. This presents the following problem.

Problem 8.4. Find ideals of the distributive lattice J(Tn(S)) such that applying the Order
Ideal Lemma gives a combinatorial proof of Theorem 8.3.

A famous set of permutations of a multiset is the set of parking functions. A park-
ing function of length n is a sequence of integers ϕ = ϕ1ϕ2 . . . ϕn whose weakly increasing
rearrangement ψ = ψ1ψ2 . . . ψn satisfies

1 ≤ ψi ≤ i

for i ∈ [n]. Otherwise put, and using the notation of (5) and (15), ψ−1 ∈ In. Parking func-
tions were first defined by Konheim and Weiss [KW66] and have since been widely studied,
in part because of their connections with noncrossing partitions, hyperplane arrangements,
and other combinatorial constructs. The number of parking functions of length n is given
by

pfn = (n+ 1)n−1.

We note that this is also the number of labeled trees on n+1 vertices. The next result follows
from an algebraicly derived theorem of Chen, Wang, and Yang [CWY11] about strongly q-
log-concave sequences (see the next section for the definition) applied to certain rooted trees.

Theorem 8.5 ([CWY11]). The sequence (nn−1)n≥2 is log-convex.

Using simple division and the result just given, we obtain the following.

Theorem 8.6 ([CWY11]). The sequence (pfn)n≥1 is log-convex.

It would be very interesting to give a combinatorial proof of this theorem using the Order
Ideal Lemma. Unfortunately, we have been unable to find the appropriate distributive lattice.
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Given a permutation, one can look at the values of the peaks rather than their indices.
Specifically, the pinnacle set of π ∈ Sn is

Pin π = {πi | πi−1 < πi > πi1}.

Pinnacle sets were first studied by Strehl [Str78] although he called them peak sets. They
were then rediscovered by Davis, Nelson, Petersen, and Tenner [DNKPT18] and have since
been studied by a number of authors [Rus20, DLHH+21, RT21, Fan22, DLM+22, Min23,
FNT24]. Interestingly, they do not behave like peaks. For example, there does not seem to
be any corresponding pinnacle polynomial.

Since pinnacles involve permutation values, it is natural to try and study them using
the ordinary middle order. However, the posets obtained by restricting this order to all
permutations with a given length and pinnacle set do not always have connected Hasse
diagrams. Instead, consider the following variant which has occurred, for example, in the
work of Rusu and Tenner [RT21]. Let σ be a permutation of distinct positive integers. Let

Pinn(σ) = {π ∈ Sn | the pinnacles of π are the elements of σ in that order}.

and
pinn(σ) = #Pinn(σ).

Computation of examples raise the following questions.

Question 8.7. For all n and σ:

(a) Is the restriction of the middle order to Pinn(σ) a distributive lattice?

(b) Is the sequence (pinn(σ)) log-concave?

It would be interesting if one could apply our methods to other pattern avoidance classes.
The following conjecture has been verified by computer for the first 25 elements of each
sequence.

Conjecture 8.8. If σ ∈ S4 then the sequence (#Avn(σ))n≥0 is log-convex.

Finally, given the nice behaviour of the Stirling numbers of the second kind, one could
ask what happens with those of the first. Recall that the signless Stirling numbers of the
first kind are

c(n, k) = #{π ∈ Sn | π has k cycles in its disjoint cycle decomposition}.

We have checked the following conjecture for 1 ≤ k ≤ n ≤ 100.

Conjecture 8.9. Given k, there is an integer Nk such that (c(n, k))n≥0 is log-concave for
n < Nk and log-convex for n ≥ Nk.
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8.3 q-analogues, x-analogues, and total positivity

Let q be a variable. There is a q-analogue of the FKG inequality which makes it possible to
prove generalizations of our results in a straightforward manner. Put a partial order ≤ on
the polynomial algebra R[q] by defining

p(q) ≤ s(q) if and only if s(q)− p(q) ∈ R≥0[q]. (26)

We can now define a sequence of such polynomials (pn(q))n≥0 to be q-log-concave if

pn(q)
2 ≥ pn−1(q)pn+1(q)

for all n ≥ 1 and similarly for q-log-convexity.
Suppose (L,⪯) is a lattice and N is the nonnegative integers. Call a function r : L→ N

modular if
r(x) + r(y) = r(x ∧ y) + f(x ∨ y).

If L is distributive, then it has a rank function which is an example of a modular function.
If, in addition to r, we have a function f : L → R≥0 and a log-supermodular function
µ : L→ R≥0 then we have an associated polynomial

S[f ] =
∑
x∈L

f(x)µ(x)qr(x).

The following result was proved by Björner [Bj11] for the rank function. Then Chen, Pak,
and Panova [CPP23] noted that the same proof would work for any modular function.

Theorem 8.10 ([Bj11, CPP23]). Suppose (L,⪯) is a finite distributive lattice, µ : L→ R≥0

is a log-supermodular function, and r : L→ N is modular. Suppose also that f, g : L→ R≥0

are two functions.

(a) If f, g are both increasing or both decreasing then

S[f ] · S[g] ≤ S[fg] · S[1].

(b) If one of f, g is increasing and the other decreasing then

S[f ] · S[g] ≥ S[fg] · S[1].

The following q-analogue of the Order Ideal Lemma follows from the previous theorem
in much the same way that the original result follows from the FKG inequality. So the
demonstration is omitted. For a modular function r will use the notation

[I]q =
∑
x∈I

qr(x).

Lemma 8.11 (The q-Order Ideal Lemma). Let L be a distributive lattice, r : L → N be
modular, and suppose that I, J ⊆ L are ideals.
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(a) If I, J are both lower ideals or both upper ideals then

[I]q · [J ]q ≤ [I ∩ J ]q · [L]q.

(b) If one of I, J is a lower order ideal and the other is upper then

[I]q · [J ]q ≥ [I ∩ J ]q · [L]q.

We now show how to use the q-Order Ideal Lemma to obtain a generalization of Theo-
rem 4.3 to principal specializations of Schur functions, noting that a similar extension works
for the more general Theorem 4.2.

Theorem 8.12. For any partition λ the sequence (sλ(q, q
2, . . . , qn))n≥0 is q-log-concave.

Proof. For an SSYT T of shape λ we let

r(T ) =
∑

(i,j)∈λ

Ti,j.

Note that this is a modular function since the meet and join of tableaux are obtained by
taking element-wise minima and maxima, and for any real numbers x, y we have

x+ y = min{x, y}+max{x, y}

Letting
SSYTλ(n) = {T ∈ SSYTλ | maxT ≤ n}

we have
sλ(q, q

2, . . . , qn) =
∑

T∈SSYTλ(n)

∏
(i,j)∈λ

qTi,j =
∑

T∈SSYTλ(n)

qr(T ).

Now using using the lower order ideal

I = {T ∈ SSYTλ(n+ 1) | maxT ≤ n},

the upper order ideal
J = {T ∈ SSYTλ(n+ 1) | minT ≥ 2},

and the q-Order Ideal Lemma completes the proof.

There is an extension of q-log-concavity to several variables which would also be worth
considering. Suppose that we have a sequence of positive real numbers (an)n≥0 which is log
concave. Rewriting the inequalities gives

a0
a1

≤ a1
a2

≤ a2
a3

≤ . . . .

Now cross-multiplying any two fractions gives the seemingly stronger, but actually equiva-
lent, condition that

aman ≥ am−1an+1

for all 0 < m ≤ n. We note that the analogous inequalities for polynomials in q are not
equivalent to q-log-concavity and are called strong q-log-concavity.

Suppose that ≤ is a partial order on the polynomial ring R[x] where x = {x1, x2, . . .}.
Say that this order is standard if it satisfies the following three axioms.
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1. If f(x) ∈ R≥0[x] then f(x) ≥ 0.

2. If f(x) ≤ g(x) then f(x) + h(x) ≤ g(x) + h(x) for all h(x) ∈ R[x].

3. If f(x) ≤ g(x) then f(x)h(x) ≤ g(x)h(x) for all h(x) ∈ R≥0[x].

Note that the order defined by (26) with q replaced by x everywhere is standard. Call a
sequence (fn(x))n≥0 strongly x-log-concave with respect to a standard partial order if, for all
0 < m ≤ n, we have

fm(x)fn(x) ≥ fm−1(x)fn+1(x).

Sagan [Sag92] proved the following result.

Theorem 8.13 ([Sag92]). Fix k ≥ 0 and let ≤ be a standard partial order on R[x]. If the
sequence (xn)n≥0 is strongly x-log-concave then so are the sequences

(ek(x1, x2, . . . , xn))n≥0 and (hk(x1, x2, . . . , xn))n≥0

where ek and hk are the kth elementary and complete homogeneous symmetric functions,
respectively.

It would be very interesting to prove an x-analogue of the FKG inequality and apply it
to prove (strong) x-log-concavity and x-log-convexity results.

Another way to generalized our results would be in terms of total positivity. Note that
we can rewrite the log-concavity of a real sequence (an)n≥0 in terms of a determinant∣∣∣∣ an an+1

an−1 an

∣∣∣∣ ≥ 0.

Letting an = 0 for n < 0, consider the infinite Toeplitz matrix

T = [aj−i]i,j∈N =


a0 a1 a2 · · ·
0 a0 a1 · · ·
0 0 a0 · · ·
...

...
...

. . .

 .
Call (an)n≥0 totally positive if all minors of T are nonnegative. Note that this implies log-
concavity because of the connected 2 × 2 minors (that is, those consisting of two adjacent
rows and two adjacent columns). It would be very interesting to find an extension of the
FKG inequality and the Order Ideal Lemma which could be used to prove total positivity.

Acknowledgement. We would like to thank Benjamin Adenbaum for useful discussions
and, in particular, references concerning when the weak and strong Bruhat order restricted
to an avoidance class is a lattice.
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