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Abstract. Let ek(x1, . . . , x�) be an elementary symmetric polynomial and
let λ = (λ1, . . . , λ�) be an integer partition. Define prek(λ) to be the
partition whose parts are the summands in the evaluation ek(λ1, . . . , λ�).
The study of such partitions was initiated by Ballantine, Beck, and Merca
who showed (among other things) that pre2 is injective as a map on binary
partitions of n. In the present work, we derive a host of identities involving
the sequences which count the number of parts of a given value in the
image of pre2. These include generating functions, explicit expressions,
and formulas for forward differences. We generalize some of these to d-ary
partitions and explore connections with color partitions. Our techniques
include the use of generating functions and bijections on rooted partitions.
We end with a list of conjectures and a direction for future research.
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1. Definitions and Introduction

The focus of this paper will be integer partitions. For any set S, we denote the
cardinality of S by |S|. Let λ = (λ1, λ2, . . . , λ�) be an integer partition of n,
that is, a weakly decreasing sequence of positive integers whose sum is n. The
λi are called parts. We let

|λ| =
∑

i

λi

and

�(λ) = �.
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We call |λ| the weight or size of λ, and �(λ) is the length. The use of vertical
bars for cardinality or weight should be distinguished by context. Note that
if n < 0 then no such partitions exists, while there is a unique partition of 0,
namely the empty partition ε. Also define

P(n) = {λ | λ is a partition of n},

as well as

p(n) = |P(n)|,
and

Pk(n) = {λ ∈ P(n) | �(λ) ≥ k}.

For example,

P3(5) = {(1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1), (3, 1, 1)}.

We will be particularly interested in binary partitions, which are those
such that all parts are a power of 2. Analogous to the notation just defined,
let

B(n) = {λ | λ is a binary partition of n},

and

Bk(n) = {λ ∈ B(n) | �(λ) ≥ k}.

To illustrate,

B3(5) = {(1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1)}.

We will be combining partitions and elementary symmetric polynomials.
The kth elementary symmetric polynomial in a set of variables {x1, x2, . . . , x�}
is

ek(x1, x2, . . . , x�) = the sum of all square-free, degree k monomials in the xi.

Note that if � < k then there are no such monomials so that ek(x1, x2, . . . , x�)
is the empty sum and hence equals 0. For a less trivial example,

e2(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

Given a partition λ = (λ1, λ2, . . . , λ�) with � ≥ k, we define prek(λ) to be the
partition whose parts are the summands in the evaluation ek(λ1, λ2, . . . , λ�).

To illustrate, if λ = (3, 2, 1, 1) then

e2(3, 2, 1, 1) = 3 · 2 + 3 · 1 + 3 · 1 + 2 · 1 + 2 · 1 + 1 · 1

so that

pre2(3, 2, 1, 1) = (6, 3, 3, 2, 2, 1).

We call prek(λ) an elementary symmetric partition. Thus we have defined a
map

prek : Pk(n) → P,

where P is the set of all integer partitions.
The function prek was first studied by Ballantine, Beck and Merca [5].

In particular, they made the following conjecture, among others.
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Conjecture 1. ([5]) For any k ≥ 1 and n ≥ 0, the map prek : Pk(n) → P is
injective.

Note that pre1 is clearly injective since pre1(λ) = λ for any partition. The
following weaker form of the conjecture was proved in [5], where one restricts
pre2 to binary partitions. In it, B is the set of all binary partitions.

Theorem 2. ([5]) For any n ≥ 0, the map pre2 : B2(n) → B is injective. �

Because of this result, we will focus part of this work on binary partitions.
We will use the notation

ImPk(n) = prek(Pk(n))

and

ImBk(n) = prek(Bk(n))

for the images of the prek function applied to the full domain of partitions or
just the binary partitions, respectively, of length at least k.

We will be interested in counting multiplicities in the image sets of pre2.
If λ is a partition and i is a positive integer then the multiplicity of i in λ,
denoted mi(λ), is the number of times i occurs as a part in λ. Extend this
notation to finite sets S by

mi(S) =
∑

λ∈S

mi(λ).

Our techniques will include manipulation of generating functions and
bijections. For the latter, we modify the notion of a partition as follows. A
rooted partition is a partition λ with one or more parts distinguished and
marked with hats. These special parts are called the roots of λ. The position
of the roots among the other parts of the same size matters. For example,

λ = (4, 3, 3̂, 3, 3, 1̂, 1, 1̂)

has three roots, namely 3̂ and two copies of 1̂. Furthermore, it is different from
the rooted partition

λ′ = (4, 3, 3, 3̂, 3, 1̂, 1, 1̂).

Rooted partitions were introduced by Sagan [12] in order to give combinatorial
proofs of some results of Merca and Schmidt [8,9] involving the partition, Euler
totient, and Möbius functions. We denote by

BRi(n) = the set of rooted binary partitions of n with a single root ı̂,

BRi,j(n) = the set of rooted binary partitions of n with exactly
two roots ı̂ and ĵ.

The reason that rooted partitions will be useful is as follows. Suppose that a
part k in pre2(λ) came from multiplying parts i and j of λ. Then one can think
of k as being associated with the partition obtained by rooting λ at i and j.
Thus we can transfer information about the parts of the range partition into
properties of doubly rooted partitions in the domain which will be easier to
work with. This will be made precise in Lemma 3 below.



C. Ballantine et al.

There are two operations which will be useful for us when working with
(rooted) partitions. If λ and μ are partitions then their direct sum is λ ⊕ ν
which is obtained by, for each i, concatenating the string of i’s in λ with the
string of i’s in ν, including any ı̂’s which exist. It is important when considering
roots to have the parts from λ before those in μ. For example

(3, 3̂, 3, 2, 1, 1) ⊕ (3, 2, 2, 1̂, 1) = (3, 3̂, 3, 3, 2, 2, 2, 1, 1, 1̂, 1).

For the second operation, if m is a positive integer and λ is a partition of
n then we write mλ for the partition of mn whose parts are the parts of λ
multiplied by m. Similarly, if μ is a partition of n such that all parts of μ are
multiples of m, we write μ/m for the partition of n/m whose parts are the
parts of μ divided by m.

The rest of this article is structured as follows. In the next section we
will investigate the sequences mi(ImB2(n)) for i = 1, 2, and 4. We will derive
generating functions as well as expressions for both the sequences themselves
and their forward differences. Section 3 will extend various results on binary
partitions to those which are d-ary in that every part is a power of a fixed
d. In particular, we will show that pre2 is injective when restricted to d-ary
partitions of n and consider the number of 1’s and d’s in the image. Section 4
shows that there is a close relationship between the multiplicity sequences we
are studying and color partitions. A color partition is one where the parts have
been assigned certain colors such that the number of possible colors depends
on the size of the part. We end with a section of conjectures and a direction
for future work.

2. Binary Partitions

It will be useful for our combinatorial proofs to have an interpretation of the
number of times 2k appears in ImB2(n) in terms of rooted partitions.

Lemma 3. For k ≥ 0

m2k(ImB2(n)) =
�k/2�∑

i=0

|BR2i,2k−i(n)|.

Proof. Since the map pre2 is injective on binary partitions, each part equal
to 2k in μ ∈ ImB2(n) comes from multiplying two parts 2i and 2k−i in its
preimage λ ∈ B(n). And to prevent double counting we must assume i ≤ �k/2�.
But such a pair can be associated with a rooting of λ at these two elements,
and the lemma follows. �

The next theorem concerns the number an of 1’s in ImB2(n). It gives
a generating function, various formulas for an including connections with a
sequence from the OEIS and with the sum-of-divisors function, as well as
expressions for the corresponding difference sequence. For any OEIS sequence,
we will use S(n) for the nth term of S, where S is the sequence number in the
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Encyclopedia. Also, we use the forward difference operator on any sequence
(sn)n≥1, which is the sequence with nth element

Δsn = sn+1 − sn.

Finally, recall the classical formula

n p(n) =
n∑

k=1

σ1(k) p(n − k),

where σ1(k) is the sum of the positive divisors of k. For our analogue of this
identity we let

β(n) =
∑

2i|n
2i (1)

be the sum of the divisors of n which are powers of two. We note that part (g)
of the following theorem was proved using algebraic techniques in [5, Theorem
11]. Here we give a combinatorial proof using doubly rooted partitions.

Theorem 4. For n ≥ 0, let

an = m1(ImB2(n)).

(a) We have
∑

n≥0

an qn =
q2

(1 − q)2
∏

i≥0

1
1 − q2i

.

(b) For n ≥ 0,

an =
∑

i≥1

(i − 1) |B(n − i)|.

(c) For n ≥ 0,

an =
∑

i≥0

(
n − 2i

2

)
|B(i)|.

(d) For n ≥ 0,

(n − 2) an =
n∑

k=1

(β(k) + 2) an−k.

(e) The sequence (an)n≥1 satisfies a1 = 0 and, for n ≥ 2,

an = A131205(n − 1).

(f) For n ≥ 0, there is this connection with the sequence A000123 via

Δan = |B(2n − 2)|.
(g) For n ≥ 0,

Δan = a�(n+2)/2� + a�(n+2)/2�.
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Proof. (a) From the case k = 0 of Lemma 3 we have

an = |BR1,1(n)|. (2)

Say that the roots of partition λ are at positions j and j + k where j, k ≥ 1.
Furthermore, the remaining parts of λ form a binary partition. Thus

∑

n≥0

an qn =
∑

j,k≥1

qj qk
∏

i≥0

1
1 − q2i

=
q2

(1 − q)2
∏

i≥0

1
1 − q2i

.

(b) We give two proofs, one algebraic and one combinatorial. For the first,
write the generating function from (a) as

∑

n≥0

an qn =
q2

(1 − q)2
·
∏

i≥0

1
1 − q2i

=

⎛

⎝
∑

n≥1

(n − 1)qn

⎞

⎠ ·
⎛

⎝
∑

n≥0

|B(n)|qn

⎞

⎠

and take the coefficient of qn in the first and third expressions.
For the combinatorial proof, we use Eq. (2). If λ ∈ BR1,1(n) then write

λ = μ ⊕ ν where ν consists of all the elements after and including the first 1̂.
Suppose |ν| = i. Then there are i−1 ways to choose the second root in ν. And
there are |B(n − i)| ways to choose μ. Summing gives the result.

(c) We give two proofs. Rewriting (a) we have

∑

n≥0

an qn =
q2

(1 − q)3
·
∏

i≥1

1
1 − q2i

=

⎛

⎝
∑

n≥0

(
n

2

)
qn

⎞

⎠

⎛

⎝
∑

n≥0

|B(n)| q2n

⎞

⎠

and coefficient extraction finishes the demonstration.
Combinatorially, we once more appeal to (2) and write λ ∈ BR1,1(n)

as λ = μ ⊕ ν where now ν contains all the 1’s and 1̂’s. Since μ contains all
the positive powers of two we have μ/2 ∈ B(i) for some i where |μ| = 2i. So
|ν| = n − 2i and hence there are

(
n−2i

2

)
ways to choose two 1̂’s. Finally one

sums over all possible i.
(d) From part (a) we have

d

dq
ln

⎛

⎝
∑

n≥0

an qn

⎞

⎠ =
d

dq
ln

⎛

⎝ q2

(1 − q)2
∏

i≥0

1
1 − q2i

⎞

⎠

=
d

dq

⎛

⎝ln
q2

(1 − q)2
+

∑

i≥0

ln
(

1
1 − q2i

)⎞

⎠

=
2

q(1 − q)
+

∑

i≥0

2i q2
i

q(1 − q2i)

=
1
q

∑

n≥0

2 qn +
1
q

∑

n≥1

⎛

⎝
∑

2j |n
2j

⎞

⎠ qn
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=
1
q

⎛

⎝2 +
∑

n≥1

(2 + β(n)) qn

⎞

⎠ . (3)

From this we deduce

∑

n≥0

nan qn =

⎛

⎝
∑

n≥0

an qn

⎞

⎠

⎛

⎝2 +
∑

n≥1

(2 + β(n)) qn

⎞

⎠ .

Taking the coefficient of qn finishes the proof.
(e) The generating function in (a) is the same as the one given for A131205

multiplied by q.
(f) Again, we give two proofs. For the algebraic one, let

B(q) =
∑

n≥0

|B(n)| qn =
∏

i≥0

1
1 − q2i

and, using part (a), define F (q) to be

F (q) =
∑

n≥0

an qn =
q2

(1 − q)2
B(q).

Then
∑

n≥0

Δan qn =
F (q)

q
− F (q) =

q

1 − q
B(q)

and
∑

n≥0

|B(2n)| q2n =
1
2

(B(q) + B(−q))

=
1
2

⎛

⎝ 1
1 − q

∏

i≥1

1
1 − q2i

+
1

1 + q

∏

i≥1

1
1 − q2i

⎞

⎠

=
1

1 − q2

∏

i≥1

1
1 − q2i

.

Substituting q1/2 into the generating function just given and comparing it to
the one for Δan completes the proof.

We also give a combinatorial proof. Each μ ∈ B(n + 1) having a pair
of ones counted by an+1 can be obtained uniquely from some λ ∈ B(n) as
μ = λ ⊕ (1). So Δan = an+1 − an is just the number of new pairs of 1’s
obtained by adding the final 1. The new 1 creates m1(λ) new pairs. So

Δan = m1(B(n)) = |BR1(n)|, (4)

since counting a 1 is equivalent to rooting it. Thus it suffices to show that
there is a bijection f : BR1(n) → B(2n − 2). An example illustrating the
construction of f follows the proof of this theorem.

Given λ ∈ BR1(n) we write

λ = μ ⊕ ν
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where ν contains the 1̂ and all the 1’s after it. If |ν| = j then we let

f(λ) = 2μ ⊕ (12j−2).

It is easy to check that f is well-defined in that f(λ) ∈ B(2n − 2). To show
that f is bijective, we construct its inverse. Given λ′ ∈ B(2n − 2) we write

λ′ = μ′ ⊕ ν′

where ν′ contains all the 1’s in λ′. Now let

f−1(λ′) = μ′/2 ⊕ (1̂, 1k/2)

where k = |ν′|. Again, the verification that f−1 is well defined and indeed the
inverse to f is straightforward and so left to the reader.

(g) It is not hard to prove this algebraically using part (a), but we will
give a combinatorial demonstration. By Eqs. (2) and (4), it suffices to find a
function f : BR1(n) → R where

R =

{
BR1,1

(
n+1
2

) 	 BR1,1

(
n+3
2

)
if n is odd,

BR1,1

(
n+2
2

)
if n is even,

where f is bijective if n is odd, 2-to-1 if n is even, and 	 is disjoint union. To
define f , suppose λ ∈ BR1(n) and write

λ = μ ⊕ ν

where ν contains all the 1’s and the 1̂ of λ. Let i and j be the number of 1’s
before and after the 1̂, respectively. Let

f(λ) = μ/2 ⊕ (1̂) ⊕ (1�i/2�) ⊕ (1̂) ⊕ (1�j/2�).

Again, f being well-defined is a straightforward, if case-heavy, calculation
based on the parities of i and j.

To show that f is bijective when n is odd, we construct its inverse. Write

λ′ = μ′ ⊕ (1̂) ⊕ (1k) ⊕ (1̂) ⊕ (1l). (5)

for some nonnegative integers k, l. If λ′ ∈ BR1,1

(
n+1
2

)
then let

f−1(λ′) = 2μ′ ⊕ (12k+1) ⊕ (1̂) ⊕ (12l+1).

On the other hand, if λ′ ∈ BR1,1

(
n+3
2

)
then let

f−1(λ′) = 2μ′ ⊕ (12k) ⊕ (1̂) ⊕ (12l).

Again, we omit the tedious details that this is well defined and an inverse.
Finally, we must show that f is 2-to-1 when n is even. We keep the nota-

tion of the previous paragraph for λ′ and, in particular, the decomposition (5).
Then

f−1(λ′) = {2μ′ ⊕ (12k) ⊕ (1̂) ⊕ (12l+1), 2μ′ ⊕ (12k+1) ⊕ (1̂) ⊕ (12l)}.

As usual, we leave the verification to the reader. �

We now illustrate the bijection f in part (f) of the previous proof.
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Example 5. Suppose that

λ = (4, 2, 2, 1, 1̂, 1, 1) = (4, 2, 2, 1) ⊕ (1̂, 1, 1)

so that

μ = (4, 2, 2, 1) and ν = (1̂, 1, 1).

Now j = |ν| = 3 so that 2j − 2 = 4 so that

f(λ) = 2(4, 2, 2, 1) ⊕ (14) = (8, 4, 4, 2, 1, 1, 1, 1).

For the inverse, consider

λ′ = (8, 4, 4, 2, 1, 1, 1, 1) = (8, 4, 4, 2) ⊕ (1, 1, 1, 1)

which implies

μ′ = (8, 4, 4, 2) and ν′ = (1, 1, 1, 1).

This means that k = |ν′| = 4 and k/2 = 2, so

f−1(λ′) = (8, 4, 4, 2)/2 ⊕ (1̂, 12) = (4, 2, 2, 1, 1̂, 1, 1)

recovering the original partition λ.

We now consider 2’s in ImB2(n).

Theorem 6. For n ≥ 0, let

bn = m2(ImB2(n)).

(a) We have
∑

n≥0

bn qn =
q3

(1 − q)(1 − q2)

∏

i≥0

1
1 − q2i

.

(b) For n ≥ 0,

bn =
∑

i≥1

⌊
i − 1

2

⌋
|B(n − i)|.

(c) For n ≥ 0,

bn =
�n/2�∑

i=0

⌊
(n − 1 − 2i)2

4

⌋
|B(i)|.

(d) For n ≥ 0,

(n − 3) bn =
n∑

k=1

(
β(k) + (−1)k + 2

)
bn−k.

(e) Keeping the notation of Theorem 4, for n ≥ 0,

Δbn = a�n/2�+1.

(f) For n ≥ 0,

an = bn + bn+1.
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Proof. (a) Using Lemma 3 with k = 1 gives

bn = |BR1,2(n)|. (6)

If the 1 is rooted at position j and the 2 at position k then
∑

n≥0

bn qn =
∑

j≥1

qj
∑

k≥1

q2k
∏

i≥0

1
1 − q2i

=
q

1 − q
· q2

1 − q2
·
∏

i≥0

1
1 − q2i

,

which is what we wished to prove.
(b) One can give both algebraic and combinatorial proofs similar to those

of Theorem 4 (b). For the former we equate coefficients in (a). For the latter,
we use (6) and write λ ∈ BR1,2(n) as λ = μ ⊕ ν where ν consists of the 1̂ and
all 1’s to its right as well as the 2̂ and all 2’s to its right. The reader can easily
supply the details.

(c) Again, the generating function proof parallels that of Theorem 2 (c).
The combinatorial proof is also similar, writing λ ∈ BR1,2(n) as λ = μ ⊕ ν

where |μ| = 2i and ν contains all 1’s and the 1̂ as well as the 2̂ and all 2’s to
its right.

(d) As in the demonstration of Theorem 2 (d), one can obtain this result
using logarithmic differentiation.

(e) We know the generating functions for bn and an from parts (a) of
this theorem and the previous one, respectively. So it is easy to compute the
corresponding series for bn+1 − bn and a�n/2�+1 and check that they are the
same.

For the combinatorial proof, first note that

Δbn = |BR2(n)|, (7)

where the proof is similar to that of Eq. (4). So, using (2), it suffices to find a
bijection f : BR2(n) → BR1,1(�n/2� + 1). Take λ ∈ BR2(n) and write

λ = μ ⊕ ν,

where ν contains all the 1’s in λ and suppose |ν| = i. Now let

f(λ) = μ/2 ⊕ (1̂) ⊕ (1�i/2�)

where the 2̂ in μ becomes a 1̂ in μ/2. The reader should now be able to fill in
the details of the rest of the proof.

(f) This follows easily by comparing the generating functions for an and
bn. But we prefer a combinatorial proof. Using the usual translation into rooted
partitions, it suffices to create a bijection

f : BR1,1(n) → BR1,2(n) 	 BR1,2(n + 1).

Suppose λ ∈ BR1,1(n) and write

λ = μ ⊕ ν ⊕ π

where ν is the first 1̂ together with all the 1’s between it and the second, while
π is the second 1̂ and all the ones afterward. Let k = |ν| and let ν′ to be 
k/2�
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copies of 2 with the first part rooted. Note that

|ν′| =

{
k if k is even,

k + 1 if k is odd.

Now let

f(λ) = μ ⊕ ν′ ⊕ π.

It is easy to check that f is well defined and to construct its inverse. The reader
can fill in the details. �

It should now be clear to the reader that we can use the techniques we
have developed to write down formulas for the number of parts equal to 2k in
ImB2(n) for any k, although the expressions will be more and more complicated
as k increases. To give a sense of the complexity, we will now consider, cn, the
number of parts equal to 4. But we will content ourselves with the generating
function and a formula for Δcn. We will use the Kronecker delta which, for
any statement S, is given by

δ(S) =

{
1 if S is true,
0 if S is false.

Theorem 7. For n ≥ 0, let

cn = m4(ImB2(n)).

(a) We have
∑

n≥0

cn qn =
q4(1 + q + 2q2)
(1 − q2)(1 − q4)

∏

i≥0

1
1 − q2i

.

(b) For n ≥ 0,

cn =
∑

i≥2

(i − 1) |B(n − 2i)| +
∑

i≥4

⌈ i − 4
4

⌉
|B(n − i)|.

(c) For n ≥ 0,

Δcn = |BR4(n)| + δ(n odd) |BR2(n)|.
Proof. (a) The k = 2 case of Lemma 3 gives

cn = |BR1,4(n)| + |BR2,2(n)|,
and then we proceed as in parts (a) of the previous two theorems.

(b) We can rewrite the factor in front of the product in (a) as

q4(1 + q + 2q2)
(1 − q2)(1 − q4)

=
q4(1 + q2)

(1 − q2)(1 − q4)
+

q4(q + q2)
(1 − q2)(1 − q4)

=
q4

(1 − q2)2
+

q5

(1 − q)(1 − q4)

=
∑

n≥2

(n − 1) q2n +
∑

n≥4

⌈ i − 4
4

⌉
qn.



C. Ballantine et al.

Multiplying by
∏

i≥0 1/(1 − q2
i

), using part (a), and extracting the coefficient
of qn finishes the proof.

(c) The parts equal to 4 in ImB2(n) come from products in B2(n) of
either a 1 with a 4, or a 2 with a 2. The number of new products of the former
type counted by Δcn is |BR4(n)|, analogous to Eqs. (4) and (7). If n is even
then the map f : B(n) → B(n+1) defined by f(λ) = λ⊕ (1) is a bijection and
so there are no new products of 2 and 2. Thus the proof is complete in this
case.

If n is odd then, since every λ ∈ B(n) contains a 1, we can define a map
g : B(n) → B(n + 1) by writing λ = μ ⊕ (1) and letting g(λ) = μ ⊕ (2). This
will be a bijection onto the partitions in B(n+1) with at least one 2. These are
the only 2’s which can contribute a 2 · 2 to Δcn. Furthermore, the number of
such products which are created is just the number of 2’s in λ. This accounts
for the |BR2(n)| term in the sum and we are finished. �

3. d-ary Partitions

Consider an integer d ≥ 2. Say that λ is a d-ary partition if all its parts are
powers of d. Define P(n, d) to be the set of d-ary partitions of size n and

Pk(n, d) = {λ ∈ P(n, d) | �(λ) ≥ k}.

Also, set

ImPk(n, d) = prek(Pk(n, d)).

Obviously when d = 2 we recover the binary partitions. In this section we will
study ImP2(n, d).

First we show that pre2 is injective on Pk(n, d). We begin with a lemma
which is a generalization of Lemma 3 to all partitions.

Lemma 8. Suppose that pre2(λ) = μ. Then for any k we have

mk(μ) =
∑

ef=k
e<f

me(λ)mf (λ) + δ(k is a square)
(

m√
k(λ)
2

)
. (8)

Proof. We get a copy of k in μ for each pair e, f of parts in λ such that ef = k.
To get each pair exactly once we assume e ≤ f . If e < f then this gives one
of the terms of the sum. If e = f then k = e2 and the number of ways to pick
two e’s from λ is the binomial coefficient. �
Theorem 9. For any n, d ≥ 2, the map pre2 is injective on P2(n, d).

Proof. Suppose that pre2(λ) = μ. It suffices to show that the multiplicities in
μ determine those in λ uniquely. For ease of notation, let

m = m1(μ) =
(

m1(λ)
2

)
.

We have two cases depending on whether m is nonzero.
If m > 0 then the previous displayed equation uniquely determines m1(λ)

as a nonzero integer. To determine mk(λ) note that, by induction on k, we
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can assume that every mj(λ) in Eq. (8) with j < k has been determined.
Furthermore, mk(λ) only appears in the term m1(λ)mk(λ) of this equation
and its coefficient is nonzero. Thus Eq. (8) is linear in mk(λ) and so has a
unique solution as desired.

If m = 0 then m1(λ) = 0 or 1. Since λ is d-ary we have that n = |λ|
satisfies n ≡ m1(λ) (mod d). So we can tell the value of m1(λ) from n. If
m1(λ) = 1, then the same argument as in the previous paragraph shows that
λ is determined. If m1(λ) = 0 then consider the partition λ/d obtained by
dividing every part of λ by d. So λ/d is a d-ary partition of n/d. And, by
induction on n, we can assume that λ/d can be reconstructed from pre2(λ/d) =
μ/d2. Finally, multiplying every part of λ/d by d gives λ. �

Note that the same proof just given can be used to show that pre2 is in-
jective on the set of partitions of n with at least two 1’s. We can now generalize
some of the results of the previous section on binary partitions to d-ary ones.
Since the proofs follow the same lines as when d = 2, they will be omitted. We
will need a generalization of the β function defined above, namely

β(n, d) =
∑

di|n
di.

Theorem 10. For n ≥ 0, let

an(d) = m1(ImP2(n, d)),

bn(d) = md(ImP2(n, d)).

(a) We have
∑

n≥0

an(d) qn =
q2

(1 − q)2
∏

i≥0

1
1 − qdi ,

∑

n≥0

bn(d) qn =
qd+1

(1 − q)(1 − qd)

∏

i≥0

1
1 − qdi .

(b) For n ≥ 0,

an(d) =
∑

i≥1

(i − 1) |P(n − i, d)|,

bn(d) =
∑

i≥1

⌊
i − 1

d

⌋
|P(n − i, d)|.

(c) For n ≥ 0,

an(d) =
�n/d�∑

i=1

(
n − d i

2

)
|P(i, d)|,

bn(d) =
∑

i≥1

(
i

⌊
i − 1

d

⌋
− d

(�(i − 1)/d� + 1
2

))
|P(n − i, d)|,
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(d) For n ≥ 0,

(n − 2) an(d) =
n∑

k=1

(β(k, d) + 2) an−k,

(n − d − 1) bn(d) =
n∑

k=1

[β(k, d) + 1 + δ(d|(n − 1)) · d] an−k.

(e) For n ≥ 0,

Δan(d) = |P(dn − d, d)|,
Δbn(d) = a�n/d� + 1.

�

4. Color Partitions

Partitions with n copies of n, also referred to in the literature as n-color par-
titions, are partitions in which the part of size n appears in n different colors:
n1, n2, . . . , nn. The parts of an n-color partition are ordered lexicographically.
Implicitly, n-color partitions appear in work of MacMahon [6, Chapters 11–12].
As noted by Andrews and Paule [4], n-color partitions were also used implicitly
in Regime III of the hard hexagon model, see the paper of Andrews, Baxter,
and Forrester [2]. They were first studied explicitly by Agarwal and Andrews
[1] and have since been considered by a number of authors.

Here, we consider color binary partitions in which a part of size 2n can
come in n + 3 different colors denoted by subscripts: 2n

1 , 2n
2 , . . ., 2n

n+3. Totally
order the parts by

11 < 12 < 13 < 21 < 22 < 23 < 24 < 41 < 42 < 43 < 44 < 45 < · · · .

We call such partitions (n + 3)-color binary partitions, and let Q(m) be the
set of such partitions of m into distinct parts. For example,

Q(4) = {(45), (44), (43), (42), (41), (24, 23), (24, 22), (24, 21), (24, 13, 12),

(24, 13, 11), (24, 12, 11), (23, 22), (23, 21), (23, 13, 12), (23, 13, 11),

(23, 12, 11), (22, 21), (22, 13, 12), (22, 13, 11), (22, 12, 11), (21, 13, 12),

(21, 13, 11), (21, 12, 11)}.

We can now give new identities for the sequence an appearing in The-
orem 4. We also obtain an expression for the β(n) function defined by (1).

Theorem 11. For n ≥ 0, let

Qn = |Q(n)|.
(a) We have

∑

n≥0

an qn = q2
∏

i≥0

(1 + q2
i

)i+3.
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(b) For n ≥ 0,

an+2 = Qn.

(c) For n ≥ 0,

an+2 =
∑

λ∈B(n)

∏

i≥0

(
i + 3

m2i(λ)

)
.

Proof. (a) Since every integer has a unique base 2 expansion, we have

1
1 − q

=
∏

i≥0

(1 + q2
i

).

Replacing q with q2
n

in the previous equation gives
1

1 − q2n
=

∏

i≥0

(1 + q2
i+n

).

Using Theorem 4 (a) and the two previous equations gives
∑

n≥0

an qn = q2
1

(1 − q)2
∏

n≥0

1
1 − q2n

= q2
∏

i≥0

(1 + q2
i

)2
∏

n≥0

∏

i≥0

(1 + q2
i+n

)

= q2
∏

i≥0

(1 + q2
i

)2
∏

i≥0

(1 + q2
i

)i+1

= q2
∏

i≥0

(1 + q2
i

)i+3.

(b) We give both an algebraic and a combinatorial proof. For the former,
elementary techniques in the theory of partitions as in Andrews’ text [3] give
the following generating function

∑

n≥0

Qn qn =
∏

i≥0

(1 + q2
i

)i+3. (9)

Substituting this for the product in part (a) and equating coefficients of qn+2

finishes the algebraic demonstration.
We now give a proof, using (2), by constructing a bijection

f : BR1,1(n + 2) → Q(n).

See Example 12 for an illustration of the map. Write λ ∈ BR1,1(n + 2) as

λ = μ ⊕ (1̂) ⊕ ν ⊕ (1̂) ⊕ π, (10)

where ν contains all the 1’s between the first and second 1̂, and π contains all
the 1’s after the second. We form a color partition μ′ from μ as follows. For
each t ≥ 0 suppose 2t occurs in μ with multiplicity s (s depending on t). Write
s · 2t in binary notation and color each power of 2 with t + 3, adding these
elements to μ′ for each value of t. From ν we create ν′ by writing |ν| in binary
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and subscripting the summands with 2. Similarly form π′ from π only using
subscripts 1. Finally, let

f(λ) = μ′ ⊕ ν′ ⊕ π′. (11)

It is easy to check that this map is a well-defined bijection. We note the
similarity of this bijection to the usual one used to prove that the number of
partitions of n into odd parts equals the number into distinct parts.

(c) Example 13 illustrates this formula. By employing the binomial ex-
pansion, the generating function (9) can be rewritten as

∑

n≥0

Qn qn =
∏

n≥0

∑

j≥0

(
n + 3

j

)
qj·2n .

Collecting all the terms in the product contributing to a given power qn gives
∑

n≥0

Qn qn =
∑

n≥0

qn
∑

λ∈B(n)

∏

i≥0

(
i + 3

m2i(λ)

)
.

Combining this with part (b) finishes the proof. �

Example 12. To illustrate the bijection for the proof of part (b) of the previous
theorem, suppose

λ = (2, 2, 2, 1, 1, 1̂, 1, 1̂, 1, 1) = (2, 2, 2, 1, 1) ⊕ (1̂) ⊕ (1) ⊕ (1̂) ⊕ (1, 1)

so that

μ = (2, 2, 2, 1, 1),

ν = (1),

π = (1, 1).

In μ we have three copies of 2 and two copies of 1, so we write

3 · 21 = 4 + 2.

2 · 20 = 2.

Thus

μ′ = (44, 24, 23).

Similarly,

|ν| = 1,

|π| = 2,

so that

ν′ = (12),

π′ = (21).

Finally

f(λ) = (44, 24, 23) ⊕ (12) ⊕ (21) = (44, 24, 23, 21, 12).
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Example 13. The summation on the right-hand side of part (c) of the previous
result encompasses all binary partitions of n, but not every term contributes
because some are zero. For m2k(λ) > k + 3, the binomial coefficient becomes
zero, allowing us to focus solely on binary partitions of n in which each part
2k has multiplicity at most k + 3. For example, the binary partitions of 4 in
which each part 2k has the multiplicity at most k + 3 are:

(4), (2, 2), (2, 1, 1).

Thus

a6 =
(

2 + 3
1

)
+

(
1 + 3

2

)
+

(
1 + 3

1

)(
0 + 3

2

)
= 5 + 6 + 4 · 3 = 23.

We can generalize the construction just given to give expressions for 2d-
ary partitions. Denote by Q(m, 2d) the set of color binary partitions of m into
distinct parts in which a part of size 2n can come in �n/d�+3 different colors.
As before, parts are ordered lexicographically. For example, when d = 2 then
we are allowed parts

11 < 12 < 13 < 21 < 22 < 23 < 41 < 42 < 43 < 44 < 81 < 82 < 83 < 84 < · · · .

By way of example,

Q(4, 22) = {(44), (43), (42), (41), (23, 22), (23, 21),

(23, 13, 12), (23, 13, 11), (23, 12, 11),

(22, 21), (22, 13, 12), (22, 13, 11), (22, 12, 11),

(21, 13, 12), (21, 13, 11), (21, 12, 11)}.

We have the following generalization of the previous theorem. Its proof is
similar and so omitted.

Theorem 14. Let d be a positive integer. For n ≥ 0, let

Qn(2d) = |Q(n, 2d)|.
(a) We have

∑

n≥0

an(2d) qn = q2
∏

i≥0

(1 + q2
i

)�i/d�+3.

(b) For n ≥ 0,

an+2(2d) = Qn(2d).

(c) For n ≥ 0,

an+2(2d) =
∑

λ∈B(n)

∏

i≥0

(�i/d� + 3
m2i(λ)

)
.

We can use color partitions to study d-ary partitions where d is odd.
Consider color partitions into parts of the form 2i · (2d + 1)j , in which a part
of size 2i can come in three different colors and all other parts only have one
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color. As usual, parts are ordered lexicographically. For example, when d = 1
we have parts

11 < 12 < 13 < 21 < 22 < 23 < 31 < 41 < 42 < 43 < 61 < 81 < 82 < 83 < 91 < · · ·
We denote by Q(m, 2d + 1) the set of such partitions of m into distinct parts.
To illustrate,

Q(4, 3) = {(43), (42), (41), (31, 13), (31, 12), (31, 11), (23, 22), (23, 21),

(22, 21) (23, 13, 12), (23, 13, 11), (23, 12, 11), (22, 13, 12), (22, 13, 11),

(22, 12, 11), (21, 13, 12), (21, 13, 11), (21, 12, 11)}.

Theorem 15. Let d ≥ 1 be an integer. For n ≥ 0, let

Qn(2d + 1) = |Q(n, 2d + 1)|.
(a) We have

∑

n≥0

an(2d + 1) qn = q2
∏

n≥0

(1 + q2
n

)2
∏

i,j≥0

(1 + q2
i (2d+1)j ).

(b) For n ≥ 0,

an+2(2d + 1) = Qn(2d + 1).

Proof. (a) From part (b), for which we will give an independent proof, it
suffices to show that

∑

n≥0

Qn(2d + 1) qn =
∏

n≥0

(1 + q2
n

)2
∏

i,j≥0

(1 + q2
i (2d+1)j ).

But this follows by considering which parts can appear in a color partition
counted by Qn(2d + 1).

(b) We give a combinatorial argument similar to that for Theorem 11 (b).
Let PR1,1(n, d) be the set of d-ary partitions of n with two of its 1’s rooted.
Then we wish to construct a bijection f : PR1,1(n+2, 2d+1) → Q(n, 2d+1).
We decompose λ ∈ PR1,1(n + 2, 2d + 1) as a direct sum exactly as in (10).
Suppose (2d+1)t occurs in the summand μ with multiplicity s. Then for each
power 2r in the binary expansion of s, we put a part 2r · (2d + 1)t with color 1
into a partition μ′. The summands ν and π are replaced by binary partitions
ν′ and π′ with subscripts 2 and 3, respectively, in the same way as done in
the proof of Theorem 11 (b). Finally, we define f(λ) by (11). As usual, the
details of showing that this is a well-defined map and a bijection are left to
the reader. �

5. Conjectures and Future Work

We end with some conjectures and a direction for future research in the hopes
that the reader will be interested in pursuing them. In a number of cases, the
conjectures will follow easily if Conjecture 1 can be proved.



Elementary Symmetric Partitions

In the previous two sections we dealt with d-ary partitions. By contrast,
a partition is d-regular if it contains no part which is a multiple of d. For
example, the 2-regular partitions are the ones into odd parts. Let

rd,k(n) = |{λ | λ ∈ ImPk(n) is d-regular}|.
Conjecture 16. The value of rd,2(n)− rd,3(n) for d = 2, 3, 4, and 5 are shown
in the columns of the following table. These values depend on the congruence
class of n modulo 2, 6, 4, and 10, respectively. The first column of the table
gives the congruence class for n.

r2,2(n) − r2,3(n) r3,2(n) − r3,3(n) r4,2(n) − r4,3(n) r5,2(n) − r5,3(n)
n (mod m) m = 2 m = 6 m = 4 m = 10

0 �(n + 2)/4� 2�n/6� �n/4� 3�n/10�
1 0 �n/6� �n/4� 4�n/10�
2 �n/6� + 1 �n/4� + 1 3�n/10�
3 2�n/6� + 1 �n/4� + 1 3�n/10� + 1
4 �n/6� + 1 3�n/10� + 1
5 �n/6� + 1 3�n/10� + 2
6 4�n/10� + 2
7 3�n/10� + 2
8 3�n/10� + 2
9 3�n/10� + 3

Conjecture 17. If p is prime then

rp,1(n) − rp,2(n) =

{
0 if p | n,

1 otherwise.

The next conjecture is interesting because one side of the hoped-for equal-
ity depends on a parameter k while the other does not. If m < n then it will
be useful to use the notation

P[m,n] =
n⊎

i=m

P(i),

ImPk[m,n] =
n⊎

i=m

ImPk(i).

Conjecture 18. For n ≥ 0 and k ≥ 2,

Δk−1m4(ImPk[n, n + 1]) = m2(P(n)) + m4(P[n, n + 1]),

Δk−1m6(ImPk(n)) = m6(P(n)) + m2(P(n − 2)) − m3(P(n − 2)),

Δk−1m6(ImPk[n, n + 1]) = m3(P(n)) + m6(P[n, n + 1]),

Δk−1m9(ImPk[n, n + 2]) = m3(P(n)) + m9(P[n, n + 2]),

Δk−1m10(ImPk[n, n + 1]) = m5(P(n)) + m10(P[n, n + 1]),

Δk−1mp(ImPk(n)) = mp(P (n)),

where the last equality holds for p = 1 or p prime.
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We now make connections with some sequences in the OEIS. To do so,
we let χ(S) be the total number of different parts in the set of partitions S,
so multiple appearances of the same part are only counted once. On the other
hand, we let τ(S) be the total number of parts in S counted with multiplicity.

Conjecture 19. For n ≥ 0,

χ(ImP2(n)) = A227800(n + 1),

χ(ImB2(n)) = A126236(n),

χ(ImP3(n)) = 1 + A213213(n),

τ(ImP2(n)) = A258472(n).

Let us end by discussing how our ideas could be extended to other sym-
metric polynomials. There are many standard bases for the algebra of sym-
metric polynomials, for example, the monomial, complete homogeneous, and
Schur bases. For more information about symmetric polynomials, see the texts
of Macdonald [7], Sagan [10,11], or Stanley [13]. One could evaluate any of
these on a partition and use the summands as parts. To illustrate, consider
the complete homogeneous symmetric polynomial

hk(x1, x2, . . . , x�) = the sum of all degree k monomials in the xi.

As an example,

h3(x1, x2) = x3
1 + x2

1x2 + x1x
2
2 + x3

2.

So for the partition λ = (4, 3) we have

h3(4, 3) = 43 + 42 · 3 + 4 · 32 + 33

and we could define a partition prh(3, 1) by

prh(3, 1) = (64, 48, 36, 27).

It may well be that partitions formed from other bases will also have interesting
properties.
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