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Given two variables s and t, the associated sequence of Lucas 
polynomials is defined inductively by {0} = 0, {1} = 1, and 
{n} = s{n − 1} + t{n − 2} for n ≥ 2. An integer (e.g., 
a Catalan number) defined by an expression of the form ∏

i ni/ 
∏

j kj has a Lucas analogue obtained by replacing each 
factor with the corresponding Lucas polynomial. There has 
been interest in deciding when such expressions, which are a 
priori only rational functions, are actually polynomials in s, t. 
The approaches so far have been combinatorial. We introduce 
a powerful algebraic method for answering this question by 
factoring {n} =

∏
d|n Pd(s, t), where we call the polynomials 

Pd(s, t) Lucas atoms. This permits us to show that the Lucas 
analogues of the Fuss-Catalan and Fuss-Narayana numbers for 
all irreducible Coxeter groups are polynomials in s, t. Using 
gamma expansions, a technique which has recently become 
popular in combinatorics and geometry, one can show that 
the Lucas atoms have a close relationship with cyclotomic 
polynomials Φd(q). Certain results about the Φd(q) can 
then be lifted to Lucas atoms. In particular, one can prove 
analogues of theorems of Gauss and Lucas, deduce reduction 
formulas, and evaluate the Pd(s, t) at various specific values 
of the variables.
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1. Introduction

We will denote the nonnegative integers by N. Let s, t be variables. Inductively define 
the nth Lucas polynomial, {n} = {n}s,t, by {0} = 0, {1} = 1, and

{n} = s{n− 1} + t{n− 2} (1)

for n ≥ 2. These polynomials were introduced and studied by Lucas in [16,18,17]. This 
sequence has various interesting specializations. For example, {n}1,1 is the nth Fibonacci 
number and {n}2,−1 = n. Furthermore, if one considers a third variable q, then a simple 
induction shows that

{n}1+q,−q = 1 + q + q2 + · · · + qn−1. (2)

This summation is usually denoted [n]q and is important both in the theory of hyperge-
ometric series and in combinatorics. This equation will permit us to make a connection 
between the Lucas sequence and cyclotomic polynomials.

There has been recent interest in studying Lucas analogues of combinatorial con-
stants. These are connected via (2) with the well-studied q-analogues of such integers. 
Suppose we are given an integer defined as a quotient of products 

∏
i ni/ 

∏
j kj where the 

ni and kj are positive integers. The corresponding Lucas analogue is 
∏

i{ni}/ 
∏

j{kj}. 
A priori, this is just a rational function of s and t. But often it is actually a polynomial 
in these variables with nonnegative integer coefficients. Benjamin and Plott [4] gave a 
complicated combinatorial interpretation for the Lucas analogue of the binomials coef-
ficients, called Lucanomials. Then Sagan and Savage [21] came up with a simpler one 
which, unfortunately, appeared to be rigid in that their ideas could not be extended to 
related constants such as the Catalan numbers. Ekhad [11] found an algebraic argument 
to show that since the Lucanomials were in N[s, t], so were the Lucas-Catalans. Bennett, 
Carrillo, Machacek, and Sagan [6] gave a combinatorial model in the binomial coefficient 
case which could be extended to the Catalan numbers for all irreducible Coxeter groups, 
but they were still not able to apply their methods to various other constants. As yet 
unpublished work has also been done by the Algebraic Combinatorics Seminar at the 
Fields Institute [1], Garrett and Killpatrick [12], Nenashev [14], and Rao and Suk [19]. 
Finally, the Lucas atoms were discovered earlier and independently by Levy [15] who 
showed that they were irreducible over the rationals.

We introduce a new and powerful method for proving that Lucas analogues are poly-
nomials with nonnegative integer coefficients. In particular, we will define a new sequence 
of polynomials Pn(s, t) which will be called Lucas atoms and satisfy

{n} =
∏
d|n

Pd(s, t). (3)

The first few Lucas polynomials and Lucas atoms are given in Table 1. Given a product 
of Lucas polynomials 

∏
i{ni} its associated atomic decomposition is the product of Lucas 
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Table 1
The Lucas polynomials and Lucas atoms for n ≤ 6.

n {n} Pn(s, t)
1 1 1
2 s s
3 s2 + t s2 + t
4 s3 + 2st s2 + 2t
5 s4 + 3s2t + t2 s4 + 3s2t + t2

6 s5 + 4s3t + 3st2 s2 + 3t

atoms obtained by replacing each {ni} by the corresponding product using (3). One of our 
principal results shows that atomic decompositions function like prime decompositions 
of integers. Note that we do not have to consider P1(s, t) since it is the polynomial 1.

Theorem 1.1. Suppose f(s, t) =
∏

i{ni} and g(s, t) =
∏

j{kj} for certain ni, kj ∈ N, and 
write their atomic decompositions as

f(s, t) =
∏
d≥2

Pd(s, t)ad and g(s, t) =
∏
d≥2

Pd(s, t)bd

for certain powers ad, bd ∈ N. Then f(s, t)/g(s, t) is a polynomial if and only if ad ≥ bd
for all d ≥ 2. Furthermore, in this case f(s, t)/g(s, t) has nonnegative integer coefficients.

This result is striking for several reasons. First of all, it gives a condition for poly-
nomiality which is not only sufficient but also necessary. It is also notable that such 
polynomials must always be in N[s, t]. Thus it is impossible for one of these polynomials 
to have a coefficient which is 1/2 or −3.

In the next section, the Lucas atoms are defined and the previous theorem is proved 
using a connection with cyclotomic polynomials, Φn(q). This correspondence is made 
through the use of gamma expansions. These expressions are important in geometry 
because of a conjecture of Gal and in combinatorics because of their usefulness in prov-
ing unimodality results. See the recent survey of Athanasiadis [3] for more details. In 
particular, Pn(s, t) turns out to be the image of Φn(q) under a map which uses the 
gamma expansion of the latter. It follows that the coefficients of Pn(s, t) are just the 
absolute values of the gamma coefficients of Φn(q). In Section 3 we use Theorem 1.1
to prove that a host of Lucas analogues are in N[s, t], including the Fuss-Catalan and 
Fuss-Narayana numbers for an arbitrary irreducible Coxeter group. It is also natural to 
ask which theorems about the cyclotomic polynomials have counterparts for the Lucas 
atoms. Section 4 is devoted to showing that theorems of Gauss and Lucas expressing 
Φn(q) in terms of two squares can be lifted to the Lucas realm. In Section 5 we prove 
reduction formulas for Lucas atoms which reduce their computation to knowing Pp(s, t)
for a prime p. Section 6 contains various evaluations of Pn(s, t) for specific values of s
and t. We end with a section of comments and open questions.
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2. Defining Lucas atoms

One could define the Lucas atoms Pn(s, t) inductively using (3). But it will be more 
useful to obtain them from cyclotomic polynomials. First, however, we need some defi-
nitions about gamma expansions.

Let p(q) =
∑

i≥0 aiq
i be a nonzero polynomial in q with coefficients in C, the complex 

numbers. As usual, the degree of p(q), deg p(q), is the largest index i with ai �= 0. We 
will also need the minimum degree

mdeg p(q) = min{i | ai �= 0}

and total degree

totdeg p(q) = deg p(q) + mdeg p(q).

For example p(q) = 2q + 5q2 + 5q3 + 2q4 has totdeg p(q) = 4 + 1 = 5. If totdeg p(q) = d

then we call p(q) palindromic (symmetric is also used) if ai = ad−i for all 0 ≤ i ≤ d. It 
is easy to see that this is equivalent to the equality

qdp(1/q) = p(q). (4)

In this case we call d/2 the center of symmetry of p(q). Our example polynomial is 
palindromic with center of symmetry 5/2. A straight-forward computation shows that 
the product of palindromic polynomials is palindromic. The same is true of linear com-
binations of palindromic polynomials with the same center of symmetry, but not in 
general.

We will need the vector space

Pd(q) = {p(q) ∈ C[q] | p(q) is palindromic with totdeg p(q) = d} ∪ {0}.

The polynomials

(1 + q)d, q(1 + q)d−2, q2(1 + q)d−4, . . . (5)

form a basis for Pd since they all have different degrees and their leading coefficients 
equal one. So if p(q) ∈ Pd then it has gamma expansion

p(q) =
∑
j≥0

γjq
j(1 + q)d−2j (6)

where the scalars γ0, γ1, γ2, . . . are called the gamma coefficients of p(q). Returning to 
our example

2q + 5q2 + 5q3 + 2q4 = 0(1 + q)5 + 2q(1 + q)3 − q2(1 + q)
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so its gamma coefficients are 0, 2, −1.
To make the connection with the Lucas sequence, an easy inductive proof shows that

{n} =
∑
j≥0

ajs
n−2j−1tj , (7)

for certain aj ∈ N. Comparison of this expansion with (6) motivates the following defi-
nition. Consider

P(q) =
⋃
d≥0

Pd(q).

Note that the union is disjoint except for the presence of the zero polynomial in all Pd. 
Define the Gamma map Γ : P(q) → C[s, t] by taking p(q) of the form (6) to

Γ(p(q)) =
∑
j≥0

γjs
d−2j(−t)j . (8)

In the next proposition we collect some of the basic properties of this function.

Proposition 2.1. The map Γ : P(q) → C[s, t] has the following properties

(a) If p(q), r(q) ∈ P(q) then

Γ(p(q)r(q)) = Γ(p(q))Γ(r(q)).

(b) For any d, the restriction of Γ to Pd(q) is linear.
(c) The map Γ is injective.
(d) If Γ(p(q)) = f(s, t) then f(1 + q, −q) = p(q).
(e) If p(q) ∈ Z[q] then Γ(p(q)) ∈ Z[s, t].

Proof. Parts (a) and (b) follow quickly from the remarks after equation (4). Also (c) 
follows from (d) which defines the inverse map on the image of Γ. For (d) we have, 
from (6) and (8),

f(1 + q,−q) =
∑
j≥0

γjs
d−2j(−t)j |s=1+q,t=−q =

∑
j≥0

γj(1 + q)d−2jqj = p(q).

To obtain (e), note that the polynomials in (5) are all monic. So if p(q) ∈ Z[q], then its 
gamma coefficients are all integers. The desired conclusion now follows from the definition 
of Γ. �

To define the Lucas atoms, we first recall some simple facts about the cyclotomic 
polynomials. The nth cyclotomic polynomial is
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Φn(q) =
∏
ζ

(q − ζ)

where the product is over all primitive nth roots of unity. Since ζ is a primitive nth root 
if and only if 1/ζ is, and the constant coefficient of Φn(q) is one for n ≥ 2, it follows 
from equation (4) that Φn(q) is palindromic for that range of n. So define the nth Lucas 
atom as P1(s, t) = 1 and

Pn(s, t) = Γ(Φn(q))

for n ≥ 2. The basic properties of Pn(s, t) are as follows.

Proposition 2.2. For all n ≥ 1 we have

(a) {n} =
∏
d|n

Pd(s, t), and

(b) Pn(s, t) ∈ N[s, t].

Proof. (a) It is well known and easy to prove from the definitions that

qn − 1 =
∏
d|n

Φd(q). (9)

It follows that

1 + q + q2 + · · · + qn−1 =
∏
d|n
d≥2

Φd(q).

So applying Proposition 2.1 (a) and using the fact that P1(s, t) = 1 we have

Γ(1 + q + q2 + · · · + qn−1) =
∏
d|n

Pd(s, t).

But from equation (2) as well as Proposition 2.1 (c) and (d) we have that the left side 
of the previous equation is {n}.

(b) Since the leading coefficient of {n} is one, an easy induction using part (a) shows 
that the same is true of the Pn(s, t). A second induction based on (a) now shows that 
all the coefficients of Pn(s, t) are integers. For nonnegativity, it suffices to show that, for 
n ≥ 3, the polynomial Pn(s, t) can be written as a product of factors of the form s2 + at

where a > 0. (Nonnegativity for n ≤ 2 is clear.) Consider any root ζ of Φn(q). Then the 
complex conjugate ζ̄ is also a root, and Φn(q) has a factor

(q − ζ)(q − ζ̄) = q2 − 2bq + 1 = (q + 1)2 − (2b + 2)q
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where b is the real part of ζ. Since n ≥ 3 we have a := 2b +2 > 0. Using Proposition 2.1 (a) 
shows that

Γ((q + 1)2 − (2b + 2)q) = s2 + at

is a factor of Pn(s, t) as desired. �
We now have all the tools necessary to prove Theorem 1.1.

Proof of Theorem 1.1. Clearly if ad ≥ bd for all d ≥ 2 then f(s, t)/g(s, t) is a polynomial. 
And since the Pd(s, t) all have nonnegative integer coefficients from the previous propo-
sition, the inequalities show that the same is true of the quotient since it is a product of 
atoms. So it remains to show that f(s, t)/g(s, t) being a polynomial implies that ad ≥ bd
for d ≥ 2. It is clear that this holds for d = 2 since P2(s, t) = s. So suppose d ≥ 3. 
Now f(s, 1)/g(s, 1) is a polynomial in s. And from the proof of Proposition 2.2 (b), we 
see that the roots of Pd(s, 1) are all of the form ±

√
−2b− 2 where b is the real part of 

a primitive dth root of unity. It follows that no two of these polynomials in s have a 
common root. So the polynomialty of f(s, 1)/g(s, 1) implies ad ≥ bd for all d ≥ 2. �
3. Lucas analogues

We will now use Theorem 1.1 to show that a large number of Lucas analogues are 
polynomials with nonnegative integer coefficients. We will start with the binomial coef-
ficients, then consider various types of Fuss-Catalan numbers including those associated 
with irreducible Coxeter groups, and finally look at Fuss-Narayana numbers.

We first need to consider the Lucas factorization of the Lucatorial

{n}! = {1}{2} · · · {n}.

To describe the factorization we will need the floor or round-down function 	r
 which is 
the largest integer less than or equal to the rational number r. Given a product f(s, t)
of Lucas polynomials, let

logd f(s, t) = the power of Pd(s, t) in its Lucas factorization.

The subscript will be omitted if d is clear from context or is generic and fixed.

Lemma 3.1. For d ≥ 2 we have

logd{n}! = 	n/d
.

Furthermore, for integers m, n, d

⌊m⌋+
⌊n⌋ ≤ ⌊m + n

⌋
.

d d d
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Proof. We have that Pd is a factor of {j} if and only if d|j. So the number of such factors 
in {n}! is 	n/d
. The inequality is well known so we omit the proof. �

Now for 0 ≤ k ≤ n, we define the Lucanomial

{n
k

}
= {n}!

{k}!{n− k}! .

Theorem 3.2. For 0 ≤ k ≤ n we have 
{

n
k

}
∈ N[s, t].

Proof. Applying the previous lemma gives, for any d ≥ 2,

logd({k}!{n− k}!) =
⌊
k

d

⌋
+
⌊
n− k

d

⌋
≤
⌊n
d

⌋
= logd{n}!.

So we are done by Theorem 1.1. �
We will now consider various types of Catalan numbers. Given positive integers a, b

with gcd(a, b) = 1 the corresponding rational Catalan number is

Cat(a, b) = 1
a + b

(
a + b

a

)
.

One obtains the usual Catalan numbers by letting a = n and b = n +1. The corresponding 
Lucas analogue is

Cat{a, b} = 1
{a + b}

{
a+b

a

}
.

The Algebraic Combinatorics Seminar at the Fields Institute [1] was the first to prove 
that the q-Fibonacci analogue of Cat(a, b) is a polynomial in q and their method works 
as well for the Lucas analogue. This proof is also algebraic and is presented in [6]. 
A combinatorial proof has yet to be found.

Theorem 3.3. If gcd(a, b) = 1 then Cat{a, b} ∈ N[s, t].

Proof. There are two cases. If d does not divide a + b then log{a + b} = 0 and so the 
result follows from the previous theorem. If d divides a + b then d divides neither a nor 
b since gcd(a, b) = 1. It follows that 	a/d
 = 	(a − 1)/d
 and 	b/d
 = 	(b − 1)/d
. So

log({a + b}{a}!{b}!) ≤ 1 +
⌊
a + b− 1

d

⌋
=
⌊
a + b

d

⌋
= log{a + b}!

by Lemma 3.1. Theorem 1.1 completes the proof. �
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Table 2
The finite irreducible Coxeter groups and their 
degrees.

W d1, . . . , dn

An 2, 3, 4, . . . , n + 1
Bn 2, 4, 6, . . . , 2n
Dn 2, 4, 6, . . . , 2n − 2, n
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
H3 2, 6, 10
H4 2, 12, 20, 30
I2(m) 2,m

Let W be a finite irreducible Coxeter group with degrees d1 < · · · < dn. A list of 
these groups and their degrees is given in Table 2 where the degrees for Dn are not listed 
in increasing order. If k is a positive integer then W has corresponding Fuss-Catalan 
number

Cat(k) W =
n∏

j=1

dj + kdn
dj

.

The study of these constants and related ideas has come to be known as “Coxeter-
Catalan combinatorics.” See the memoir of Armstrong [2] for more information. The 
corresponding Lucas analogue is

Cat(k){W} =
n∏

j=1

{dj + kdn}
{dj}

.

When referring to a specific W , we put the curly brackets around the subscript giving 
the rank, e.g., Cat(k) B{n}.

Theorem 3.4. For all finite irreducible Coxeter groups W and all positive integers k we 
have Cat(k){W} ∈ N[s, t].

Proof. We note that for the classical types An, Bn, Dn Bennett et al. [6] were able to 
prove this result by combinatorial arguments. It remains open to do the same for the 
exceptional groups. We will proceed group by group.

Type An−1. In this case we can express the Fuss-Catalan analogue in terms of the 
rational Catalan analogue since

Cat(k) A{n−1} = {(k + 1)n}!
{n}!{kn + 1}! = Cat{n, kn + 1}.

So the result follows from the previous theorem.
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Type Bn. In type Bn one can cancel powers of two from the numerator and denomi-
nator and so express Cat(k) Bn as a binomial coefficient. But one can no longer do this 
when each factor is replaced by the corresponding Lucas polynomial. Instead we will 
consider a generalization of Cat(k) B{n}. Given an integer m ≥ 1 we let

{n : m}! = {m}{2m} · · · {nm}

and define an m-divisible Lucanomial to be{
n : m
k : m

}
= {n : m}!

{k : m}!{n− k : m}! . (10)

So we have the special case

Cat(k) B{n} =
{

(k + 1)n : 2
n : 2

}
.

To show that (10) is in N[s, t], note that Pd divides terms at intervals of length 
d/ gcd(d, m) in {n : m}!. The rest of the proof is much the same as for the Lucanomials 
and so is omitted.

Type Dn. We have

Cat(k) D{n} = {n + 2(n− 1)k}
{n}

{
(k + 1)(n− 1) : 2

n− 1 : 2

}

= {n + 2(n− 1)k}
{n}

· {2 + 2(n− 1)k}{4 + 2(n− 1)k} · · · {2(k + 1)(n− 1)}
{n− 1 : 2}! .

Given d ≥ 2 there are two cases. If d does not divide n then the factors of Pd in the 
denominator all occur inside the 2-divisible Lucanomial and so cancel out as for type Bn.

Now suppose d|n. In any product of the form {2l}{2l + 2} · · · {2m}, the Lucas atom 
Pd will divide terms at intervals of length d′ = d/ gcd(d, 2). Since d|n we have that Pd

will appears in exactly n/d′ − 1 factors in {n − 1 : 2}!, giving a total of n/d′ times 
in the denominator of the Fuss-Catalan analogue. If d does not divide 2(n − 1)k then 
Pd will divide n/d′ terms in the numerator of the last fraction of the above displayed 
equation and we will be done. If d|2(n − 1)k then Pd will only divide n/d′ − 1 terms in 
that product, but will also divide {n + 2(n − 1)k} in the numerator, giving the required 
number of n/d′ copies.

Type I2(m). We have

Cat(k) I{2}(m) = {km + 2}{(k + 1)m}
.
{2}{m}
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If Pd appears as a factor in the denominator for d ≥ 3 then we must have d|m. It follows 
that d|(k+1)m and so is canceled by the corresponding factor in the numerator. If d = 2
then there are two cases. If m is even then similar consideration show that P 2

2 appears 
in both the denominator and the numerator. If m is odd then the denominator only has 
one P2. In the numerator, that factor will appear in {km + 2} if k is even or {(k + 1)m}
if k is odd.

The exceptional types. For the exceptional W , we do not need to consider an infinite 
number of values of k. This is because whether a given Pd divides a factor {a + bk} in 
the numerator depends only on the congruence class of k modulo d. And the number 
of choices for d is limited by the factors in the denominator. But those factors do not 
depend on k and so there are only finitely many choices. In fact, these demonstrations 
are so straightforward that they can easily be done by hand. So we will only illustrate 
the procedure in a particular example. Consider

Cat(k) H{4} = {2 + 30k}{12 + 30k}{20 + 30k}{30 + 30k}
{2}{12}{20}{30} .

Now P4 is in the factorization of {12} and {20} in the denominator, so we must show it 
is also appears in the expansion of two of the factors in the numerator regardless of k. 
Reducing modulo 4, we see that it suffices to look at P4 factors of

{2 + 2k} · {2k} · {2k} · {2 + 2k} = {2k}2 · {2(k + 1)}2.

So if k is even, then P 2
4 appears in {2k}2, while if k is odd then it divides {2(k+1)}2. �

Let W be a finite irreducible Coxeter group of rank n, and let k, i be integers with 
k positive and 0 ≤ i ≤ n. The corresponding Fuss-Narayana numbers are Nar(k)(W, i)
which count the number of k-multichains in the noncrossing partition poset of W whose 
bottom element has rank i. It can be proved that these are always polynomials in k [2, 
Theorem 3.5.5]. However, there does not seem to be a simple product formula for them 
which holds for all W, k, i. However, when i = 1 we have

Nar(k) W := Nar(k)(W, 1) = n
n−1∏
j=1

kdn − dj + 2
dj

. (11)

Also, for all i,

Nar(k)(An−1, i) = 1
n

(
n

i

)(
kn

n− i− 1

)
,

Nar(k)(Bn, i) =
(
n
)(

kn
)
,

i n− i
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Nar(k)(Dn, i) =
(
n

i

)(
k(n− 1)
n− i

)
+
(
n− 2
i

)(
k(n− 1) + 1

n− i

)
.

We denote the Lucas analogues by replacing W with {W} for a general Coxeter group, 
and replacing a subscript n by {n} in types A, B, and D. We note that Garrett and 
Killpatrick used a recursion to show that Nar(1)(A{n−1}, i) is an integer when s = t =
1. More recently, Nenashev [14] has discovered a combinatorial interpretation for the 
polynomials Nar(1)(A{n−1}, i).

Theorem 3.5. For all finite irreducible Coexter groups and all positive integers k we 
have Nar(k){W} ∈ N[s, t]. This is also true of Nar(k)(A{n−1}, i), Nar(k)(B{n}, i), and 
Nar(k)(D{n}, i) for all i.

Proof. The Nar(k){W} are taken care of in much the same way as the Fuss-Catalan 
analogues for the exceptional groups. And in type B and D the analogues are just sums 
and products of Lucanomials. So we will only give details for

Nar(k)(A{n−1}, i) = 1
{n}

{n
i

}{ kn

n− i− 1

}
.

If d does not divide n then Pd can only appear in the denominators of the Lucanomials 
and so the inequality in Theorem 1.1 holds for these d by Theorem 3.2. If d|n then it 
can not divide both i and n − i − 1. The demonstration is now completed as in the proof 
of Theorem 3.3. �
4. Two square theorems

In this section we will find Lucas analogues of theorems of Gauss and Lucas which 
express (appropriately modified) cyclotomic polynomials in terms of squares of two other 
polynomials. This will turn out to be easy to do by applying the function Γ defined by (8).

The result of Lucas [20, pp. 309–315, p. 443] is as follows. In it, φ(n) denotes the Euler 
totient function.

Theorem 4.1 (Lucas’ formula). If n ≥ 5 is odd and square-free, then there are polynomials 
Cn(q) and Dn(q) such that

Φn

(
(−1)(n−1)/2q

)
= C2

n(q) − nqD2
n(q).

If n ≥ 4 is even and square-free then there are polynomials Cn(q) and Dn(q) such that

Φ2n(q) = C2
n(q) − nqD2

n(q).

In both cases



B.E. Sagan, J. Tirrell / Advances in Mathematics 374 (2020) 107387 13
1. Cn(q), Dn(q) ∈ Z[q],
2. degCn(q) = φ(n)/2 and degDn = φ(n)/2 − 1,
3. Cn(q) and Dn(q) are both palindromic.

To state the analogous result for Lucas atoms we define, for f(s, t) ∈ C[s, t],

sdeg f(s, t) = largest power of s in f(s, t).

Theorem 4.2. If n ≥ 5 is square-free and satisfies n ≡ 1 (mod 4), then there are polyno-
mials Gn(s, t) and Hn(s, t) such that

Pn(s, t) = G2
n(s, t) + ntH2

n(s, t). (12)

If n ≥ 4 is even and square-free, then there are polynomials Gn(s, t) and Hn(s, t) such 
that

P2n(s, t) = G2
n(s, t) + ntH2

n(s, t).

In both cases

1. Gn(s, t), Hn(s, t) ∈ Z[s, t],
2. sdegGn(s, t) = φ(n)/2 and sdegHn(s, t) = φ(n)/2 − 1. �

Proof. We will only prove the statement about odd n as the one for even values is 
obtained similarly. Since n ≡ 1 (mod 4) we have from Theorem 4.1 that

Φn(q) = Φn

(
(−1)(n−1)/2q

)
= C2

n(q) − nqD2
n(q). (13)

Since n ≥ 5 we know that Φn(q) is palindromic with sdegPn(s, t) = deg Φn(q) = φ(n). 
From the given facts about Cn(q) and Dn(q) we see that C2

n(q) and qD2
n(q) are both 

palindromic of total degree φ(n). So, from Proposition 2.1 (a) and (b), we can apply 
Γ to both sides of (13) and obtain (12). The fact that the polynomials G and H have 
integer coefficients is a consequence of Proposition 2.1 (e). And the statement about 
their degrees follows directly from the definition of Γ. �

One might wonder if it is possible to get an analogue of Lucas’ formula when n is 
square-free and congruent to 3 modulo 4. However, one does not seem to exist. For 
example, we have

P7(s, t) = s6 + 5s4t + 6s2t2 + t3

If the desired G7(s, t) and H7(s, t) did exist, then the term t3 in P7(s, t) could not come 
from G2

7 because of the odd power of t. But t3 could also not arise from 7tH2
7 since 

H7 ∈ Z[s, t] and so every term in the product has coefficient divisible by 7.
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We will now consider the formula of Gauss [13, Articles 356–357]. To state it, we define 
a polynomial p(q) =

∑
i aiq

i with totdeg p(q) = d to be anti-palindromic if ai = −ad−i

for all 0 ≤ i ≤ d.

Theorem 4.3 (Gauss’ formula). If n ≥ 5 is odd and square-free, then there are polyno-
mials An(q) and Bn(q), such that

4Φn(q) = A2
n(q) − (−1)(n−1)/2nq2B2

n(q)

where

1. An(q), Bn(q) ∈ Z[q],
2 degAn(q) = φ(n)/2 and degBn = φ(n)/2 − 2,
3. If n ≡ 1 (mod 4) then An(q) and Bn(q) are palindromic.
4. If n ≡ 3 (mod 4) then An(q) is antipalindromic and Bn is palindromic if n is prime, 

or vice-versa if n is composite.

Again, only the case when n ≡ 1 (mod 4) seems to have a Lucas analogue. The proof 
of the next result is close enough to that of Theorem 4.2 that we leave it to the reader.

Theorem 4.4. If n ≥ 5 is square-free and satisfies n ≡ 1 (mod 4), then there are polyno-
mials En(s, t) and Fn(s, t), such that

4Pn(s, t) = E2
n(s, t) − nt2F 2

n(s, t)

where

1. En(s, t), Fn(s, t) ∈ Z[s, t],
2. sdegEn(s, t) = φ(n)/2 and sdegFn(s, t) = φ(n)/2 − 2. �

5. Reduction formulas

The reduction formulas permit the calculation of Φn(q) in terms of Φm(q) for m < n. 
And these computations are done over the integers rather than the complex numbers. 
The following reductions are all easy to prove directly from the definition of Φn(q) and 
properties of primitive roots of unity.

Theorem 5.1 (Reduction formulas). Let n be a positive integer and p be a prime not 
dividing n.

(a) We have

Φp(q) = [p]q = 1 + q + q2 + · · · + qp−1.



B.E. Sagan, J. Tirrell / Advances in Mathematics 374 (2020) 107387 15
Fig. 1. The tilings in T (3).

(b) If m ≥ 2 then

Φpmn(q) = Φpn(qp
m−1

).

(c) For all p we have

Φpn(q) = Φn(qp)
Φn(q) .

And for p = 2 we also have

Φ2n(q) = Φn(−q). �
So given any n, we can use part (b) to reduce the calculation of Φn(q) to that of 

the radical (square-free part) of n. Then part (c) turns computation for the radical into 
knowing Φp(q) for primes p. And for these we have an explicit formula in part (a).

It does not seem as if one can find analogues for these formulas merely by applying Γ. 
The problem is that the necessary substitutions do not appear to behave well with 
respect to this map. Instead, we will need a number of lemmas. For some of them, it 
will be convenient to use a combinatorial description of {n} in terms of tilings. For more 
information about this approach, see the book of Benjamin and Quinn [5]. Consider a 
row of n boxes. A tiling, T , of this row is a covering of the boxes with disjoint tiles where 
each tile covers two boxes (called a domino) or one box (called a monomino). Let T (n)
denote the set of such tilings. The set T (3) is displayed in Fig. 1. Give a single tiling T
the weight

wtT = snumber of monominos in T tnumber of dominos in T .

Also weight any set T of tilings by

wt T =
∑
T∈T

wtT.

Returning to Fig. 1 we see that wt(T (3)) = s3 + 2st = {4}. This illustrates a general 
result which is easy to prove by induction and gives a combinatorial explanation for 
equation (7).
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Lemma 5.2. For all n ≥ 1 we have

{n} = wt(T (n− 1)). �
From this result, we get our Lucas analogue of Theorem 5.1 (a). If f is a polynomial 

in s, t then let [sitj ]f be the coefficient of sitj in f .

Corollary 5.3. For n ≥ 1 we have

{n} =
∑
k≥0

(
n− k − 1

k

)
sn−2k−1tk.

So if p is prime then

Pp(s, t) =
∑
k≥0

(
p− k − 1

k

)
sp−2k−1tk.

Proof. The second statement follows from the first and the fact that for a prime p we 
have {p} = P1Pp = Pp. To prove the first, from the previous lemma, [sn−2k−1tk]{n} is 
the number of tilings of T (n − 1) with k dominoes and n − 2k− 1 monominoes. But the 
number of ways to do this is the number of ways of choosing k dominoes from a total of 
n − k − 1 tiles, giving the desired binomial coefficient. �

The odd primes and 2 will take different roles in our investigation. So we will need 
the following result.

Lemma 5.4. If p is an odd prime then

P2p(s, t) =
∑
k≥0

[(
p− k

k

)
+
(
p− k − 1
k − 1

)]
sp−2k−1tk, (14)

and

sP2p(s, t) = {p + 1} + t{p− 1}. (15)

Proof. The second equation follows from the first the previous corollary. We now prove 
the first. By Proposition 2.2 (a), it suffices to let Q2p be the right-hand side of (14) and 
show that

{2p} = P1P2PpQ2p

But, again using the previous corollary,
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P1P2PpQ2p =s

⎛
⎝∑

i≥0

(
p− i− 1

i

)
sp−2i−1ti

⎞
⎠

×

⎛
⎝∑

j≥0

[(
p− j

j

)
+
(
p− j − 1
j − 1

)]
sp−2j−1tj

⎞
⎠

So

[s2p−2k−1tk]P1P2PpQ2p =
∑

i+j=k

(
p− i− 1

i

)(
p− j

j

)

+
∑

i+j=k−1

(
p− i− 1

i

)(
p− j − 2

j

)
. (16)

Using Corollary 5.3 yet again

[s2p−2k−1tk]{2p} =
(

2p− k − 1
k

)
.

To show equality of the right-hand sides of the previous two equations note that the 
single binomial coefficient is the number of tilings of 2p − 1 squares with k dominoes. 
These tilings are of two types: those with no domino between the (p −1)st and pth squares 
and those where these two squares contain a domino. The first sum in (16) counts the 
first set of tilings because they can be formed by concatenating a tiling of p − 1 squares 
having i dominoes with a tiling of p squares have j dominoes where i + j = k. Similarly, 
the second sum enumerates the second set of tilings since after the given domino is 
removed then one is left with a tiling of p − 2 squares and a tiling of p − 1 squares with 
a total of k − 1 dominoes. �

Our goal now is to prove an analogue of Theorem 5.1 (c) for Lucas atoms. We still 
need several lemmas. The next result is simple to prove using an argument like that in 
the last paragraph of the previous demonstration. So we omit the proof.

Lemma 5.5. For m, n ≥ 0 we have

{m + n} = {m + 1}{n} + t{m}{n− 1}. �
We use the notation M or D for a monomino or domino tile, respectively. Also, ST

will denote the concatenation of tilings S and T and we will use multiplicity notation 
such as T 2 for the concatenation of T with itself. We also let {n} = 0 if n ≤ 0. Define 
the sign of an integer m to be

ε(m) =
{

−1 if m is even,
+1 if m is odd.
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Lemma 5.6. For m ≥ 1 we have

{m}2 = {m− 1}{m + 1} + ε(m)tm−1

Proof. We will give a proof when m is odd as the other case is similar. Let n = m − 1. 
It suffices to find a weight-preserving bijection

f : [T (n) × T (n)]− → T (n− 1) × T (n + 1)

where [T (n) × T (n)]− is T (n) × T (n) with the pair (Dn/2, Dn/2) removed. Label the 
n squares left to right from 1 to n. Given a pair (S, T ) in the domain, consider the 
largest index i ≥ 0 such that only dominoes cover squares of index less than or equal 
to i in both S and T . So i is even and write S = Di/2S′ and T = Di/2T ′. Since 
(S, T ) �= (Dn/2, Dn/2) the tilings S′, T ′ are nonempty. If S′ = MS′′ for some S′′ then 
let f(S, T ) = (Di/2S′′, Di/2MT ′). If S′ = DS′′ then, by maximality of i, we must have 
T ′ = MT ′′ for some T ′′. In this case let f(S, T ) = (Di/2MS′′, Di/2DT ′′). Clearly this 
map preserves weight. And its inverse is easy to construct, so it is bijective. �

The next lemma can be thought of as a combination of the previous two.

Lemma 5.7. If n ≥ 2m then

{n} = ({m + 1} + t{m− 1}) {n−m} + ε(m)tm{n− 2m}.

Proof. We induct on n, assuming m is odd as the even case is similar. For the base cases, 
first consider n = 2m. So we wish to prove

{2m} = {m + 1}{m} + t{m− 1}{m}

which follows by letting m = n in Lemma 5.5. For the other base case, suppose n = 2m +1
and compute the right-hand side of the equality using Lemma 5.6 and then Lemma 5.5

{m + 1}2 + t{m− 1}{m + 1} + tm = {m + 1}2 + t({m}2 − tm−1) + tm = {2m + 1}.

For the induction step, we use the defining recursion for the Lucas sequence several 
times on the right-hand side of the desired equation, letting A = {m + 1} + t{m − 1} for 
readability,

A{n−m} + tm{n− 2m}
= A({n−m− 1} + t{n−m− 2}) + tm({n− 2m− 1} + t{n− 2m− 2})
= (A{n−m− 1} + tm{n− 2m− 1}) + t(A{n−m− 2} + tm{n− 2m− 2})
= {n− 1} + t{n− 2}
= {n}
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which is what we wished to show. �
We have one last identity to prove before demonstrating our first main theorem of 

this section. Note that we can unify the two cases in the following results by using the 
fact that for p prime we have, by equation (15),

{p + 1} + t{p− 1} =
{

s2 + 2t if p = 2,

sP2p if p ≥ 3.
(17)

But because of the subscripts, it is easier to read these results in the format we present.

Lemma 5.8. If p is prime then for all n ≥ 0 we have

{pn} =
{

{p} · {n}s2+2t,−t2 if p = 2,

{p} · {n}sP2p,tp if p ≥ 3.

Proof. We will do the case for odd primes as p = 2 is similar. Induct on n. The identity 
is easy to check when n = 0, 1. For n ≥ 2 we use in turn the recursion defining the 
Lucas sequence, induction, equation (17), and Lemma 5.7 (with n replaced by pn and 
m replaced by p) to obtain

{p} · {n}sP2p,tp = {p}
(
sP2p · {n− 1}sP2p,tp + tp · {n− 2}sP2p,tp

)
= sP2p · {pn− p} + tp · {pn− 2p}
= ({p + 1} + t{p− 1}) · {pn− p} + tp · {pn− 2p}
= {pn}

as desired. �
We can finally prove our analogue of Theorem 5.1 (c).

Theorem 5.9. If n ≥ 2 is a positive integer and p is a prime not dividing n, then

Ppn(s, t) =

⎧⎪⎪⎨
⎪⎪⎩

Pn(s2 + 2t,−t2)
Pn(s, t) if p = 2,

Pn(sP2p, t
p)

Pn(s, t) if p ≥ 3.

Proof. We assume p is odd as p = 2 is similar. We also continue to use Pn as an 
abbreviation for Pn(s, t), but not for any other set of variables. Induct on n. For n = 2, 
we use the previous lemma and Proposition 2.2 (a) to write

{p}{2}sP2p,tp = {2p} = P2PpP2p.
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Solving for P2p and using the fact that {p} = Pp completes the base case.
For the induction step we use in turn Proposition 2.2 (a), the hypotheses on p and n, 

induction, and Lemma 5.8 to obtain

{pn} =
∏
d|pn

Pd

=
∏
d|n

PdPpd

= PpPnPpn

∏
d|n

d�=1,n

Pd · Pd(sP2p, t
p)/Pd

=
PpPnPpn{n}sP2p,tp

Pn(sP2p, tp)

= PnPpn{pn}
Pn(sP2p, tp)

Solving for Ppn finishes the proof. �
We can use this theorem to give a new relation between cyclotomic polynomials. Note 

that setting s = q + 1 and t = −q in the left-hand side of (17) we get, using (2),

{p + 1} + t{p− 1} = [p + 1]q − q[p− 1]q = qp + 1.

Using this substitution, we have the following immediate corollary of Theorem 5.9.

Corollary 5.10. If n ≥ 2 is a positive integer and p is prime not dividing n, then

Φpn(q)Φn(q) = Pn(qp + 1, ε(p)qp). �
We also have a Lucas analogue of Theorem 5.1 (b).

Theorem 5.11. If n is a positive integer, p is a prime not dividing n, and m ≥ 2 then

Ppmn(s, t) =
{

Ppm−1n(s2 + 2t,−t2) if p = 2,

Ppm−1n(sP2p, t
p) if p ≥ 3.

Proof. We induct on m, where the base case is similar enough to the induction step that 
we will only provide details for the latter. And we will also just consider odd primes for 
similar reasons. Given m, we induct on n. For n = 1, by Lemma 5.8 we have

{pm} = {p}{pm−1}sP2p,tp
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Now expand both sides, using Proposition 2.2 (a) and use the fact that {p} = Pp, to get

PpPp2 · · ·Ppm = Pp · Pp(sP2p, t
p) · Pp2(sP2p, t

p) · · · · · Ppm−1(sP2p, t
p).

Using the induction hypothesis on m to cancel all but one factor on each side gives the 
desired equality. To deal with n ≥ 2, expand {pmn} in a similar fashion to what was 
done for {pn} in Theorem 5.9. After cancellation of terms, which uses the induction 
hypotheses on both m and n, one obtains Ppmn/Ppm−1n(sP2p, tp) = 1 which is what we 
wish to prove. �

Again, we can get a relation between cyclotomic polynomials and Lucas atoms by 
specialization.

Corollary 5.12. If n is a positive integer, p is prime not dividing n, and m ≥ 2 then

Φpmn(q) = Ppm−1n(qp + 1, ε(p)qp). �
6. Evaluations

There are a number of interesting evaluations of the cyclotomic polynomials at various 
integers. For example, suppose b > 1 is an integer relatively prime to the prime p, and n
is the multiplicative order of b modulo p. Then it follows quickly from (9) that p|Φn(b). 
For a more substantive example, there is the following conjecture which is implied by a 
conjecture of Bouniakowsky [7].

Conjecture 6.1. For every positive integer n there are infinitely many positive integers b
such that Φn(b) is prime.

We will prove some facts about the Lucas atoms modulo two and three. The proofs will 
provide an application of the reduction formulas from Section 5. They will also permit 
us to say something about the divisibility of the cyclotomic polynomials themselves. We 
first need some information about the coefficients of Pn(s, t).

Lemma 6.2. For n ≥ 3 we have

Pn =
φ(n)/2∑
k=0

cks
φ(n)−2ktk

for certain constants ck, where c0 = 1 and

cφ(n)/2 =
{

p if n = 2 · pm for a prime p ≥ 2 and m ≥ 1,
1 else.
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Proof. All of these statements about Pn are proved similarly, so we will just present a 
demonstration for the value of cφ(n)/2. We induct on n, where the case n = 3 is easy to 
check. From Lemma 5.2 we can write

{n} =
�(n−1)/2�∑

j=0
ajs

n−2j−1tj (18)

where the largest power of t has coefficient

a�(n−1)/2� =
{

n/2 if n is even,
1 if n is odd.

(19)

Now using Proposition 2.2 (a), induction, and the fact that 
∑

d|n φ(d) = n, we get 
from (18) that the degree of Pn as a polynomial in t is φ(n)/2. Using the same line of 
reasoning with (19) we see that cφ(n)/2 = 1 for n odd. To complete the proof, we now 
repeat this argument in turn for the cases of n = 2 ·pm where p is prime, and of n = 2l ·k
where k is odd and either l ≥ 2 or k has at least two prime factors. The details are left 
to the reader. �

We can now determine the behavior of Pn(s, t) when s, t are taken modulo 2.

Theorem 6.3. Suppose n ≥ 2. Then

(a) Pn(0, 0) = 0,
(b) Pn(1, 0) = 1,
(c) 2|Pn(0, 1) if and only if n = 2m for some m ≥ 1,
(d) 2|Pn(1, 1) if and only if n = 3 · 2m for some m ≥ 0.

Proof. The first three statements follow easily from the previous lemma. So consider 
Pn(1, 1). Suppose first that 3 does not divide n. Let the nth Fibonacci number be denoted 
Fn and recall that Fn = {n}1,1. It is well known and simple to prove that 2|Fn if and 
only if 3|n. So if 3 is not a divisor of n then {n}1,1 is odd. Thus the same must be true 
of its factor Pn(1, 1).

Since P3(1, 1) = 2, we will now consider n = 3k where k ≥ 2 is not divisible by 3. 
From Theorem 5.9 we see that P3k(1, 1) ≡ Pk(0, 1)/Pk(1, 1) (mod 2) since, as we have 
just proved, the denominator is not divisible by 2. By part (c), Pk(0, 1) is even precisely 
when k ≥ 2 is a power of 2, which finishes this case.

Finally, suppose n = 3mk where m ≥ 2 and k is not divisible by 3. By Theorem 5.11
and the fact that P6(1, 1) is even we have P3mk(1, 1) ≡ P3m−1k(0, 1) (mod 2). But 3m−1k

is never a power of two since m ≥ 2. So, by part (c) again, we have that P3m−1k(0, 1), 
and thus P3mk(1, 1), is odd as announced in the statement of the theorem. �
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We can use the previous result to find the highest power of two which divides an 
evaluation of a cyclotomic polynomial. For any prime p and integer n we let νp(n) be 
the highest power of p dividing n.

Corollary 6.4. If b is an integer and n ≥ 3. Then

ν2(Φn(b)) =
{

1 if n = 2m for some m ≥ 2 and b is odd,
0 else.

Proof. We have Φn(b) = Pn(b + 1, −b). So we are only interested in the case where 
the two arguments in Pn are of different parity. But by Theorem 6.3, the only time 
Pn(b + 1, −b) for can be even for n ≥ 3 is when n = 2m for some m ≥ 2. So we need to 
investigate what happens when Φ2m(b) = b2

m−1 + 1. Clearly if b is even then this is not 
divisible by 2. And it is also easy to check that if b is odd then, since 2m−1 is even, we 
have Φ2m(b) ≡ 2 (mod 4) which completes the proof. �

The proofs of the next two results are similar enough to those of Theorem 6.3 and 
Corollary 6.4 that we will omit them. However, as a labor-saving device, we note that 
because the powers of s in Pn(s, t) are all even for n ≥ 3, we always have Pn(a, b) =
Pn(−a, b).

Theorem 6.5. Suppose n ≥ 3. Then

1. Pn(0, 0) = 0,
2. Pn(±1, 0) = 1,
3. 3|Pn(0, ±1) if and only if n = 2 · 3m for some m ≥ 1,
4. 3|Pn(±1, 1) if and only if n = 4 · 3m for some m ≥ 0,
5. 3|Pn(±1, −1) if and only if n = 3 · 3m for some m ≥ 0. �

Corollary 6.6. If b is an integer and n ≥ 3. Then

ν3(Φn(b)) =
{

1 if n = 3m for some m ≥ 1 and b ≡ 1 (mod 3),
0 else.

�

We note that, as opposed to the situation in Corollaries 6.4 and 6.6, one can have 
νp(Φn(b)) ≥ 2 for primes other than 2 and 3. For example Φ4(7) = 50 = 2 · 52. We also 
remark that extending Theorems 6.3 and 6.5 to arbitrary primes is almost certainly hard. 
One of the crucial tools in their proofs is the knowledge of the period of the Fibonacci 
sequence modulo 2 and modulo 3. Although it is easy to see that this sequence is periodic 
modulo any integer, finding a formula for the period is a famous unsolved problem.



24 B.E. Sagan, J. Tirrell / Advances in Mathematics 374 (2020) 107387
7. Comments and open problems

We will now present some avenues for future research hoping that the reader will be 
interested in exploring them.

(1) Combinatorial interpretations. Since the Lucas atoms have nonnegative integer 
coefficients, one would hope that they count something. But we have been unable to come 
up with a simple combinatorial interpretation for these polynomials, despite the fact 
that there are various well-known interpretations for the Lucas polynomials themselves. 
By using the reduction formulas, we have determined a complicated way of describing 
Pn(s, t) when n is a power of a prime in terms of certain colored tilings. But it seems 
unlikely that this will extend to all n. Once an interpretation is in place, it would be 
nice to take that as the definition of the Lucas atoms and then derive properties such as 
the decomposition (3) combinatorially.

(2) Alternating gamma vectors. One of the reasons for interest in gamma expansions 
is because of their connection with unimodality. Call a polynomial p(q) =

∑
j≥0 ajq

j

with real coefficients unimodal if

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . .

for some index m. Unimodal sequences abound in algebra, combinatorics, and geometry. 
See the survey articles of Stanley [22] and Brenti [9] and Brändén [8] for more information. 
Now suppose that p(q) is palindromic. If its gamma coefficients are all nonnegative, then 
p(q) must be unimodal since all the polynomials involved in its expansion are unimodal 
with the same center of symmetry. However, the definition of the map Γ in (8) suggests 
that it might also be interesting to look at gamma expansions where the coefficients 
alternate in sign. For example, this is true of the gamma expansions of the cyclotomic 
polynomials and their products. Very little work has been done in this direction and we 
are only aware of a single paper of Brittenham, Carroll, Petersen, and Thomas [10] on 
this topic.

(3) Coxeter groups. There are several ways in which the proofs of Theorems 3.4
and 3.5 could be improved. First, it would be nice to have uniform proofs for all finite 
irreducible W rather than having to go case-by-case. It would also be desirable to find 
combinatorial proofs, especially in the cases where one is not already known. And the 
best scenario would be to have these proofs rely on the combinatorics of the groups 
themselves. In particular, it would be very interesting if these Lucas analogues are the 
generating functions for some statistics on the poset of noncrossing partitions NC(W )
which would reduce to the original counts when s = 2 and t = −1.
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