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Abstract 

A multilevel circulant is defined as a graph whose adjacency matrix has a certain block decom- 
position into circulant matrices. A general algebraic method for finding the eigenvectors and the 
eigenvalues of multilevel circulants is given. Several classes of graphs, including regular poly- 
hedra, suns, and cylinders can be analyzed using this scheme. 

1. Introduction 

The last two decades have seen a growing interest in the applications of graph 
theory to the analysis of chemical graphs [l-111. Applications of graph theory to 
molecular orbital theory have been described by Gutman and Polansky [12], by 
Kiang [13], and by Dias [14]. Most efforts in this field have concentrated on eigen- 
values; only a very few papers addressed finding the eigenvectors [2,14]. Some 
fundamental work concerning the internal connectivity of molecular orbital 
graphs [15] is also related. It would be helpful if we were able to find the eigen- 
vectors and eigenvalues of graphs without complicated calculations. In this paper, 
we give an application of an algebraic method for such calculations to chemical 
graph theory. 

Recently, we gave a method [16] for finding eigenvectors and eigenvalues of 
some special graphs that are well studied in chemistry using linear algebraic 
methods. The essence of this strategy is to describe the graph in terms of typical 
operations on subgraphs, such as products and sums. Then, the eigenvectors and 
eigenvalues of the large graph can be computed from those of its subgraphs. This 
strategy was successfully applied to the class of hypercubes [17]. These graphs 
are direct products of complete graphs of order 2, KZ, which is isomorphic to 
hydrogen-depleted ethene. Linear and cyclic polyenes, whose eigenvectors and 
eigenvalues can be fully described [18], were used as the starting point in apply- 
ing this method to graphs such as steps, ladders, cylinders, grids [19], and the 
class of regular polyhera [20]. Other techniques such as graph splitting were also 
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developed for similar purposes by Davidson [21], McClelland [22], King [23], and 
DAmato [24] and, more recently, by Shen [25]. 

Circulant graphs have also received some attention [26]. Based on properties of 
circulants, we formulate a general theorem for obtaining eigenvectors and eigen- 
values of multilevel circulants. Then, a number of chemical graphs turn out to be 
1-level circulants. Thus, their eigenvectors and eigenvalues can be determined. 

This paper is structured as follows: A brief review of circulant matrices and 
the essence of our method is given in Section 2. A detailed description will be 
published elsewhere [16]. A general theorem concerning multilevel circulants is 
given in Section 2. Applications of this method to several classes of graphs such 
as suns, cylinders, and regular polyhera are given in Section 3 .  Conclusions are 
drawn in Section 4. 

. . . . . . . . . . . . . . . . .  
a2 a3 a4 . . .  a1 

is a circulant, denoted [[al, a 2 , .  .. ,a,]]. To describe the eigenvectors and eigen- 
values of a circulant, let 

= e2rri/n 

Theorem 0 [27]. A complete set of eigenvectors for A = [ [ a l , a 2 , .  .. ,a,]] is 

l4 = (1, Xk, X Z k , .  .. , x("- ' )k) ' ,  (2) 
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where k = 0,1,2,. . . , (n - 1) and t denotes transposition. The eigenvalue corre- 
sponding to 6 is 

So, for the cycle, the kth eigenvector of A(C,) is given by (2) with correspond- 
ing eigenvahe h k  = 2 cos(2k~/n). This result was obtained by Coulson and 
Streitwieser [18] using a different method. 

A short remark should be made about the relation of the spectrum of a graph 
to its labeling. Different label assignments would certainly produce different adja- 
cency matrices. I fAl  andA2 are adjacency matrices that arise from two different 
labelings of the same graph, thenAl = P-'A2P for some permutation matrix P. 
But the spectrum of a matrix A is the same as that of K A B ,  where B is any 
nonsingular matrix [27], so the spectrum of a graph is invariant with respect to 
the labeling of the graph. 

The step or circulant graphs are a class of graphs whose matrices are circu- 
lants. Let the vertices of our graph be labeled v l , .  . . ,vn.  A step graph, Cn({ni}) = 
Cn(n1,n2 ,..., np), where 1 5 n1 < n2 < ... < np I 4 2 ,  is created by making 
vertex vi adjacent to each vertex vk where k = i + n, (mod n) for some n,. The 
integers n, are called the jump sizes. As before, (2) gives the eigenvectors with 
eigenvalues 

or 

A k  = ( - I )~  + 2 cos(2nirk/n) if np = n/2. (4b) 
19<p 

Note that cycles are just step graphs with a single jump size of 1. Complete 
graphs, denoted K,,, are also special cases of step graphs with multiple jump sizes 
ranging from 1 to [(n - 1)/2], where [(n - 1)/2] is the greatest integer not ex- 
ceeding (n - 1)/2. The kth eigenvalue of K, is 

n - 1  i f k = O  
-1 if k f 0 ,  A k =  { 

where the eigenvalue -1 has multiplicity n - 1. 
Algebraic operations on graphs such as Cartesian product, Kronecker product, 

and direct sum can be used to generate new graphs from parent graphs. The key 
feature of the adjacency matrices of the derived graphs is a 2 x 2 block form 
where the diagonal blocks describe the edges among vertices of each parent 
graph and the off-diagonal blocks record the edges between two of the parents 
(see [17,19,20] for examples). The idea can be easily extended to graphs whose 
adjacency matrices can be expressed in 1 x 1 block form. We next state a general 
theorem concerning the eigenvectors and the eigenvalues of such matrices [16]. 
We will use the following notation: IfA = [aij] and B are matrices of dimensions 
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n x m and n‘ x m‘, respectively, then their tensor product is the nn‘ x mm’ 
matrix with block form 

A C3 B = [a ,B] .  

Theorem 1. Let A,,, 1 I i, j I I ,  be square matrices of order n that have the 
same complete set of eigenvectors {V,,V,, . . . ,K} with 

A ,  Vk = “pi. 
Let Bk = [ar)],  1 I k 5 n, be square matrices of order 2, each with a complete 
set of eigenvectors { ~ l ” ’ ,  uik), . . . , u\”} satisfying 

BkUY) = py)u/k) 
for 1 5 j 5 1. Then, a complete set of eigenvectors {W1,W2, ..., W,l} for the 
square matrix 

21 A22 . . . A2/ 
(6) 

is given by 

U / l k - l ) / + j  = Ujk) 8 Vk 
for k = 1,2, .  . . , n and j = 1,2, .  . . , I .  The corresponding eigenvalues are 

A ( k - l ) / + ,  = pjk). 
We will apply this theorem to the case where all blocks in the adjacency matrix 
are circulant matrices. An 1-level circulant graph is one whose adjacency ma- 
trix has an I x 1 block form (6), all A ,  being circulants. For example, a 2-level 
circulant, 

G = C,,({n,(’)},{n!2)}; {rn!l2)}), 

would consist of two vertex sets S1 = {v, ,  . . . , v,} and S2 = {wl, . . . , w,} such that 

(a) G induces circulants C,,({n!’)}) and C,({n!2)}) on S I  and S2, respectively. 
(b) Edges between the two circulants are of the form Vjwk, where 

k = j + m!’2)(mod n)  
for some i. 

Thus, 

where B = [[a1,a2,. . . ,a,]] with 

1 
0 otherwise. 

if k = 1 + m!”)(modn) for some i 
ak = ( 
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Suppose a k  and ~3~ are the eigenvalues ofA(C,{n,"'}) andA(C,{n,"'}), respectively, 
corresponding to the eigenvector & of (2). Then, a complete set of eigenvectors 
for Cn({n,("},{n,'2'}; {ml'"'}) is given by 

where 

provided that P k  f 0. The corresponding eigenvalues are 

An I-level circulant is denoted as 

where the n!k)'s stand for intracirculant jump sizes in the kth circulant and the 
mI(hk) stand for intercirculant jump sizes between the hth and kth circulants. Sev- 
eral classes of graphs such as regular polyhedra, suns, and cylinders are used as 
examples in the next section. 

3. Examples 

Special Circulants 

Matrices of all zeros or all ones, denoted by 0 and J ,  respectively, are circulant 
matrices. The identity matrix I is also a circulant. A zero matrix is the adjacency 
matrix of the graph consisting of n isolated points. All-one matrices and identity 
matrices do not correspond to adjacency matrices of any chemical graphs, but 
can represent the coupling between two subgraphs as we will see below. Another 
circulant matrix is B = J - I. It can be viewed as the adjacency matrix of a 
complete graph or a coupling matrix. 

1-Level Circulants 

1-level circulants are the simplest circulant graphs. Well-known chemical 
graphs whose adjacency matrices belong to this class are n-cycles and complete 
graphs. The eigenvectors and eigenvalues of a 1-level circulant are given in 
Eqs. (2), (4a), and (4b). For cycles, one can also find them in the handbook of 
electronic structures of conjugated systems [18]. A 1-level circulant may have mul- 
tiple jump sizes, and two examples are given in Figures 1-2. 
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C 8 ( K  2 ,  51) 
Figure 2. 

2-Level Circulants 

Two K23 can be coupled by an identity matrix to form a 4-cycle, 
C2({1},{1}; {O}), whose adjacency matrix can be written as 

[A(:,) &,)I- (7) 

Alternatively, they can be coupled by a matrix of ones to form a tetrahedron as 
in Figure 3. This graph is denoted C2({l},{l}; (0, l}) with adjacency matrix 

Two 3-cycles can be coupled by the identity Z or by B, which results in a triangu- 
lar prism or octahedron, respectively (see Figs. 4 and 5) .  These graphs are 
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c,(r 11,r 11;lOl) 
Figure 4. 

c,(1 11,r 11;10, 11) 
Figure 5. 
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C3({l},{l}; {0}), and C3({l}, (1); (0, l}), respectively, and have adjacency matrices 

Similarly, C4({1},{1}; (0)) represents the cube in Figure 6. The famous Petersen 
graph [28] is a 2-level circulant built up from two 5-cycles, denoted 
C5({1},{2}; (0)). Suns and flag-stars are also 2-level circulants of the form 
Cn({O},{l}; (0)) and Cn({O},{l}; {0,1}) (see Figs. 7 and 8). 

Multilevel Circulants 

Buckminsterfullerene C60 can be classified as a 12-level circulant. Labeling its 
vertices as in Figure 9 and then listing them in the order 1 ,2 , .  . . ,30,30’, . . . , 

c4 ( i  11,) 1 I ; I O l )  
Figure 6. 

Figure 7 



MULTILEVEL CIRCULANTS 

- 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

A(C5)- 

113 

- 

4CS) 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 0  

2', l ' , we obtain the adjacency matrix 

I 0 0 0 0 0 0 0 0 0  
O I  I 0 0 0 0 0 0 0  
I 0  K' 0 I 0  0 0 0 0 
I K 0 1 0 0 0 0 0 0  
0 0 I 0 I L ' 0 0 0 0  
O I  0 I 0 0 L O  0 0  
0 0 0 L O 0 I 0 I 0  
0 O 0 O L 1 I 0 I 0 0  
O O O O O O I O K I  
0 0 0 0 0 I O K ' 0 I  
0 0  0 0 0 0 0  I I 0  
0 0 0 0 0 0 0 0 0 I  

where each block is 5 x 5 and 

K = "0,1,0,0,0,011, L = "0,0,1,0,011. 

A set of eigenvectors and eigenvalues of C60 can now be obtained as a corollary 
to Theorem 1. 

Regular Polyhedra 

There are exactly five regular polyhedra: the tetrahedron, cube, octrahedron, 
dodecahedron, and icosahedron. We have already seen how the tetrahedron, 
cube, and octahedron can be viewed as 2-level circulants. For the case of dodeca- 
hedron and icoshedron, we proceed as follows: For convenience, we label the 
vertices of these two regular polyhedra as shown in Figures 10 and 11. As can be 
seen from Figure 10, the dodecahedron is divided into two subsets of vertices. 
Each subset is a circulant of size 10, one with jump size 1 And the other with jump 
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Figure 9. Labeling of the Buckminsterfullerene Cm. 

CIO ( i  1 I ,I 3 ;I 03 ) 
Figure 10. 

size 2. Listing the vertices in the order 1 ,2 , .  . . , lo, l ' , 2', . . . , lo ' ,  we obtain 

where A(Clo) is the central 10-cycle and Cia = C10({2}) is composed of the front 
and rear 5-cycles. Thus, the dodecahedron is a 2-level circulant Clo({l}, (2); (0)). 
In the case of icosahedron, the system is also divided into two subsets of vertices 
each having six vertices as shown in Figure 11. Listing the vertices in the order 
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5 

Figure 11. 

1,2,. . . ,6,1',2' ,  . . . ,6 ' ,  we obtain 

A(icosahedron) = pY A:J 

where C, is the central 6-cycle, Ck = C6({2}) is composed of the front and rear 
3-cycles, and M = [[1,1,0,0,0,1]]. Thus the icosahedron is the 2-level circulant 
C6({1}, (2);  { O , L  -1)). 

4. Conclusions 

We have shown that various graphs used in chemistry can be described as cir- 
culants. These include cycles, suns, flag-stars, prisms, the regular polyhedra, and 
Buckminsterfullerene C6". The eigenvectors and eigenvalues of these graphs can 
now be calculated using Theorem 1. 

Acknowledgment 

The authors are indebted to the National Science Council, Taiwan, Republic of 
China, for financial support. 

Bibliography 

[l] N. Trinajstic, Chemical Graph Theory (CRC Press, Boca Raton, FL, 1983), Vols. I.and 11. 
[2] S.-L. Lee, R. R. Lucchese, and S.-Y. Chu, Chern. Phys. Lett. 137, 279 (1987); S.-L. Lee and 

I. Gutman, Chern. Phys. Lett. 157, 229 (1989); S.-L. Lee, F.-Y. Li, and F. Lin, Int. J. Quan- 
tum Chern. 39, 59 (1991). 

[3] A. Graovac, I. Gutrnan, and N. Trinajstic, Topological Approach to the Chemistry of Conju- 
gated Molecules (Springer, Berlin, 1977). 

[4] R. B. King, J. Phys. Chern. 92, 4452 (1988); Ibid., J. Cornput. Chem. 8, 341 (1987). 
[5] Y. Wang, T. F. George, D. M. Lindsay, and A. C. Beri, J. Chem. Phys. 86, 3493 (1987); S.-L. 

[6] L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic 
Lee, Theor. Chim. Acta (in press). 

Press, New York, 1976). 



116 LEE ET AL. 

[7] M. J. Rigby, R. B. Mallion, and A. C. Day, Chem. Phys. Lett. 51, 178 (1977); Ibid. 53, 418 
(1978). 

[XI R. C. Read, in Chemical Applications of Graph Theory, A.T. Balaban, Ed. (Academic Press, 
New York, 1976), Chap. 4.; A.T. Balaban, in Chemical Applications of Graph Theory, A.T. 
Balaban, Ed. (Academic Press, New York, 1976), Chap. 5. 

[9] L. B. Kier and L. H .  Hall, Molecular Connectivity in Structure-activity Analysis (Research 
Studies Press, Letchworth, England, 1986). 

[lo] L. H. Hall and L.B. Kier, J. Pharm. Sci. 66, 642 (1977). 
[ l l ]  J. Gayoso and S. Kimri, Int. J. Quantum Chem. 38, 461,487 (1990); G .  Klopman and M.L.  

Dimayuga, J. Cornput.-Aided Mol. Design 4, 117 (1990). 
[12] I. Gutman and 0. E .  Polansky, Mathematical Concepts in Organic Chemistry (Springer- 

Verlag, Berlin, 1986). 
[13] Y.-S. Kiang, Int. J. Quantum Chem., Quantum Chem. Symp. 15, 293 (1981). 
[14] J. R. Dias, J. Mol. Struct. (Theochem) 165, 125 (1988); lbid., Can. J. Chem. 65, 734 (1987). 
[15] S.-L. Lee and F.-Y. Li, J. Mol. Struct. (Theochem) 207, 301 (1990). 
[16] Y.-N. Yeh and S.-L. Lee, J. Math. Chem. (accepted for publication). 
[17] S.-L. Lee and Y.-N. Yeh, Chem. Phys. Lett. 171,385 (1990). 
[18] C. A. Coulson and A. Streitwieser, Dictionary of r-Electron Calculations (Freeman, San Fran- 

[I91 S.-L. Lee and Y.-N. Yeh, submitted. 
[20] S.-L. Lee, Y.-L. Luo, and Y. N. Yeh, J. Cluster Sci., (in press). 
[21] R. A. Davidson, Theor. Chim. Acta 58, 193 (1981). 
[22] B. J. McClelland, J. Chem. SOC., Faraday Trans. I1 70, 1453 (1974); Ibid. 70, 911 (1982); Ibid., 

[23] R. B. King, Theor. Chim. Acta 44, 223 (1977). 
[24] S. S. D’Amato, Mol. Phys. 37, 1363 (1979); Ibid., Theor. Chim. Acta 53, 319 (1979). 
[25] M. Shen, Int. J. Quantum Chem. 38, 551 (1990). 
[26] M. L. Mehta, Elements of Matrix Theory (Hindustan, Delhi, 1977), p. 93; A. C. Day, R. B. 

[27] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, New York, 1990), p. 118. 
[28] G.  Chartrand, Introductory Graph Theory (Dover, New York, 1977), p. 202. 

cisco, 1965). 

Mol. Phys. 45, 189 (1982). 

Mallion, and M. J. Rigby, Croat. Chem. Acta 59, 533 (1986). 

Received December 11, 1990 
Accepted for publication April 30, 1991 




