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Abstract

Schützenberger’s promotion operator ∂ is a fundamental map in
dynamical algebraic combinatorics. At first, its action was mainly con-
sidered on standard Young tableaux. But ∂ was subsequently shown
to have interesting properties when applied to natural labelings of
other posets. Pechenik defined a K-theoretic version of promotion,
∂K , on m-packed labelings of tableaux. The operator ∂K was then
extended to increasing labelings of other posets. The purpose of the
current work is to show that the original action of ∂K on m-packed
labelings yields interesting results when applied to partially ordered
sets in general, and to rooted trees in particular. We show that under
certain conditions, the sizes of the orbits and order of ∂K exhibit nice
divisibility properties. We also completely determine, for certain val-
ues of m, the orbit sizes for the action on various types of rooted trees
such as extended stars, combs, zippers, and a type of three-leaved tree.

1



L =

1

2 3

4 5

2 3

4 5

7→

2

3

4 5

7→

2

4 3

5

∂L =

1

3 2

5 4

Figure 1: The promotion operator ∂

1 Introduction

We let N and P be the nonnegative and positive integers, respectively. For
m,n ∈ N, we let

[m,n] = {m,m+ 1, . . . , n} and [n] = [1, n].

All of our sets S will be finite and we will denote by #S or |S| the cardinality
of S.

Let us first recall Schützenberger’s [Sch72] promotion operator, ∂, on
naturally labeled posets. It was inspired by the work of Robinson [Rob38]
and Knuth [Knu70] on Young tableaux. Let (P,≤) be a partially ordered set
(poset) where we write ≤P for ≤ if we need to be more precise. We will use
the notation x� y if x is covered by y in P . For any terms from the theory
of posets not defined here, see the texts of Sagan [Sag20] or Stanley [Sta97].
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If #P = n then a natural labeling of P is a bijection L : P → [n] such that

x <P y implies L(x) < L(y). (1)

We let N (P ) be the set of natural labelings of P . The top and bottom
posets in Figure 1 are naturally labeled. Now, if z ∈ P then one can have a
gapped natural labeling of P which is a bijection L : P − {z} → [2, n] which
satisfies (1) for all elements in the domain of L. The element z is considered
unlabeled. All the labelings in the middle row of Figure 1 are of this form.

Given a poset P with #P = n, the promotion operator is ∂ : N (P ) →
N (P ) defined as follows. Suppose we are given L ∈ N (P ). Remove the 1
from L and let z ∈ P be the element which is now unlabeled. Of all the
elements which cover z, let w be the one of minimum label. Form a new
gapped natural labeling of P by letting L(z) = L(w) and removing the label
from w. Iterate this process until the unlabeled element is maximal in P .
Now decrease the labels of all labeled elements by one and label the unlabeled
maximal element as n to form ∂L. An example is worked out in Figure 1.
This is one of the fundamental operations in the area which has come to
be known as dynamical algebraic combinatorics. See the survey articles of
Roby [Rob16] or Striker [Str17] for more information.

An increasing labeling of a poset P is a function f : P → P satisfying
restriction (1). Furthermore, we say that f is m-packed if it is increasing and
the image of f is [m] for some m ∈ P. Note that this forces m ≤ |P |. And if
m = |P | then L is a natural labeling. We let

Lm(P ) = {L : L is an m-packed labeling of P}.

The top and bottom labelings in Figure 2 are 4-packed. Now let A be an
antichain of P . A gapped m-packed labeling of P is a surjection L : P −A →
[2,m] satisfying (1) on P − A. The labelings in the middle row of Figure 2
are of this type.

We now have everything in place to define, given P and m, the K-
promotion function ∂K : Lm(P ) → Lm(P ). Consider an m-packed labeling
L : P → [m]. Since L is m-packed, the elements labeled 1 form an antichain,
A. Remove the labels from A. Now for all covers x� y where x is unlabeled
and L(y) = 2, we label x with 2, remove the label from y, and leave all ele-
ments not in such a pair the same. This is how we get from the first labeling
to the second in row two of Figure 2. We now iterate the process, where the
next step will consider covers v � w with v unlabeled and L(w) = 3, and
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Figure 2: The K-promotion operator ∂K

so forth. Termination occurs when the unlabeled elements are all maximal.
This completes the second row in Figure 2. It is easy to prove by induction
that at every stage the set of unlabeled elements forms an antichain. Finally,
we decrement the label of every labeled element by one and label the unla-
beled maximal elements with m. Again, a simple induction shows that the
new labeling is m-packed and so ∂K(L) ∈ Lm(P ), making ∂k a well-defined
map.

Pechenik [Pec14] first defined ∂K , on certain m-packed Young tableaux.
He was inspired by work of Thomas and Yong [TY09]. Note that he called
such tableaux “increasing” even though they also satisfied the condition on
the image given above. Dilks, Striker, and Vorland [DSV19, Definition 3.3]
generalized the definition of ∂K to all increasingly labeled posets. Such ac-
tions have been considered in a number of other papers [BSV21a, BSV21b,
BSV24, DPS17, GPSS22]. The purpose of the present work is to show how
keeping the surjective assumption yields interesting results about ∂K both
for posets in general and rooted tree posets in particular. In fact, it has
been shown that to study the order of promotion of non-packed labelings,
it suffices to look at packed labelings; see the papers of Pechenik and Man-
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del [MP18, Theorem 6.1] for minuscule posets or Banaian, Barnard, Chepuri,
and Striker [BBCS] for posets in general.

Note that orbits of K-promotion on m-packed labelings of any poset are
a subset of those for its increasing labelings. So, some of the results we will
need for general posets follow from those in [DSV19]. Pechenik [Pec22] also
stated how the action of ∂K on increasing labelings of arbitrary posets is
governed by the packed case. But we will give proofs for m-packed labelings
to keep this work self-contained.

Proposition 1.1 ([DSV19, Lemma 3.9]]). For any poset P the map ∂K :
Lm(P ) → Lm(P ) is a bijection.

Proof. It suffices to construct the inverse function. Given L ∈ Lm(P ), add
one to all the labels and remove the label m + 1 everywhere it occurs. Now
for any pair x�y where L(x) = m and y is unlabeled, we move the label m to
the unlabeled element. This process is iterated using the labels m− 1, . . . , 2
at which point all unlabeled elements will be minimal. Label these minimal
elements with 1. This is a step-by-step reversal of the algorithm used to
define ∂K and so is its inverse.

By the previous proposition, ∂K induces a group action on Lm(P ). The
current work will investigate its order, o(∂K), and orbit structure. Of course,
o(∂K) depends on m even though the notation does not reflect this. But
context will always make the value of m clear. In the next section we will
collect various results that hold for wide classes of posets. For example, we
show in Theorem 2.4 that if P contains a certain type of chain then o(∂K) is
divisible by m−1. We also find, using toggles, that for certain posets there is
an equivariant bijection between the action of ∂K on Lm(P ) and the inverse
of rowmotion on a subset of the ideals of P ; see Theorem 2.9. The rest of
the paper will consider the action of ∂K on various rooted trees. A rooted
tree is a poset, T , with a minimum element 0̂ such the Hasse diagram of T
is a graph-theoretic tree. In general, we will apply graph theory terminology
to a poset via its Hasse diagram. Section 3 is dedicated to extended stars
which are posets formed by identifying the minimum elements of a number
of chains. We give the precise value of o(∂K) for arbitrary stars and any m
in Theorem 3.1. When all the chains have the same length, we give more
detailed information about the orbit structure in Corollary 3.2. In Section 4
we investigate combs (which are chains with certain maximal elements added)
and zippers (which are formed by pasting together combs). For example,
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let Cn be the comb formed from the chain with n elements. We show in
Theorem 4.2 and Proposition 4.3 that every orbit of ∂K acting on Lm(Cn)
has the same size if m = 2n and m = n+1, respectively. Section 5 is devoted
to trees with three maximal elements having a certain configuration. If the
tree T has n elements, then we completely describe the orbits on Lm(T ) when
m = n − k for k ∈ [0, 2] in Theorem 5.1. The last section is dedicated to
questions and directions for future research.

2 General posets

We prove various results about ∂K as applied to a wide variety of m-packed
labelings of posets. We begin by bounding the values of m which can be
used. To state the result, we need to define the height of P as

h(P ) = length of a longest chain in P .

The next proposition is related to the notion of consistent labelings given
in [DSV19, Definition 2.1 and Lemma 2.18].

Proposition 2.1. For any poset P , an m-packed labeling of P exists if and
only if

h(P ) + 1 ≤ m ≤ #P.

Proof. (a) Throughout this proof, let C be a longest chain of P so that
#C = h(P ) + 1. For the forward direction, suppose there exists L ∈ Lm(P ).
Then the elements of C must all receive different labels so that m ≥ #C.
And we have noted previously that m ≤ #P .

For the converse, we will first suppose that m = #C and construct an
m-packed labeling L of P . Let P1 be the set of minimal elements of P and
label all these elements 1. Note that if x is the minimal element of C then
x ∈ P1 since, if not, then x is above some element of P1 and so C can be
made longer by appending this element. Now label all the minimal elements
of P2 = P−P1 with 2. Continuing in this way we obtain subposets P1, . . . , Pm

where the labeling L(x) = i for all x ∈ Pi is m-packed, concluding this case.
Now suppose that m < #P and that, by induction on m, we have con-

structed an m-packed labeling L of P . We will construct an (m+ 1)-packed
labeling L′ of the same poset. Let P1, . . . , Pm be the subposets of P defined
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Figure 3: An example of the K-promotion toggle s2

by L(x) = i for all x ∈ Pi and i ∈ [m]. Since m < #P , there is a Pi with
#Pi ≥ 2. Pick some y ∈ Pi. We now define a labeling L′ of P by

L′(x) =


L(x) if x ∈ Pj for j < i or x ∈ Pi − {y},
i+ 1 if x = y,

L(x) + 1 if x ∈ Pj for j > i.

It is easy to check that this is an (m+ 1)-packed labeling as desired.

We will now prove some results which will show how certain subposets of
P will affect the orbit structure of ∂K . It will sometimes be best to express
the action of ∂K in terms of toggles. An analogous presentation for the
increasing labeled poset generalization of ∂K was given in [DSV19] (and in
prior work [DPS17, Proposition 2.5] in the increasing tableau case). This
is a K-theoretic analogue of the description of ordinary promotion in terms
of Bender-Knuth toggles, see [Str17, Definition 13]. For L ∈ Lm(P ) and
1 ≤ i ≤ m− 1, the ith K-promotion toggle si acts on L by setting, for each
x ∈ P ,

si(L)(x) =


i+ 1 if L(x) = i and the resulting labeling is still in Lm(P ),

i if L(x) = i+ 1 and the resulting labeling is still in Lm(P ),

L(x) otherwise.

See Figure 3 for an example.

Theorem 2.2 ([DSV19, Theorem 3.8]). The action of ∂K on L ∈ Lm(P ) is
given by
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Figure 4: The trunk of this poset P is T = {u, v}

∂K(L) = sm−1sm−2 · · · s1(L).

From here on out, all of our posets P will have a unique minimal element
denoted 0̂. If P ⊃ {0̂} then 0̂ is covered by one or more elements. We wish
to show that if 0̂ is covered by a single element, then ∂K acting on Lm(P ) has
the same orbit structure as its action on Lm′(P ′) for a certain m′ < m and
subposet P ′ of P . We will do this by constructing an equivariant bijection.
But first, some definitions.

The trunk, T , of a poset P having a 0̂ is the longest chain

0̂ = x1 � x2 � . . .� xt

Such that each xi ∈ T is covered by a single element of P . See Figure 4 for
an example.

Write G = ⟨g⟩ to indicate that the group G is generated by the element g.
Suppose G = ⟨g⟩ acts on A and H = ⟨h⟩ acts on B where A,B are arbitrary
sets. So g : A → A and h : B → B are bijections. The actions of g on A
and h on B are equivariant, written (g, A) ≡ (h,B), if there is a bijection
ϕ : A → B such that

hϕ = ϕg (2)

as maps from A to B. Note that we compose functions right to left. It is
well known that equivariant actions have the same orbit structure.

Proposition 2.3. Let P be a poset with a 0̂. Consider the action of ∂K on
Lm(P ). Suppose P has trunk T where we let t = #T . Set P ′ = P − T and
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Figure 5: K-promotion acts cyclically on the branch B = {2, 5, 6}

m′ = m− t. Then
(∂K ,Lm(P )) ≡ (∂K ,Lm′(P ′)).

Proof. Throughout we will add a prime to a notation for posets when it is
applied to P ′. Let

T : 0̂ = x1 � x2 � . . .� xt

and suppose the element covering xt is xt+1. Then any m-packed labeling L
of P has

L(xi) = i (3)

for i ∈ [t + 1]. It follows that the map ϕ : Lm(P ) → Lm′(P ′) given by
ϕ(L) = L′ where

L′(x) = L(x)− t (4)

for x ∈ P ′ is a well-defined bijection, i.e., L′ ∈ Lm′(P ′). The fact that this
bijection is equivariant now follows from Theorem 2.2 and the fact that, on
P , the toggles si for i ∈ [t+ 1] act as the identity map.
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Given a poset P with 0̂, the principal subposets of P are the connected
components of P−0̂. A principal subposet which is a chain is called a branch.
If a, b ∈ N then gcd(a, d) will denote their greatest common divisor and we
write a | b if a divides evenly into b.

Theorem 2.4. Let P be a poset with 0̂ having a branch on k vertices, where
1 ≤ k ≤ m− 2. Consider the action of ∂K on Lm(P ).

(a) We have
m− 1 | o(∂K).

(b) If gcd(k,m − 1) = 1, then m − 1 divides the size of any orbit of the
action.

Proof. (a) Let B be a k-vertex branch of P , and L ∈ Lm(P ). We study the
effect on B induced by computing ∂KL. See, for example, the top line in
Figure 5 where m = 7 and k = 3. Consider the labels 2, 3, . . . ,m written
clockwise around a circle with the k vertices of B represented as boxes placed
around their labels in L. See the bottom line in Figure 5. Then ∂K simply
rotates the boxes one step counterclockwise around the circle.

To finish the proof it suffices, since o(∂K) is the least common multiple
of all the orbit sizes, to find an orbit O of the action of ∂K on Lm(P ) such
that m− 1 | #O . Let L ∈ Lm(P ) be such that the induced labeling on B is
an interval of k integers and let O be the ∂K orbit containing L. From the
rotational description in the previous paragraph, the labels on this branch
will first return to the given interval after m−1 applications of ∂K . It follows
that m− 1 | #O as desired.

(b) If gcd(k,m−1) = 1 then a similar argument to (a) shows that m−1 |
#O no matter which k integers appear on B.

Combining Proposition 2.3 and Theorem 2.4 give the following result.

Corollary 2.5. Let P be a poset with 0̂ and trunk T having |T | = t. Suppose
P ′ := P − T satisfies the hypotheses of Theorem 2.4.

1. The order of ∂K on P is divisible by m− t− 1.

2. If gcd(k,m− t− 1) = 1, then m− t− 1 divides the size of any orbit on
P .
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P = Q =

P ∪̂ Q =

Figure 6: The bounded union of posets P and Q

Because of the previous corollary, we will only consider posets having an
empty trunk in what follows. The orbit information for a poset with a trunk
can easily be determined from the corresponding trunkless poset and this
corollary.

We wish to define a way of combining posets which behaves well with
respect to ∂K . If P and Q are disjoint posets then their bounded union is

P ∪̂ Q = P ⊎Q with a minimum element 0̂ adjoined

where ⊎ is disjoint union. An example of this construction is given in Fig-
ure 6. Also, if P is any poset with 0̂ and O1, . . . ,Ok are the orbits of ∂K on
the Lm(P ) then we will consider the multiset

om(P ) = {{#O1, . . . ,#Ok}}. (5)

Finally, we use lcm for least common multiple.

Proposition 2.6. Let P,Q be posets each with a 0̂ and satisfying h(P ) =
h(Q) := h. Suppose that m = h+1 with om(P ) = {{c1, . . . , ck}} and om(Q) =
{{d1, . . . , dl}}. Then

om+1(P ∪̂ Q) = {{lcm(ci, dj) | 1 ≤ i ≤ k, 1 ≤ j ≤ l}}.
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Proof. Define a map

ϕ : Lm+1(P ∪̂ Q) → Lm(P )× Lm(Q)

by sending L 7→ (LP , LQ) such that

LP (x) = L(x)− 1 if x ∈ P ,

LQ(y) = L(y)− 1 if y ∈ Q.

It is easy to see that the hypothesis m = h(P )+1 = h(Q)+1 implies the map
is well defined in that LP and LQ are m-packed labelings of their respective
posets. It is also a simple matter to construct an inverse for ϕ, so the map
is bijective.

Note also that we have the equivariance

ϕ∂K(L) = ∂Kϕ(L)

where ∂K is applied component-wise to ϕ(L). This is because the hypotheses
on m and h force L(0̂P ) = L(0̂Q) = 2 for all m-packed labelings L. Thus the
action of ∂K on P and Q as subposets of P ∪̂ Q is the same, up to subtracting
1, as its action on P and Q themselves. Clearly, if LP is in an orbit of size
c and LQ is in an orbit of size d then (P,Q) is in an orbit of size lcm(c, d).
The proposition now follows from the equivariance.

Rowmotion is another action on posets which has received much atten-
tion. Promotion and rowmotion are often connected for certain posets. See,
for example, the article of Striker andWilliams [SW12]. We wish to show that
this is also true form-packed labelings of certain posets P whenm = h(P )+2.
In fact, in [DSV19] it is shown that there is an equivariant bijection between
K-promotion on increasing labelings of any poset and rowmotion on a cor-
responding object which they call the gamma poset. In the case we are
studying, the gamma poset is particularly simple. We first recall the defini-
tion of rowmotion.

A (lower order) ideal of P is I ⊆ P such that x ∈ I and y ≤ x implies
y ∈ I. We let

J (P ) = {I | I is an ideal of P}.

If Q ⊆ P then the ideal generated by Q is

Q ↓ = {y | y ≤ x for some x ∈ Q}.
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The rowmotion operator is a map ρ : J (P ) → J (P ) defined by

ρ(I) = Q ↓

where Q is the set of minimal elements of P − I. To connect ρ with ∂K , let
P be a poset with a 0̂ such that all maximal chains of P have length h(P ).
Note that this implies that P is ranked in that, for any x ∈ P , all maximal
chains from 0̂ to x have the same length. This common length is called the
rank of x and denoted rkx. Consider the m-packed labelings of P where
m = h(P ) + 2. So, every maximal chain of P will be missing exactly one
label. It follows that if L ∈ Lm(P ) and x ∈ P then either L(x) = rk x+ 1 or
L(x) = rk x+ 2. Furthermore

I(L) = {x | L(x) = rkx+ 1}

is a lower ideal of P . Then every I ∈ J (P ) is of the form I = I(L) for some
m-packed labeling L except those of the form

I = {x ∈ P | rkx ≤ k} (6)

for some k since these would come from a labeling where all maximal chains
are missing the same label, and such a labeling is not m-packed. Let

J ′(P ) = {I | I ∈ J (P ) but I is not of the form (6)}.

It is not hard to see from what we have done above that the map L 7→ I(L)
is a bijection

π : Lm(P ) → J ′(P ). (7)

Now consider the rowmotion operator ρ. Note that the ideals in (6) are
all in an orbit of ρ. So ρ restricts to an action on J ′(P ). In fact, we will
show that the map π is an equivariant bijection between K-promotion and
the inverse of rowmotion. To prove this, we will need to express our group
actions in terms of toggles.

We first recall the toggle operator presentation of rowmotion on order
ideals. For a poset P and x ∈ P , the toggle tx acts on J (P ) via

tx(I) =


I ⊎ {x} if x /∈ I and I ⊎ {x} ∈ J (P ),

I − {x} if x ∈ I and I − {x} ∈ J (P ),

I otherwise.

A linear extension of P is a list of P ’s elements x1, . . . , xn such that xi <P xj

implies i < j,
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Theorem 2.7 ([CFDF95]). The action of ρ on J (P ) is equal to to the
product of toggles {tx | x ∈ P} in reverse order of any linear extension of
P .

Next, we explore how π commutes with toggles.

Lemma 2.8 ([DSV19, Lemma 4.32]). Let P be a poset with 0̂ such that all
maximal chains have the same length, and set m = h(P ) + 2. Then for any
L ∈ Lm(P ) and i < m,

π(si(L)) =

( ∏
rk z=i−1

tz

)
π(L).

Proof. Let

A = π(si(L)) and B =

 ∏
rk(z)=i−1

tz

 π(L).

We wish to show A = B. Note that the only x ∈ P whose labels can change
when applying si are those with L(x) = i or i + 1. Also, the choice of m
implies that rk(x) = L(x) − 1 or L(x) − 2. So, the proof breaks into four
cases depending on label and rank.

Case 1: L(x) = i and rk(x) = i− 1.
First suppose that there exists y covering x with L(y) = i + 1. Then x, y ∈
π(L), so x ∈ tx(π(L)). Consequently x ∈ B. On the other hand, both
siL(x) = i and siL(y) = i+ 1 still hold. So x ∈ A as well.

Now, suppose there is no such y. Then every y covering x must have label
i+2, so x ∈ π(L) is maximal. Consequently x /∈ tx(π(L)), so x /∈ B. On the
other hand,

siL(x) = i+ 1 > rk(x) + 1,

so x /∈ A as well.
Case 2: L(x) = i and rk(x) = i− 2.

Since L(x) > rk(x) + 1, it follows that x /∈ π(L). The toggles applied in B
are to a different rank set in P , so also x /∈ B. By the choice of m and the
fact that i < m we have that x is not maximal and every y covering x has
L(y) = i+ 1, so siL(x) = i. Consequently, x /∈ A also.

Case 3: L(x) = i+ 1 and rk(x) = i.
This case is easy to check if i = 0, so assume i > 0. Since L(x) = rk(x) + 1,
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it follows that x ∈ π(L). By assumption, x lies on a maximal chain of the
uniform length and rk(x) > 0, so x covers at least one element and all such
elements have label i. Thus x ∈ A. On the other hand, the toggles in B are
acting on a different rank, so x ∈ B as well.

Case 4: L(x) = i+ 1 and rk(x) = i− 1.
First suppose that there exists y covered by x with L(y) = i. Then x, y /∈
π(L), so x /∈ tx(π(L)). Consequently x /∈ B. On the other hand, we still
have si(L)(x) = i+ 1, so x /∈ A as well.

Now, suppose there is no such y. Then every y covered by x must have
label i − 1, and so lies in π(L). But x /∈ π(L), so x is minimal among
elements not in π(L). Consequently x ∈ tx(π(L)), so x ∈ B. On the other
hand, siL(x) = i = rk(x) + 1, so x ∈ A too.

We now have everything in place to prove the desired equivariance.

Theorem 2.9 ([DSV19, Theorem 4.21]). Let P be a poset with 0̂ such that
all maximal chains have the same length. If m = h(P )+2 then then the map
π in (7) is an equivariant bijection, showing that

(∂K ,Lm(P )) ≡ (ρ−1,J ′(P )).

Proof. We have already noted that π is a bijection. So we just need to show
that for any L ∈ Lm(P ) we have

π ◦ ∂K(L) = ρ−1 ◦ π(L).

Let the elements of P be naturally labeled with {1, 2, . . . , n} along ranks,
from lowest to highest. In particular we have that 1, 2, . . . , n is a linear
extension. By Theorem 2.7 and Theorem 2.2, the actions of K-promotion
and inverse rowmotion are given by

∂K(L) = sm−1sm−2 · · · s1(L) and ρ−1(I) = tntn−1 · · · t1(I)

where we can take I = π(L). Now commutativity follows from repeated
applications of Lemma 2.8.

3 Extended stars

In graph theory, a star is the complete bipartite graph K1,n. For us, an ex-
tended star, S, will be a poset with 0̂ such that S − 0̂ is a disjoint union
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of chains. Recall that such chains are called branches. We write S =
S(b1, b2, . . . , bk) if S has k branches with the ith branch Bi having bi elements.
Interestingly, it follows from the next result that the order of K-promotion
on Lm(S) is almost always m− 1 and so independent of #S in such cases.

Theorem 3.1. Let S = S(b1, b2, . . . , bk) and m be such that S has an m-
packed labeling. Then

o(∂K) =

{
1 if bi = m− 1 for all i,
m− 1 else.

Proof. If bi = m− 1 for all i, then there is only one m-packed labeling of S
and the result follows.

If there is a branch with bi ̸= m − 1 then, by Proposition 2.1, we must
have bi ≤ m−2. So Theorem 2.4 (a) applies and m−1 | o(∂K). To show that
we have equality note that, as in the proof of Theorem 2.4 (a), the induced
action of ∂K on each branch Bj is just rotation of bj labels around a circle
of m− 1 elements. Clearly, after m− 1 rotations the labels on Bj will have
returned to their original state. So m− 1 = o(∂K).

The next result will illustrate the use of Theorem 2.9. To state part of it,
we need to review some definitions about group actions and statistics. Let
S be a finite set. A statistic on S is a function

st : S → N.

We can apply st to subsets T ⊆ S by letting

stT =
∑
t∈T

st t.

Now suppose G is a finite group acting on S. We call st homomesic if there
is a constant c such that for any orbit O of the action

stO
#O

= c. (8)

Otherwise put, the average value of st is the same over all orbits. Homomesy
was first defined by Propp and Roby [PR15] and has since become a much-
studied property in dynamical algebraic combinatorics.
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Let P be a ranked poset and let L be an m-packed labeling of P . Call
x ∈ P minimally labeled if L(x) = rk x+ 1. Note that such x are exactly the
ones whose label is as small as possible given the fact that L is increasing on
P . Let

M(L) = #{x ∈ P | x is minimally labeled in L}.
The following properties were proven for rowmotion on extended stars in
the paper of Dangwal et al. [DKL+24, Theorem 3.1] by employing a tiling
model. So, using Theorem 2.9, we immediately get the following facts about
K-promotion on such stars where all k branches have the the same number
of elements b, denoted by bk.

Corollary 3.2. Consider the star S = S(bk) and let m = b + 2. Then the
orbits of ∂K acting in Lm(S) satisfy the following.

(a) Every orbit O has #O = b+ 1.

(b) The number of orbits is (b+ 1)k−1.

(c) For any orbit O we have

M(O) = b+ 1 + k

(
b+ 1

2

)
.

It follows that the statistic M is homomesic.

4 Combs and Zippers

The comb, Cn, is formed from a chain with n elements by adding a new
maximal element attached to each of the vertices of the chain. We call
the original chain the spine of the comb. A labeling of the comb C3 is
displayed on the left in Figure 7. Combs appear in various contexts such as
a tree analogue of the Robinson-Schensted-Knuth correspondence for Young
tableaux [SY89, Sta75]. We also define the zipper poset

Zn = Cn ∪̂ Cn.

We begin with a simple observation about the orbit sizes.

Proposition 4.1. If n + 1 ≤ m ≤ 2n and O is any orbit of ∂K on Lm(Cn)
then

(m− 1) | #O.
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Figure 7: A labeling L ∈ L6(C3) and the induced labeling L(3) ∈ L4(C2)

Proof. Note that Cn has a branch with one element. So this result follows
immediately from Theorem 2.4 (b).

If m = 2n = #Cn, its maximum value, much more can be said. For any
integer n and nonnegative integer k we let

n ↓↓k= n(n− 2)(n− 4) · · · (n− 2k + 2).

Theorem 4.2. Every orbit of ∂K on L2n(Cn) has size (2n− 1) ↓↓⌈n/2⌉.

Proof. We induct on n where the result is easy to check for n ≤ 2. So, assume
the result for n and suppose L ∈ L2n+2(Cn+1). Let y be the maximal element
of Cn+1 covering 0̂ and let L(y) = l. From L we can construct a labeling
of Cn by first removing 0̂ and y and then replacing the remaining labels
{2, . . . , l−1, l+1, . . . , 2n+2} with the labels [2n] in an order-preserving way.
The resulting labeling will be denoted L(l) and will be called the restriction
of L. An example can be found in Figure 7.

Now consider any orbit O for the action on L2n+2(Cn+1). From Theo-
rem 2.4 (a) we have that (2n+1)|#O. And, as in the proof of that theorem,
if L ∈ O with L(y) = l then the successive labels of y in O are l, l−1, l−2, . . .
where these numbers are taken modulo 2n + 1 using representatives in the
interval [2, 2n+2]. So we can pick, without loss of generality, O to start with
a labeling L1 such that L1(y) = 2n+ 2. It will also be convenient to list the
labelings in r rows of length 2n+ 1 so that

#O = r(2n+ 1). (9)

Now consider the first row ofO which contains the labelings L1, L2, . . . , L2n+1.

Let M1 = L
(2n+2)
1 and consider the orbit P ⊆ L2n(Cn) containing M1
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which, by induction, we can write as P = (M1,M2, . . . ,MN) where N =
(2n− 1) ↓↓⌈n/2⌉. We claim that for all 1 ≤ i ≤ 2n+ 1 we have

L
(2n+3−i)
i = Mi. (10)

We induct on i where the case i = 1 is true by assumption. Now suppose
1 ≤ i ≤ 2n and that the desired equation holds for Li. By the bounds on
i, we have Li(z) = 2, where z is the element of the spine covering 0̂. So,
computing ∂KLi begins by moving the 2 on z down to 0̂. And from there
on out, the path of elements moved is the same as in computing ∂KMi by
the induction assumption and the fact that these moves only depend on the
relative sizes of the elements. It follows that equation (10) continues to hold
at i+ 1.

Now consider what happens when moving from L2n+1 to L2n+2 in the
next row. We claim that

L
(2n+2)
2n+2 = M2n+1.

Indeed, in L2n+1 we have L2n+1(y) = 2. So applying ∂K just moves the 2
from y down to 0̂ without disturbing any of the elements of Cn − {0̂, y}. So
L
(2n+2)
2n+2 = L

(2)
2n+1 = M2n+1 by (10).

By the same considerations, the restrictions of the labelings in the second
row will be M2n+1,M2n+2, . . . ,M4n+1 where the subscripts are taking modulo
N = #P . Then the third row restrictions will start M4n+1,M4n+2, . . . and so
forth. It follows that if we consider the restrictions of the elements in O but
ignore the last restriction in each row of 2n+1 elements, then the result will
be a concatenation of copies of the orbit P . Recalling our notation r for the
number of rows, it follows that 2nr is a multiple of #P = N . In fact, r must
be the smallest positive integer such that N | 2nr.

The proof now breaks into two cases depending on the parity of n. We
will do the case when n is odd as the even case is similar. If n is odd then

N = (2n− 1) ↓↓⌈n/2⌉= (2n− 1)(2n− 3) · · · (n).

So, using the fact that N is odd and so relatively prime to 2, if N | 2nr then
we must have (2n− 1)(2n− 3) · · · (n+2) | r. To make r as small as possible,
we must take r = (2n− 1)(2n− 3) · · · (n+ 2). Thus, using equation (9),

#O = (2n+ 1)(2n− 1) · · · (n+ 2) = (2n+ 1) ↓↓⌈(n+1)/2⌉

as desired.
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We have just characterized the orbit sizes for ∂K acting on Lm(Cn) where,
by Proposition 2.1, m is as large as possible. We can do the same when m is
at the opposite end of the spectrum.

Proposition 4.3. We have the following,

(a) Every orbit of ∂K on Ln+1(Cn) has size lcm(1, 2, . . . , n).

(b) Every orbit of ∂K on Ln+2(Zn) has size lcm(1, 2, . . . , n).

Proof. (a) In Cn, consider the chain consisting of the spine of the comb and
the topmost maximal element. This chain has n + 1 = m elements, so it is
forced to have labels 1, 2, . . . ,m. Let the labels on the n maximal elements
of the comb be t1, t2, . . . , tn listed from bottom to top. By the increasing
condition we have i + 1 ≤ ti ≤ m for all i ∈ [n]. Thus the action of ∂K
independently decrements each label ti cyclically within {i+1, i+2, . . . ,m}.
It follows that the order of ∂K acting on the ith macimal element is m − i.
Hence, the size of any K-promotion orbit on an m-packed labeling of Cn is

lcm(m− 1,m− 2, . . . ,m− n) = lcm(1, 2, . . . , n).

(b) This follows immediately from part (a), the fact that Zn = Cn ∪̂ Cn,
and Proposition 2.6.

5 A tree with three leaves

A non-0̂ maximal element in a rooted tree will be called a leaf. If a tree has
one leaf it is a chain. And if it has two then it is an extended star with
two branches and a trunk (which may be empty). In the first case, the orbit
structure of ∂K on m-packed chains is trivial. And the second case can be
analyzed with the help of Proposition 2.3 and Theorem 3.1. We now consider
a particular tree having three leaves.

Let C be a chain of length c. We now form a tree T (c) by adding two
leaves u and v covering the 1̂ of the chain and one leaf w covering the chain’s
0̂. The Hasse diagram of T (3) is displayed in Figure 8. We will completely
describe the orbits of ∂K on Lm(T (c)) for three values of m.

Theorem 5.1. Consider T (c) having n := #T (c) = c + 4 elements, The
orbits of ∂K on Lm(T (c)) can be described as follows:

20



u v

w

Figure 8: The tree T (3)

(a) For m = n− 2, there is one orbit of length m− 1.

(b) For m = n− 1:

(i) If c is even, there are 3 orbits of length m− 1.

(ii) If c is odd, there are 2 orbits, one of length m−1 and one of length
2(m− 1).

(c) For m = n:

(i) If c is even, there are 2 orbits of length m− 1.

(ii) If c is odd, there is one orbit of length 2(m− 1).

Proof. (a) We will keep the leaf notation as in Figure 8. Since m = n−2 and
there are n− 2 elements on the path from 0̂ to u, this path must be labeled
1, 2, . . . ,m. The same is true of the path from 0̂ to v. So only the label of w
can vary when we apply ∂K . Since w is a branch, the proof of Theorem 2.4
(b) shows that its label cycles through the interval [2,m]. These are clearly
are all possible m-packed labelings, finishing the proof.

(b) Continuing to use the conventions in (a), we also let x1, x2, . . . xc be
the elements of the chain used to construct T (c) from bottom to top, starting
with the element covering 0̂. Again, we will explicitly construct the orbits in
question. An example of this construction will be found in Figure 9.
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Figure 9: The orbits for T (2) when m = 5

In case (i) we will show that there are three orbits

O1 = (L1, L2, . . . , Lm−1), (11)

O2 = (M1,M2, . . . ,Mm−1), (12)

O3 = (N1, N2, . . . , Nm−1).

We will use L for a generic labeling which may be in any of the orbits.
In all orbits L(0̂) = 1 so only the other labels need to be specified. In O1 all
the labelings have

L(xi) = i+ 1 (13)

for i ∈ [t]. Furthermore, in Lj for j ∈ [m− 1] we have

Lj(w) = m− j + 1. (14)

As far as the other two maximal elements, for j ∈ [m− 1] we have

Lj(u) =

{
m if j is odd,
m− 1 if j is even,

(15)

and

Lj(v) =

{
m− 1 if j is odd,
m if j is even.

(16)

22



It is easy to verify that the labelings just described form an orbit under ∂k.
In O2 we have that (13) and (14) are still satisfied. But (15) and (16)are

replaced by

Mj(u) =

{
m− 1 if j is odd,
m if j is even,

and

Mj(v) =

{
m if j is odd,
m− 1 if j is even.

Again, we leave the verification that the Mj form an orbit to the reader.
Finally, N1 ∈ O3 satisfies (13) and (14) but

N1(u) = N1(v) = m− 1.

All the other Nj have
Nj(u) = Nj(v) = m.

Finally, for Nj with j ≥ 2 we label the chain x1, . . . , xc using the elements
in the set difference [2,m− 1]− {m− i+ 1}. It is not difficult, if tedious, to
use these explicit expressions to show that each Nj will an m-packed labeling
and that O3 is an orbit of ∂K . We also omit the details showing that these
orbits contain all the m-packed labelings of T (c) so that we have completely
described the orbit structure.

In case (ii) we have the same labelings. The only difference is that,
because of the change in parity, orbits O1 and O2 merge into a single orbit

O = (L1, L2, . . . , Lm−1,M1,M2, . . . ,Mm−1) (17)

(c) Again, we will content ourselves with a description of the orbits. As-
sume first that we are in case (i). We want to describe orbits O1 and O2,
keeping the notation of (11) and (12).

In O1 = (L1, L2, . . . , Lm−1), leaf w still has labels given by (14). For j ≤ 2
we have that (13) also holds. Furthermore, we have

L1(u) = m− 1 and L1(v) = m− 2

while
L2(u) = m− 2 and L2(v) = m.

Finally, for j ≥ 3, we have that Lj satisfies (15) and (16). And the chain
x1, . . . , xb takes the elements of [2,m− 2]− {n− i+ 1} as its labels.

In O2 = (M1,M2, . . . ,Mm−1), the labels of Mj are the same as those of
Lj except that the labels of u and v are reversed. And when the parity of c
becomes odd in case (ii), the two orbits merge into one exactly as in (17).
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Cn m om(Cn) o(∂K)

C3 4 61 6
5 81, 121 24
6 151 15

C4 5 122 12
6 152, 401, 601 60
7 303, 481, 721 720
8 353 35

C5 6 602 60
7 306, 606, 722, 1202 360
8 356, 706, 1402, 2103, 3361, 5041 5040
9 2403, 2803, 3841, 5761 40320
10 3153 315

C6 7 6012 60
8 7012, 2106, 4206, 5042, 8402 2520
9 2406, 28026, 3368, 4806, 5048, 5762, 8406, 9602 20160
10 31526, 3788, 5678, 5769, 9456, 7209, 11523, 25203 362880
11 63015, 6409, 8009, 12803, 28003 403200
12 69315 693

Table 1: Comb orbit sizes and orders for ∂K

6 Questions and future directions

We collect some directions for future research on m-packed labelings of
posets.

6.1 More on combs and zippers

In Theorem 4.2 and Proposition 4.3 (a) we were able to characterize the orbit
sizes of ∂K acting on the comb Lm(Cn) when m has one of the two extreme
values #Cn = 2n and h(Cn) + 1 = n + 1. And in Proposition 4.3 (b) we
did the same for the zipper Zn when m = h(Zm) + 1 = n + 2. Computer
data suggests that other values of m may yield interesting results. In Table 1
we have listed the orbit sizes and order for ∂K acting on Cn for 3 ≤ n ≤ 6.
We use the notation from (5) and indicate multiplicities of orbit sizes as kl

if there are l orbits of size k. Table 2 contains similar information about
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Zn m om(Cn) o(∂K)

Z1 3 11 1
4 22, 32, 62 6
5 21, 41, 812 8
6 1016 10
7 42, 126 12

Z2 4 22 2
5 33, 612, 86, 246 24
6 88, 1012, 15108, 3036, 408, 1206 120
7 42, 954, 126, 18378, 3660, 4880.14460 144
8 21540, 4230, 56300, 168180 168
9 63, 1239, 24216, 64588, 192210 192
10 72560, 221684 216
11 168, 80200 80

Table 2: Zipper orbit sizes and orders for ∂K

zippers.

6.2 The cyclic sieving phenomenon

Cyclic sieving involves three objects. Let S be a set, C be a cyclic group
acting on S, and f(q) be a polynomial in q with coefficients in N. We say
that the triple (S,C, f(q)) exhibits the cyclic sieving phenomenon (CSP) if,
for all g ∈ C we have

#Sg = f(ω)

where Sg is the fixed point set of g and ω is a root of unity chosen to have
the same order as g. The CSP was first defined by Reiner, Stanton, and
White [RSW04] and has since found wide application. See the article of
Sagan [Sag11] for a survey. In Pechenik’s original article [Pec14], he used K-
promotion on m-packed labelings of a Young diagram of rectangular shape
[2]× [n] to prove a CSP for these tableaux. In fact, instances of the CSP are
often connected with a form of promotion; the survey articles [Rob16, Str17]
contain more information.

This raises the question of whether ∂K acting on m-packed labelings of
rooted trees T has an associated CSP. For this, one would need a polynomial
and, in the case m = #T , a natural candidate is the q-analogue of the hook
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length formula for such trees which we now describe. An m-packed labeling
with m = #T is call a standard labeling of T and we let

fT = the number of standard labelings of T . (18)

The hook length of x ∈ T is

hx = #{y | y ≥ x},

that is, the size of the upper order ideal generated by x. The following result
is known as the Hook Length Formula for Trees

fT =
n!∏

x∈T hx

(19)

where n = #T . To turn this into a polynomial in q we use the standard
q-analogue of n ∈ N which is

[n]q = 1 + q + q2 + · · ·+ qn−1.

Now define

fT (q) =
[n]q!∏
x∈T [hx]q

(20)

where [n]q! = [1]q[2]q · · · [n]q. This turns out to be a polynomial in q and is,
up to a power of q, the generating function for various statistics on trees as
shown by Björner and Wachs [BW89].

Unfortunately, (20) can not be the polynomial for a CSP on natural
labelings of an arbitrary rooted tree. As an example, take the comb C3.
By (19), there are 15 standard labelings of C3. And by Theorem 4.2 all
orbits of ∂K have size 15. So there is only one orbit, and a single application
of ∂K has no fixed points. On the other hand, f c3(q) = [5]q[3]q by (20).
Substituting a primitive 15th root of unity into this polynomial does not
give zero.

This raises a number of questions. Can one characterize the rooted trees
for which (20) does give a CSP? Is there another q-analogue of (19) which will
yield a CSP for all standard labelings of trees? Is there a CSP for m-packed
labelings of trees when m < #T?
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6.3 Other posets

In the present work, we have considered the orbit structure of ∂K acting on
m-packed labelings of rooted trees. But other posets may also yield inter-
esting results. As mentioned in the introduction, the generalization of ∂K to
increasing labelings has received some attention. And the orbits onm-packed
labelings are a subset of those on increasing ones. So, restricting theorems for
increasing labelings of P may yield information about the action on Lm(P ).
For example, one could restrict the action of ∂K on increasing labelings of a
product of two chains (equivalently, increasing Young tableaux of rectangular
shape) to the m-packed case.

Often posets where rowmotion has a nice orbit structure also behave
well with respect to some form of promotion. In fact, it was the results on
rowmotion on rooted trees in [DKL+24] which partially motivated our work.
Another family of posets with interesting rowmotion structure is fences. A
fence, F , is a poset on the elements x1, x2, . . . , xn whose cover relations are

x1 � x2 � . . .� xk � xk+1 � . . .� xl � xl+1 . . .

for certain k, l, . . . ∈ [n]. Fences appear in the theory of cluster algebras as
well as the work of Morier-Genoud and Ovsienko [MGO20] on q-analogues
of rational numbers. In [EPRS23], Elizalde et al. have derived a number
of results about rowmotion for fences. It would be interesting to study the
action of ∂K in this context.

6.4 Homomesy and homometry

We keep the notation in Section 3 concerning homomesy. There is a weaker
condition that is also displayed by some group actions. We say that the
statistic st : S → N is homometric if, for any two orbits O1 and O2 for the
action of G,

#O1 = #O2 =⇒ stO1 = stO2.

Note that homomesy implies homometry. Indeed, if equation (8) is satisfied
and #O1 = #O2 then

stO1 = c ·#O1 = c ·#O2 = stO2.

But there are statistics which are homometric but not homomesic. Homom-
etry was first defined and studied in [EPRS23].
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Just as we used Theorem 2.9 to lift a homomesic result about rowmotion
from [DKL+24] to ∂K in Corollary 3.2, one could do the same thing for
homometries. It would also be interesting to go the other way and find
natural homomesies and homometries in the context of K-promotion and
then see what they implied about rowmotion. To apply Theorem 2.9, the
poset P must have all chains of the same length and that is true for a number
of interesting posets such as the product of chains or certain fences. To use
this theorem, one also needs to have m = h(P ) + 2, but there could well be
interesting homomesies and homometries for other values of m.
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