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The Euler numbers En have been widely studied. The coefficients of the exponential 
generating function 1/(1 + x2/2! + x4/4! + · · · ) give a signed version of the Euler numbers 
of even subscript. Leeming and MacLeod introduced a generalization of the Euler numbers 
depending on an integer parameter d ≥ 2 where one takes the coefficients of the expansion 
of 1/(1 + xd/d! + x2d/(2d)! + · · · ). These numbers ℰ (d)

n have been shown to have many 
interesting properties despite being much less studied. And the techniques used have been 
mainly algebraic. We propose a combinatorial model for the ℰ (d)

n as signed sums over 
ordered partitions. We show that this approach can be used to prove a number of old 
and new results including a recursion, integrality, and various congruences. Our methods 
include sign-reversing involutions and Möbius inversion over partially ordered sets.

© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 
training, and similar technologies.

1. Introduction

The Euler numbers, En , can be defined in terms of the exponential generating function

∑︂
n≥0 

En
xn

n! = tan x + sec x.

The first few Euler numbers are given in Table 1. There is a tremendous literature surrounding these constants, for example, 
in combinatorics and number theory. Considering the parity of the powers of x we see that

∑︂
n≥0 

E2n
x2n

(2n)! = sec x. (1)

The even subscripted Euler numbers have also been considered in another context which will be amenable to general-
ization. Define a sequence ℰn by

Table 1
The Euler numbers as defined by tan x + sec x.

n 0 1 2 3 4 5 6 7 8 9
En 1 1 1 2 5 16 61 272 1385 7936
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Table 2
The Euler numbers as defined by 2/(ex + e−x).

n 0 1 2 3 4 5 6 7 8 9
ℰn 1 0 −1 0 5 0 −61 0 1385 0

Table 3
The Lehmer numbers.

n 0 1 2 3 4 5 6 7 8 9
ℒn 1 0 0 −1 0 0 19 0 0 −1513

∑︂
n≥0 

ℰn
xn

n! =
2 

ex + e−x
= 1 

1 + x2/2! + x4/4! + · · · . (2)

The beginning of this sequence is displayed in Table 2. It is easy to see that

ℰn =
{︃

(−1)n/2 En if n is even.
0 if n is odd.

(3)

Indeed, since 2/(ex +e−x) is an even function we have the second case of (3). As far as the first, we can rewrite equation (1)
as

∑︂
n≥0 

(−1)n E2n
x2n

(2n)! =
∑︂
n≥0 

E2n
(ix)2n

(2n)! 
= sec(ix)

= sech(x)

= 2 
ex + e−x

=
∑︂
n≥0 

ℰ2n
x2n

(2n)! .

As is done in the literature, we will also refer to the ℰn as Euler numbers and let context distinguish between them and the 
En .

Lehmer [6] introduced an analogue of the Euler numbers as follows. Let ζ be a primitive cube root of unity. Now define 
the Lehmer numbers, ℒn , by

∑︂
n≥0 

ℒn
xn

n! =
3 

ex + eζ x + eζ 2x
= 1 

1 + x3/3! + x6/6! + · · · . (4)

See Table 3 for some specific values. It has been shown that the ℒn also have interesting properties such as recurrences, 
congruences, and determinantal identities [1,4,5]. Almost all of these have been derived by algebraic means such as manip-
ulation of sums.

Looking at equations (2) and (4) suggests an obvious generalization. Let d ≥ 2 be an integer and let ζd be a primitive dth 
root of unity. Define the generalized Euler numbers, ℰ (d)

n , by

∑︂
n≥0 

ℰ(d)
n

xn

n! =
d 

ex + eζdx + eζ 2
d x + · · · + eζd−1

d x
= 1 

1 + xd/d! + x2d/2d! + · · · . (5)

Clearly ℰ (2)
n = ℰn and ℰ (3)

n = ℒn . These numbers were first defined by Leeming and MacLeod [7] and have since only been 
studied in [3,4,8]. Given the vast literature on Euler numbers, we feel that this generalization has been overlooked.

The purpose of the current work is to study the ℰ (d)
n from a combinatorial viewpoint. It is well known that the En

count alternating permutations. The ℰ (d)
n have a combinatorial interpretation in terms of ordered set partitions. Let S be 

a set. Often S will be the interval [n] = {1,2, . . . ,n}. An ordered set partition of S is a sequence of nonempty subsets π =
(B1, B2, . . . , Bk) where ⊎i Bi = S (disjoint union). The Bi are called blocks and their order matters, while the order of the 
elements within each block does not. And in examples we will not write out set braces and commas unless they are needed 
for readability. For example, two different ordered set partition of [5] are

π = (14,25,3) and σ = (3,14,25).

We write π |= S if π is an ordered set partition of S . The length of π is the number of blocks and denoted ℓ(π). Both of 
the displayed partitions above have ℓ(π) = 3. Ordered set partitions play a crucial role when considering ordered Stirling 
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numbers and q-Stirling numbers of the second kind as well as associated algebraic structures such as coinvariant algebras. 
See the article of Sagan and Swanson [11] for a history and references.

We will write π |=d S if every block B of π has #B divisible by d where we use #B or |B| to denote cardinality. Such 
partitions will be called d-divisible. To illustrate

π = (27,1346,58) |=2 [8].
Our main tool will be the following combinatorial description of generalized Euler numbers.

Theorem 1.1. For all n ≥ 0 and d ≥ 2 we have

ℰ(d)
n =

∑︂
π⊢d [n]

(−1)ℓ(π).

To illustrate, one can compute from (2) that ℰ (2)
4 = ℰ4 = 5. On the other hand, the 2-divisible partitions of [4] are

(1234), (12,34), (34,12), (13,24), (24,13), (14,23), (23,14).

So

ℰ4 = (−1)1 + (−1)2 + (−1)2 + (−1)2 + (−1)2 + (−1)2 + (−1)2 = 5.

The rest of this paper is structured as follows. In the next section we study the Euler numbers ℰ (2)
n through the lens of 

ordered set partitions. We show that they can be considered as signed sums over certain ordered partitions. This model is 
then used to prove various classical results including that they are integers, alternate in sign, and satisfy a nice recursion. 
Section 3 is devoted to showing that similar results (with similar proofs) hold for ℰ (d)

n for all d ≥ 2. In the section following 
that, we prove generalizations of various congruences already known for small values of d either to all d or to all prime d. 
We end with some suggestions for future work.

2. The original Euler numbers

We will first concentrate on the case d = 2 where ℰ (2)
n = ℰn . Several of our results and proofs will generalize easily to 

arbitrary d. So, in those cases, we will be able to merely mention any necessary changes to get the appropriate generalization 
in Section 3. Our first order of business will be to prove equation (12) for d = 2. Given a power series f (x) we will use the 
notation [xn/n!] f (x) for the coefficient of xn/n! in f (x).

Theorem 2.1. For all n ≥ 0 we have

ℰn =
∑︂

π |=2 [n]
(−1)ℓ(π). (6)

Proof. From the definition (2) we have

∑︂
n≥0 

ℰn
xn

n! =
1 

1 + x2/2! + x4/4! + · · ·

= 1 
1 − (−x2/2! − x4/4! − · · · )

= 1 + (−x2/2! − x4/4! − · · · ) + (−x2/2! − x4/4! − · · · )2 + · · · (7)

Now (−x2/2! − x4/4! − · · · ) is the exponential generating function for a single nonempty set of size divisible by 2 and 
with sign −1. So, (−x2/2! − x4/4! − · · · )k is the generating function for an ordered set partition π with k blocks and sign 
(−1)k = (−1)ℓ(π) . Summing over all k permits any number of blocks and proves the theorem. □

As an immediate corollary we get the following classical results.

Corollary 2.2. For all n ≥ 0 we have

(a) ℰn ∈Z, and
(b) ℰ2n+1 = 0. □
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(12,34)

(1234)

(34,12) (13,24) (24,13) (13,24) (24,13)

S+

S−

S =

Fig. 1. The signed set of all 2-divisible partitions of [4] and a sign-reversing involution. 

As for the ℰ2n , we can also easily obtain the following recursion.

Proposition 2.3. We have ℰ0 = 1 and for n ≥ 1

ℰ2n = −
n−1 ∑︂
i=0 

(︃
2n

2i 

)︃
ℰ2i

Proof. Suppose π = (B1, . . . , Bk). Consider the contribution of all such π with #B1 = 2i to the sum (6). There are 
(︁2n

2i 
)︁

ways 
to choose B1. And π ′ := (B2, . . . , Bk) |=2 [2n] − B1 can be chosen in ℰ2n−2i ways. So the total contribution is −(︁2n

2i 
)︁ℰ2n−2i

where the negative sign comes from the fact that π has one more block than π ′ . Summing over i ∈ [n], replacing i by n − i, 
and using the symmetry of the binomial coefficients finishes the proof. □

Next we would like to show that the ℰ2n alternate in sign and count certain permutations. Of course, this follows 
from equation (3) and the facts that the En are positive and enumerate alternating permutations. But we wish to give a 
combinatorial proof. We will use the standard method of sign-reversion involutions which we now briefly review. For more 
information on this technique, see the text of Sagan [10, Section 2.2].

Let S be a finite set and ι : S → S an involution, that is, ι2 = id where id is the identity map. So ι can be viewed as 
a permutation of S whose cycle decomposition consists of 2-cycles and fixed points. In Fig. 1, the set S is all 2-divisible 
partitions of [4] and ι is indicated by the arcs. So, (12,34) and (1234) form a 2-cycle and all the other ordered partitions 
are fixed points. Now assume that S is signed so that there is a function sgn : S → {1,−1}. We let

S+ = {s ∈ S | sgn s = 1} and S− = {s ∈ S | sgn s = −1}.
Continuing our example, we let

sgnπ = (−1)ℓ(π)

so that (1234) is the sole element with sign −1 and all the rest have sign 1. Say that ι is sign reversing if, for each of its 
2-cycles (s, t) we have

sgn t = − sgn s.

Our example ι is clearly sign-reversing as sgn(12,34) = − sgn(1234). Let Fix ι be the set of fixed points of ι. If ι is sign 
reversing then we clearly have∑︂

s∈S 
sgn s =

∑︂
s∈Fix ι

sgn s (8)

since the signs in each 2-cycle cancel each other. The hope is that the sum on the right will have far fewer terms and, if we 
are lucky, that they all have the same sign. Fig. 1 illustrates the involution used in the demonstration of the next result. A 
more complicated example will be found after the proof. The use of splitting and merging to create involutions can also be 
used, e.g., to find cancellation-free antipodes for Hopf algebras as shown by Benedetti and Sagan [2].
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To make the connection with alternating permutations, let 𝔖n be the symmetric group of all permutations σ =
σ1σ2 . . . σn written in 1-line notation. The descent set of σ is

Desσ = {i | σi > σi+1}.
Call σ alternating if

Desσ = {2i | 2 ≤ 2i < n},
and let

An = {σ ∈𝔖n | σ is alternating}.
It is well known that

En = #An.

The next result is a restatement of (3) for the even indices, but now we can give a combinatorial proof.

Proposition 2.4. For all n ≥ 0 we have

ℰ2n = (−1)n E2n

Proof. Consider the set

Π
(2)
2n = {π | π |=2 [2n]}

signed by

sgnπ = (−1)ℓ(π). (9)

Appealing to Theorem 2.1, we obtain∑︂
π∈Π

(2)
2n

sgnπ =
∑︂

π |=2 [2n]
(−1)ℓ(π) = ℰ2n. (10)

To define the necessary involution, ι : Π(2)
2n → Π

(2)
2n , say that a block Bi of π = (B1, . . . , Bk) ∈ Π

(2)
2n is splittable if #Bi ≥ 4. 

On the other hand, we call Bi mergeable if

(M1) #Bi = 2, and
(M2) max Bi < min Bi+1.

Note the (M2) assumes that i < ℓ(π). Note also that because of the cardinality constraints, a block can not be both splittable 
and mergeable. If π has no splittable or mergeable blocks then it is a fixed point of ι. Otherwise, let i be the smallest index 
such that the block Bi = {b1 < b2 < . . .} is splittable or mergeable and define

ι(π) =
{︃

(B1, . . . , Bi−1, {b1,b2}, Bi − {b1,b2}, Bi+1, . . . , Bk) if Bi is splittable,
(B1, . . . , Bi−1, Bi ⊎ Bi+1, Bi+2, . . . , Bk) if Bi is mergeable.

It is clear from (9) that ι is sign-reversing since if ι(π) = π ′ then ℓ(π ′) = ℓ(π) ± 1. We also need to check that ι2 = id. 
We will show that this is the case when π ′ is obtained from π by splitting Bi as the merging case is similar. Since b1,b2
are the smallest two elements of Bi we have that {b1,b2} is mergeable with Bi −{b1,b2}. So we will have ι(π ′) = π as long 
as the split did not create a block B j in π ′ with j < i which is splittable or mergeable. Suppose, towards a contradiction, 
that such a block did appear. But B j could not be splittable since then #B j ≥ 4 in both π and π ′ making B j splittable in 
π . This contradicts the fact that i was the minimal index of a splittable or mergeable block in π . A similar argument shows 
that B j could not be mergeable because it would have also been mergeable in π .

Now suppose π ∈ Fix ι. Then π can not have any splittable blocks which means #Bi = 2 for all blocks Bi of π . Since 
π |=2 [2n] this implies that ℓ(π) = n and so sgnπ = (−1)n . Thus∑︂

π∈Fix ι

sgnπ =
∑︂

π∈Fix ι

(−1)n = (−1)n# Fix ι.

Comparing this expression with (10) and using (8) gives

ℰ2n = (−1)n# Fix ι.

5 
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So, to finish the proof, we just need to show that

# Fix ι = #A2n. (11)

We have already seen that if π = (B1, . . . , Bn) ∈ Fix ι then #Bi = 2 for all i which makes no Bi splittable. To make sure it 
is not mergeable we can not violate (M1). So (M2) must be false for every pair of adjacent blocks. Now map Fix ι → A2n by 
sending π to the permutation σ = σ1 . . . σn obtained by writing each Bi in increasing order and concatenating the resulting 
2-element permutations. Condition (M2) being false for π is equivalent to σ being alternating. So this map is a bijection 
which completes the proof of (11) and of the proposition. □

To illustrate the involution of the proof, suppose

π = ({2,9}, {4,11}, {1,3,5,6}, {7,8}, {10,12}).
Now {2,9} has too few elements to be splittable. And it is not mergeable with {4,11} since

max{2,9} = 9 > 4 = min{4,11}.
Similarly, {4,11} is neither splittable nor mergeable. But {1,3,5,6} is splittable since it has (at least) 4 elements. Thus

π ′ = ι(π) = ({2,9}, {4,11}, {1,3}, {5,6}, {7,8}, {10,12}).
Note that the fact that {7,8} is mergeable with {10,12} in π is irrelevant since {1,3,5,6} comes earlier in the partition. 
To compute ι(π ′), we see that the first two blocks are neither splittable nor mergeable for the same reasons as in π . But 
{1,3} can be merged with {5,6} so that ι(π ′) = π as desired.

3. Basic properties of generalized Euler numbers

In this section we will study the ℰ (d)
n for general d. We start by recording analogues of the results from the previous 

section. We also need the definition that a permutation σ ∈ 𝔖n is d-alternating if

Desσ = {di | d ≤ di < n}.
We also let

A(d)
n = {σ ∈𝔖n | σ is d-alternating}.

Theorem 3.1. For all d ≥ 2 we have the following.

(a) For all n ≥ 0 we have

ℰ(d)
n =

∑︂
π |=d [n]

(−1)ℓ(π). (12)

(b) For all n ≥ 0 we have ℰ (d)
n ∈Z.

(c) For all n ≥ 0 we have ℰ (d)
n = 0 if n is not a multiple of d.

(d) We have ℰ (d)
0 = 1 and for n ≥ 1

ℰ(d)

dn = −
n−1 ∑︂
i=0 

(︃
dn

di 

)︃
ℰ(d)

di .

(e) For all n ≥ 0 we have

ℰ(d)

dn = (−1)n#A(d)

dn .

Proof. In all cases, the proofs of these statements are simple modifications of the demonstrations when d = 2. So, we will 
just indicate how these changes are applied to obtain (e).

The set for the involution is

Π
(d)

dn = {π | π |=d [dn]}.
And the sign is exactly the same as in definition (9). As far as the involution ι : Π

(d)

dn → Π
(d)

dn itself, we call block Bi of 
π = (B1, . . . , Bk) splittable if #Bi ≥ 2d or mergeable if

6 
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(M1’) #Bi = d, and
(M2’) max Bi < min Bi+1.

Now ι is defined by splitting off the smallest d elements of a splittable block or taking the disjoint union of a mergeable 
block with the following block, whichever comes first. The partition π is left fixed if no such block exists. The reader should 
now be able to fill in the rest of the details. □
4. Congruences for generalized Euler numbers

We will now derive some congruences for generalized Euler numbers. Proofs of similar results in the literature are 
algebraic while ours are combinatorial.

Our first theorem contains a result of Leeming and MacLeod modulo 2 as part (a). But our technique works for any 
modulus, although the expressions become increasingly more complicated. To illustrate the method, we have provided a full 
demonstration for mod 3 in part (b).

Theorem 4.1. Suppose d ≥ 2 and n ≥ 0 are arbitrary.

(a) We have

ℰ(d)

dn ≡ 1 (mod 2). (13)

(b) We have

ℰ(d)

dn ≡ −1 +
n−1 ∑︂
k=1 

(︃
dn

dk 

)︃
(mod 3).

Proof. For (b), consider the action of the cyclic group C3 on a π ∈ Π
(d)

dn which fixes the partitions with at most 2 blocks. 
And if π = (B1, B2, B3, B4, . . . , Bk) with k ≥ 3 then

(1,2,3)π = (B2, B3, B1, B4, . . . , Bk).

It follows that for π with at least 3 blocks we have |C3π | = 3. Note also that for any g ∈ C3 and any π ∈ Π
(d)

dn we have 
ℓ(π) = ℓ(gπ). So, if ℓ(π) ≥ 3 then∑︂

g∈C3

(−1)ℓ(gπ) = 3 · (−1)ℓ(π) ≡ 0 (mod 3).

Thus, appealing to equation (12),

ℰ(d)

dn =
∑︂

π |=d [dn]
(−1)ℓ(π)

≡ (−1)ℓ([dn]) +
∑︂

π |=d [dn]
ℓ(π)=2 

(−1)2 (mod 3)

= −1 +
n−1 ∑︂
k=1 

(︃
dn

dk 

)︃

as desired. □
Our next theorem is a generalization to an arbitrary prime p of a result which was known for p = 2 and 3. The former 

follows from a congruence of Stern [13]. The latter was demonstrated in a recent paper of Komatsu and Liu [4], although 
results for larger modulus had already been proved in the original paper of Leeming and MacLeod [7]. Our proof will use 
the technique of Möbius inversion over a partially ordered set (poset) which we will now review. More information about 
this method can be found in the texts of Sagan [10] or Stanley [12].

Let P be a poset with a unique minimal element 0̂. The Möbius function of P is the map μ : P →Z defined recursively 
by

μ(x) =
⎧⎨
⎩

1 if x = 0̂,

−
∑︂
y<x 

μ(y) otherwise.

7 
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⟨e⟩

⟨g⟩ ⟨gh⟩ ⟨gh2⟩ · · · ⟨ghp−1⟩ ⟨h⟩

⟨g,h⟩

Fig. 2. The subgroup lattice ℒ for C p × C p . 

If P is the lattice of divisors of a positive integer n then this function reduces to the unusual Möbius function from number 
theory. Its importance is that one can use this function to invert sums.

Theorem 4.2 (Möbius Inversion Theorem). Let P be a finite poset with a 0̂, V a real vector space, and α,β : P → V two functions. 
Then

α(x) =
∑︂
y≥x 

β(y) for all x ∈ P (14)

implies that

β(0̂) =
∑︂
y∈P

μ(y)α(y). □

The proof of our next result will combine group actions and Möbius inversion, a method which can be used to prove 
many congruences, see [9].

Theorem 4.3. For p a prime we have

ℰ(p)
pn ≡ (−1)n (mod p2). (15)

Proof. Our proof will proceed in three stages. We will first use a group action and Möbius inversion to obtain a congru-
ence (19) for certain signed sums over stabilizers of ordered partitions. We will then use a sign-reversing involution to 
reduce the number of terms which need to be considered in the sums. The fixed points will be in bijection with the ele-
ments of Π(p)

p(n−1) and of Π(p)

p(n−2) which will permit us to use induction on n. Note that the result of the theorem is trivial 
in the base cases of n = 0 or 1.

Consider the cycles g = (1,2, . . . , p) and h = (p + 1, p + 2, . . . ,2p) in the symmetric group 𝔖pn where n ≥ 2. The group 
we will use is the product G = C p ×C p = ⟨g⟩×⟨h⟩ where the angle brackets denote the group generated by an element. This 
group acts on Π(p)

pn by permuting the elements of the blocks according to the cycles g and h and their powers. If π is an 
ordered set partition then we let Gπ be the stabilizer of π . Let ℒ be the lattice of subgroups of G ordered by containment, 
see Fig. 2 where e is the identity element. From the diagram it is clear that for a subgroup H ≤ G we have

μ(H) =

⎧⎪⎨
⎪⎩

1 if H = ⟨e⟩,

−1 if H = ⟨g⟩, ⟨gh⟩, . . . , ⟨h⟩,

p if H = ⟨g,h⟩.

(16)

We now define the desired functions. Given a set of ordered partitions Π we let

S(Π) =
∑︂
π∈Π

(−1)ℓ(π).

Note that by equation (12), we have

S(Π
(d)

dn ) = ℰ(d)

dn . (17)

Finally, let α,β :ℒ→Z be given by

8 
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α(H) = S(π | Gπ ≥ H) (18)

and

β(H) = S(π | Gπ = H).

It is clear from the definitions that (14) is satisfied. So the conclusion of the Möbius Inversion Theorem holds and we will 
compute each term.

As far as β(0̂), if H = e then |Gπ | = p2. Furthermore, all elements of Gπ have the same number of blocks and therefore 
all contribute (−1)ℓ(π) to the sum. But this means the total contribution of Gπ is zero modulo p2. So, by Möbius inversion,

0 ≡
∑︂
H∈ℒ

μ(H)α(H) (mod p2). (19)

To compute α(e), note that the stabilizer of every π ∈ Π
(p)
pn contains e. Appealing to (17) gives

α(e) = S(π ∈ Π
(p)
pn ) = ℰ(p)

pn . (20)

Rather than compute the rest of the α(H) directly, we will employ a sign-reversing involution to cancel many of the 
terms. Let us consider α(⟨g⟩). Note that Gπ ≥ ⟨g⟩ if and only if the elements of [p] are all in the same block of π . Suppose 
π = (B1, . . . , Bk) and that [p] ⊆ Bi . The involution ι is defined by

ι(π) =

⎧⎪⎨
⎪⎩

(B1, . . . , Bi−1, [p], Bi \ [p], Bi+1, . . . , Bk) if Bi ⊃ [p],
(B1, . . . , Bi−1, Bi ⊎ Bi+1, Bi+2, . . . , Bk if Bi = [p] where i < k,

(B1, B2, . . . , Bk) if Bk = [p].
In other words, if the block Bi containing [p] contains other elements, then [p] is split off as its own block and placed 
directly before what remains of Bi . If Bi = [p] but is not the last block of π then it merges with the block after it. And if 
the last block is [p] then π is a fixed point. Now the split and merge options are inverses of each other and they change 
ℓ(π) by exactly one. So (−1)ℓ(π) + (−1)ℓ(ι(π)) = 0 and such pairs can be ignored. Furthermore, removing the final [p] gives 
a bijection π ↔ π ′ between the fixed points of ι and the elements of Π(p)

p(n−1) where ℓ(π ′) = ℓ(π)− 1. So, by equation (12), 
the final sum is

α(⟨g⟩) = −
∑︂

π ′∈Π
(p)
p(n−1)

(−1)ℓ(π
′) = −ℰ(p)

p(n−1). (21)

Clearly α(⟨h⟩) is given by the same expression.
It is easy to see that the subgroups ⟨ghi⟩ for i ∈ [p − 1] as well as ⟨g,h⟩ all stabilize the same set of partitions, namely 

those where the elements of [p] are in a single block and p + 1, p + 2, . . . ,2p are in a single block (not necessarily the 
same as the block for [p]). Using arguments similar to those in the previous paragraph and induction we obtain, for any of 
these subgroups H ,

α(H) = ℰ(p)

p(n−2) (22)

Plugging (16), (20), (21), and (22) into equation (19) and using induction on n we obtain

0 ≡ ℰ(p)
pn − 2(−ℰ(p)

p(n−1)) − (p − 1)ℰ(p)

p(n−2) + p ℰ(p)

p(n−2) (mod p2)

≡ ℰ(p)
pn + 2(−1)n−1 + (−1)n−2 (mod p2)

Solving for ℰ (p)
pn completes the proof. □

Sometimes we can improve the modulus in equation (15). The special case when p = 3 in the following theorem was 
proven by Leeming and MacLeod [7]. It follows immediately from equations (13) and (15) as well as the fact that 2 is 
relatively prime to any prime p ≥ 3.

Theorem 4.4. For p ≥ 3 a prime we have

ℰ(p)
pn ≡ (−1)n (mod 2p2). □
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5. Future work

The study of the generalized Euler numbers is still in its infancy. So, there is much more to do. We mention two avenues 
for future research here.

1. Much of the work on generalized Euler numbers has concentrated on algebraic proofs of congruences [3,7,8]. It would 
be interesting to see how many of them can be proven using methods such as sign-reversing involutions, Möbius 
inversion, and other combinatorial techniques.

2. There are close connections between the original Euler numbers and Bernoulli numbers. How do these carry over to 
the generalized case?
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