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Let α = a1a2 . . . an be a sequence of nonnegative integers. 
The ascent set of α, Ascα, consists of all indices k where 
ak+1 > ak. An ascent sequence is α where the growth of 
the ak is bounded by the elements of Ascα. These sequences 
were introduced by Bousquet-Mélou, Claesson, Dukes and 
Kitaev and have many wonderful properties. In particular, 
they are in bijection with unlabeled (2 + 2)-free posets, 
permutations avoiding a particular bivincular pattern, certain 
upper-triangular nonnegative integer matrices, and a class of 
matchings. A weak ascent of α is an index k with ak+1 ≥ ak

and weak ascent sequences are defined analogously to ascent 
sequences. These were studied by Bényi, Claesson and Dukes 
and shown to have analogous equinumerous sets. Given a 
nonnegative integer d, we define a difference d ascent to be 
an index k such that ak+1 > ak − d. We study the properties 
of the corresponding d-ascent sequences, showing that some 
of the maps from the weak case can be extended to bijections 
for general d while the extensions of others continue to be 
injective (but not surjective). We also make connections with 
other combinatorial objects such as rooted duplication trees 
and restricted growth functions.
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1. Introduction

For m, n nonnegative integers we let [m, n] = {m, m + 1, . . . , n}, and when m = 1 we 
abbreviate this to [n] = {1, 2, . . . , n}. Note that [n] = ∅ if n = 0. Consider a sequence 
α = a1a2 . . . an of nonnegative integers. We will sometimes put commas between the ak
for readability. Also note our convention that we will use Greek letters for sequences and 
the corresponding roman letters for their elements. For k ∈ [n] we will use

αk = a1a2 . . . ak

for the prefix of α with k elements and also let α0 = ∅ be the empty sequence. The 
ascent set and ascent number of α are

Ascα = {k ∈ [n− 1] | ak+1 > ak}

and

ascα = # Ascα,

respectively, where we will use a hash symbol or a pair of vertical bars to denote cardi-
nality. For example, if

α = 0, 1, 1, 0, 2, 1, 2, 4 (1)

then Ascα = {1, 4, 6, 7} and ascα = 4. Call α an ascent sequence if

(a1) a1 = 0, and
(a2) ak+1 ≤ 1 + ascαk for k ∈ [n − 1].

It is easy to check that α in the previous example is an ascent sequence while

α′ = 0, 1, 1, 0, 3, 1, 2, 4 (2)

is not because α′
5 = 3 while 1 + asc(0, 1, 1, 0) = 2 which is smaller. For n ≥ 0 we will use 

the notation

An = {α = a1a2 . . . an | α is an ascent sequence}.

For example

A3 = {000, 001, 010, 011, 012}.

Bousquet-Mélou, Claesson, Dukes and Kitaev [3] were the first to define and study ascent 
sequences and they have since been considered by numerous authors such as [10,11,13,
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14,17–21,24,28,33,34,39]. Ascent sequences are known to be in bijection with unlabeled 
(2 +2)-free posets, permutations avoiding a bivincular pattern of length 3, certain upper-
triangular nonnegative integer matrices, and a class of matchings.

Very recently, Bényi, Claesson, and Dukes [1] introduced weak ascent sequences. The 
set of weak ascents of α is

wAscα = {k ∈ [n− 1] | ak+1 ≥ ak}

with corresponding weak ascent number

wascα = # wAscα.

Note that wAscα ⊇ Ascα. Taking α′ as in (2) we see that wAscα′ = {1, 2, 4, 6, 7}. The 
sequence α is a weak ascent sequence if

(w1) a1 = 0, and
(w2) ak+1 ≤ 1 + wascαk for k ∈ [n − 1].

Even though α′ as above was not an ascent sequence, it is a weak ascent sequence. In 
fact, if we let

wAn = {α = a1a2 . . . an | α is a weak ascent sequence},

then clearly wAn ⊇ An for all n ≥ 0. As an example,

wA3 = {000, 001, 002, 010, 011, 012}.

In [1] the authors showed that weak ascent sequences are equinumerous with factorial 
posets avoiding a specially labeled 3 + 1, permutations avoiding a bivincular pattern of 
length 4, upper-triangular 0-1 matrices satisfying a column restriction, and matchings 
with a restriction on their nestings.

The purpose of the present work is to introduce and study a more general class of 
sequences which includes both ascent sequences and weak ascent sequences as special 
cases. For d ≥ 0 the difference d ascent set or simply d-ascent set of α is

dAscα = {k ∈ [n− 1] | ak+1 > ak − d},

with corresponding d-ascent number

dascα = # dAscα.

Note that when d = 0 and d = 1 we have dAscα = Ascα and dAscα = wAscα, 
respectively. For example, when d = 2 we have



4 M. Dukes, B.E. Sagan / Advances in Applied Mathematics 159 (2024) 102736
dAsc(0, 1, 0, 2, 3, 1, 4, 1, 6) = {1, 2, 3, 4, 6, 8}.

Unsurprisingly, the definition of a d-ascent sequence α is one where

(d1) a1 = 0, and
(d2) ak+1 ≤ 1 + dascαk for k ∈ [n − 1].

The example sequence just given is a 2-ascent sequence. Let

dAn = {α = a1a2 . . . an | α is a d-ascent sequence}.

These difference d ascent sequences are different from the p-ascent sequences that were 
introduced by Kitaev and Remmel [26]. In what follows, we will continue the convention 
initiated above using notation starting with d for notions concerning general d-ascent 
sequences, with w for the corresponding ideas applied to weak ascent sequences, and 
with no added initial letter for the ascent sequence case. Sometimes the d = 2 sequences 
will be of special interest and then the prefix will be t as in tAscα.

The rest of this paper is structured as follows. In the next section we will give a bijec-
tion between d-ascent sequence and upper triangular 0-1 matrices satisfying a condition 
on the columns. This is a generalization of the map given in Bényi et al. [1, Sec. 3]
for the case of weak ascent sequences. Section 3 is devoted to a bijection between dAn

and a set of matchings with restricted nestings. In Section 4 we show that there is an 
injection from d-ascent sequence to permutations avoiding a bivincular pattern of length 
d + 3. Next, we construct another injection with domain dAn for d ≥ 1, this one to the 
factorial posets of Claesson and Linusson [14] avoiding a specially labeled poset Pd+3
with d + 3 elements. Call a d-ascent sequence d-increasing if every index (except the 
last) is a d-ascent. In Section 6 we show that there is an alternating sum recursion of 
such sequences. Also, for d = 2, they are in bijection with the rooted duplication trees of 
Gasceul, Hendy, Jean-Marie, and McLachlan [23]. The special factorial posets considered 
earlier were for d ≥ 1, but one can also define an analogous P3. We show in Section 7
that the factorial posets avoiding P3 are in bijection with restricted growth functions. 
We end with a section of comments and suggestions for future work.

2. Matrices

We will now give a bijection between difference d ascent sequences and matrices sat-
isfying a certain column condition. Our map is a simplification and generalization of the 
one for weak ascent sequences given in [1].

It will be convenient to index the rows and columns of our matrices by 0, 1, . . . , m
for some m ≥ −1 where m = −1 corresponds to the empty matrix. In particular, we 
let Zm be the matrix with these coordinates which has all entries zero. Fig. 1 shows 
a matrix M with rows and columns indexed by [0, 4]. We also let Ei,j be the matrix 
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M =

⎡
⎢⎢⎢⎣

1 0 1 1 1
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦

j :
rmin cj :
rmax cj :

0 1 2 3 4
0 1 0 0 0
0 1 0 3 4

Fig. 1. A matrix M with its rmin cj and rmax cj values.

whose only nonzero entry is a one in position (i, j). Note that we do not specify the 
dimensions of Ei,j but instead choose them to be consistent with the dimensions of the 
other matrices involved in a given computation. Given any matrix M we let cj be the 
column vector consisting of its jth column. If cj is not the zero vector then we define 
rmin cj and rmax cj to be the smallest and largest row coordinates, respectively, of a 
nonzero entry in cj . For the matrix in Fig. 1 the rmin cj and rmax cj values are listed 
below each column cj .

If d ≥ 1 then a d-matrix is a [0, m] × [0, m] matrix M having the following properties.

(M1) M is upper triangular with entries 0 and 1.
(M2) Between any two ones in the same column there are at least d − 1 zeros.
(M3) There are no zero columns and for all j ∈ [m] we have

rmax cj > rmin cj−1 − d.

For n ≥ 0 let

dMtxn = {M | M is a d-matrix having n ones}.

It is easy to check that the matrix in Fig. 1 is in dMtx8 for d = 2.
In order to construct our bijection mx : dAn → dMtxn we will need a certain factor-

ization of d-ascent sequences. Given α = a1a2 . . . an ∈ dAn, its d-ascent factorization is 
the concatenation

α = δ0δ1 . . . δm, (3)

where the factors δi are obtained by dividing α after each d-ascent. Equivalently, the δi
are the maximal factors of α containing no d-ascent. Note that we start our indexing of 
the factors with 0. For example, if d = 2 then α = 0, 1, 0, 3, 0, 4, 2, 0 has factorization

α = 0 · 1 · 0 · 3, 0 · 4, 2, 0,

where the centered dots separate the factors. Equivalently
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⎡
⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦

M0 +E0,0 M1 +E1,1 M2 +E0,2

⎡
⎢⎢⎢⎣

1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 1 1 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎦

M3 +E3,3 M4 +E0,3 M5 +E4,4

⎡
⎢⎢⎢⎣

1 0 1 1 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 1 1 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 1 1 1
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦

M6 +E2,4 M7 +E0,4 M8 = mx(α)

Fig. 2. Computing mx(0, 1, 0, 3, 0, 4, 2, 0).

δ0 = 0, δ1 = 1, δ2 = 0, δ3 = 3, 0, and δ4 = 4, 2, 0.

Now given α = a1 . . . an ∈ dAn expressed as in (3) we will apply the map mx as 
follows. Note that m is the last index in the factorization and n = |α|. Construct a 
sequence of matrices

Zm = M0,M1, . . . ,Mn = mx(α)

where

Mk = Mk−1 + Eak,j (4)

if ak is in the factor δj . This construction applied to the example α from the previous 
paragraph is shown in Fig. 2, where each matrix appears above its label.

Theorem 2.1. For all d ≥ 1 and n ≥ 0 the map mx : dAn → dMtxn is a bijection. 
Consequently

# dAn = # dMtxn .

Proof. We first prove that mx is well defined in that Mn ∈ dMtxn. To ensure triangu-
larity, we need to have ak ≤ j in equation (4). Since ak ∈ δj and δj is decreasing, it 
suffices to prove this inequality when ak is the first element of δj . But the assumption 
about ak and δj implies that the length k− 1 prefix αk−1 = δ0δ1 . . . δj−1. Now using the 
definition of a d-ascent sequence yields

ak ≤ dascαk−1 + 1 = (j − 1) + 1 = j.
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So the first half of condition (M1) holds.
We now show simultaneously that (M2) and the second half of (M1) are true. If the 

ones added for ak and ak+1 are in the same column then we must have both in the same 
δj for some j. Since δj has no d-ascents, it must be that ak+1 ≤ ak − d. But since the 
elements of α give the row indices for the added ones, there must be at least d − 1 zeros 
between the ones corresponding to the kth and (k + 1)st positions which is (M2). Since 
d ≥ 1 by assumption, we will never add two ones to the same position which finishes the 
proof of (M1).

For condition (M3), since each δj has at least one element, there are no zero columns. 
Also, we have rmin cj−1 = ak−1 and rmax cj = ak where ak−1 and ak are as in the first 
paragraph. But then, by the definition of the factorization, there is a d-ascent from ak−1
to ak and so

rmax cj = ak > ak−1 − d = rmin cj−1 − d.

To complete the proof of being well defined, we need to know that mx(α) has exactly 
n ones. But an Ei,j was added n times and we already showed that Mn is a 0-1 matrix. 
So n must be the number of ones.

It is easy to construct a step-by-step inverse to mx. It follows that this map is bijective 
and so we are done. �
3. Matchings

We will construct our map between dAn and certain matchings by restricting a bijec-
tion of Claesson and Linusson [14] on inversion sequences.

Call a sequence of nonnegative integers α = a1a2 . . . an an inversion sequence if

0 ≤ ak < k (5)

for all k ∈ [n]. The name derives from the fact that such sequences are in natural bijection 
with permutations in the symmetric group Sn using the inversion statistic. Let

In = {α = a1a2 . . . an | α is an inversion sequence}.

For example,

I3 = {000, 001, 002, 010, 011, 012}.

Note that any d-ascent sequence is an inversion sequence: Setting k = 1 in (5) immedi-
ately gives a1 = 0. And for k ≥ 2, the maximum number of d-ascents in αk−1 is k− 2 so 
that

ak ≤ 1 + dascαk−1 ≤ k − 1.
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1 2 3 4 5 6 7 8

e1 e2 e3 e4

0 1 2 3 4

Fig. 3. A matching and its active spaces.

1

m1

2

m1

1

m2

2

m2

3

m2

4

m2

1 2 3 4 5 6

m3

1 2 3 4 5 6 7 8

m4 = mh(α)

Fig. 4. Computing mh(0, 1, 0, 2).

It follows that dAn ⊆ In for all d, n ≥ 0.
A (perfect) matching, m, is a graph on the vertex set [2n] with a set of n edges e = ij

no two of which share a vertex. We will always write our edges ij so that i < j and label 
them e1 = i1j1, e2 = i2j2, . . . , en = injn so that

1 < j1 < j2 < . . . < jn = 2n.

Fig. 3 displays a matching m on [8] with edges

e1 = 13, e2 = 25, e3 = 47, and e4 = 68.

The Claesson-Linusson bijection, mh, is built on the notion of an active space. The 
active spaces of m are the spaces just before j1, j2, . . . , jn together with the space after 
2n. They will be labeled 0, 1, . . . , n from left to right. In Fig. 3, the active spaces are 
indicated using double-headed arrows with their labels below. Given α = a1a2 . . . an ∈ In
we construct a sequence of matchings

∅ = m0,m1, . . . ,mn = mh(α)

where mk is a matching on [2k] for 0 ≤ k ≤ n. To obtain mk from mk−1 insert two new 
vertices, one in active space ak and one in active space k − 1, and connect them by an 
edge ek as well as renumbering the vertices 1, 2, . . . , 2k from left to right. For example, 
if α = 0102 then the sequence of nonempty matchings is given in Fig. 4.

To describe the image of the mh map, define a nesting in a matching m to be a pair 
of edges of the form ij and kl where i < k < l < j. As an example, in Fig. 4 the edges 
26 and 45 form a nesting in m3. A left nesting is a nesting with k = i + 1, and a right 
nesting is one with j = l+1. The nesting in the previous example is a right nesting, but 
not a left nesting. Let
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Mn = {m | m is a matching on [2n] with no left nestings}.

Also, given an edge e = ij in a matching we say that edge kl is to its left if l < i. We let

lef(e) = number of edges to the left of e.

We include the following result and proof of Claesson and Linusson to motivate what 
follows for d-ascent sequences.

Theorem 3.1 ([14]). The map mh is a bijection mh : In → Mn.

Proof. The function is well defined since if ikjk is the edge added to form mk then, by 
definition of the active spaces, ik + 1 is the right endpoint of an edge. So no left nesting 
can be formed.

To see that this is a bijection, one can construct the inverse by sending a matching 
m with vertices [2n] to the inversion table α = a1a2 . . . an where

ak = lef(ek) (6)

for k ∈ [n]. �
Since every d-ascent sequence is an inversion table, we can get a bijection with match-

ings by restricting mh to dAn and characterizing the image. In view of equation (6) and 
the definition of dAscα we say that k is a d-displacement of a matching m on [2n] if

lef(ek+1) > lef(ek) − d,

and let

ddism = #{k ∈ [n− 1] | k is a d-displacement of m}.

We can now finally define the matchings which are in bijection with d-ascent sequences. 
The set of difference d matchings is

dMchn = {m ∈ Mn | lef(ek+1) ≤ 1 + ddis(mk) for k ∈ [n− 1]}

where mk is the restriction of m to the arcs e1, . . . , ek gotten by removing all vertices 
which are not endpoints of those edges and relabeling the remaining vertices. The next 
result follows easily from the previous theorem, so its proof is omitted.

Theorem 3.2. For all d, n ≥ 0, the map mh restricts to a bijection mh : dAn →
dMchn. �
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4. Permutations

Bousquet-Mélou et al. [3] initiated the study of bivincular patterns and showed that 
ascent sequences are in bijection with permutations avoiding a bivincular pattern of 
length 3. A bijection between weak ascent sequences and permutations avoiding a bivin-
cular pattern of length 4 was found in [1]. In this section, we will show that there is 
always an injection from d-ascent sequences into a corresponding set of permutations 
avoiding a pattern of length d + 3, although it is not surjective in general. In all cases, 
the technique used is based on the method of generating trees and, in particular, of active 
sites in permutations.

Recall that we are using Sn for the symmetric group of all permutations π =
p1p2 . . . pn of [n] written in one-line notation. Note, again, the use of Greek letters for 
permutations and Roman ones for their elements. We say that π contains the classical 
pattern σ = s1s2 . . . sk ∈ Sk if there is a subsequence κ = pi1pi2 . . . pik of π whose ele-
ments are in the same relative order as those of σ. In this case κ is called a copy of σ. 
For example, a copy of the pattern 231 would be a subsequence κ = bca with a < b < c. 
So π = 643512 contains four copies of 231 namely 451, 452, 351, and 352. To contain a 
bivincular pattern σ, certain pairs of elements of the copy κ must be adjacent in π and 
others must be adjacent as integers. In the first case we put a vertical bar between the 
elements of σ, and in the second we put a bar over the smaller of the two integers. To 
illustrate, a copy κ = bca of the bivincular pattern σ′ = 2|31 in a permutation π would 
have a < b < c with b, c adjacent in π and b = a +1. Using π as in the previous example, 
only one of the subsequences listed above is a copy of σ′, namely 352. Note that classical 
patterns are a special case of bivincular ones where there are no bars or overlines, so 
henceforth we will just use the term pattern. We say that π avoids the pattern σ if it 
does not contain σ and let

Avn(σ) = {π ∈ Sn | π avoids σ}.

Theorem 4.1 ([1,3]). Let

σ3 = 2|31 and σ4 = 3|412.

Then for all n ≥ 0 there are bijections An ↔ Avn(σ3) and wAn ↔ Avn(σ4). Thus

# An = # Avn(σ3) and # wAn = # Avn(σ4).

Consider the bivincular pattern

σd = (d− 1)|d12 . . . (d− 2).

The main theorem of this section is as follows.
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Table 1
Comparison of # dAn when d = 2 and # Av(σ5).

n 1 2 3 4 5 6 7 8
# dAn 1 2 6 24 118 682 4506 33376
# Av(σ5) 1 2 6 24 119 699 4721 35904

Theorem 4.2. For all d, n ≥ 0 we have

# dAn ≤ # Avn(σd+3).

We note that the inequality in this theorem can be strict. For example, when d = 2
the cardinalities of dAn and Avn(σ5) are shown in Table 1 and are not always equal.

To prove Theorem 4.2, we will need the notion of an active site in a permutation. Fix 
a pattern σ and suppose that π = p1p2 . . . pn ∈ Avn(σ). Consider the n + 1 spaces of 
π consisting of the space before p1, the space after pn, and the n − 1 spaces between 
adjacent elements of π. Call a space an active space or active site if insertion of n + 1 in 
that space results in a permutation π′ which still avoids σ. The rest of the sites/spaces 
are called inactive. We write

actπ = number of active sites of π

and number the active sites of π from left to right 0, 1, . . . , (actπ) − 1. Note that actπ
depends on the pattern σ being avoided but this will always be clear from context. The 
empty permutation ∅ has one active site labeled 0. For example, if π = 631245 and 
σ = σ4 = 3|412 then the numbering of its active sites is

↑
0
6 3 1 ↑

1
2 ↑

2
4 ↑

3
5 ↑

4
.

Note that the space after 6 is not active because inserting 7 there gives the copy κ = 6745
of σ, and the space after 3 is not active because of the creation of κ = 3712.

We now define an injection pe : dAn → Avn(σd+3) as follows. Given α = a1a2 . . . an ∈
dAn we construct a sequence of permutations

∅ = π0, π1, . . . , πn = pe(α)

where πk is obtained from πk−1 by inserting k in the active space labeled ak for 1 ≤ k ≤ n. 
As an example, suppose that d = 1 so we are avoiding σd+3 = σ4 = 3|412. For the weak 
ascent sequence α = 010220 we would get the sequence of permutation in Fig. 5 where 
the active sites of each permutation have been labeled for convenience.

We must prove that this map is well defined in that there is a space of πk−1 labeled 
by ak. This will be done using the next lemma.

Lemma 4.3. For all k ≥ 1, we have the following inequalities.
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∅ ↑
0
1 ↑

1
↑
0
1 ↑

1
2 ↑

2
↑
0
31 ↑

1
2 ↑

2
↑
0
31 ↑

1
2 ↑

2
4 ↑

3
↑
0
31 ↑

1
2 ↑

2
5 ↑

3
4 ↑

4
631254

π0 π1 π2 π3 π4 π5 π6 = pe(α)

Fig. 5. Computing pe(010220) when d = 1.

(a) If α = a1a2 . . . ak−1 and β = αak (concatenation) then

dascα ≤ dascβ ≤ dascα + 1.

(b) If σ ∈ Avk(σd+3) is obtained from π ∈ Avk−1(σd+3) by inserting k in an active site 
then

actπ ≤ actσ ≤ actπ + 1.

Proof. (a) The d-ascents of β are those in α plus possibly a new d-ascent if ak > ak−1−d. 
The result follows.

(b) Call the sites of π which remain adjacent to the same elements in σ common. 
We first claim that common sites remain active or inactive in passing from π to σ. If a 
common site is inactive in π then insertion of k there forms a copy κ of σd+3. But then 
insertion of k+ 1 in the same site forms a copy of σd+3 obtained by replacing k by k+ 1
in κ. Now assume, towards a contradiction, that an active common site in π becomes 
inactive in σ. So there is a copy κ′ of σd+3 when k + 1 is inserted in the site of σ. That 
copy must contain k + 1 acting as the d + 3. Also k is not in κ′, since if it were then it 
would be acting as the d + 2. But that implies that the site where k + 1 was inserted is 
adjacent to k and so not common. Thus inserting k into π in this common site produces 
a copy of σd+3 obtained by replacing the k + 1 in κ′ with k, which contradicts the fact 
that the site is active in π.

Now consider the new sites of σ just before and after k. One can show in a man-
ner similar to the previous paragraph that the site before k will always be active. So 
actσ = actπ + 1 or actσ = actπ depending on whether the site after k is active or not, 
respectively. This is what we wished to prove. �

We can now show that insertion is well defined.

Proposition 4.4. During the construction of pe(a1a2 . . . an), there is a site in πk−1 labeled 
ak for 1 ≤ k ≤ n.

Proof. By the way that sites are labeled, we must show that

ak ≤ actπk−1 − 1

for all k ∈ [n]. This is equivalent to showing that
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dascαk ≤ actπk − 2 (7)

for all k ∈ [n]. To see this, note that since α is a d-ascent sequence, the last inequality
implies

ak ≤ dascαk−1 + 1 ≤ (actπk−1 − 2) + 1 = actπk−1 − 1

with the converse being similar.
We will prove the inequality (7) by induction on k where the case k = 1 is trivial. 

Assume the inequality for k. There are three cases depending on the value of ak+1.
For the first case, suppose ak+1 ≤ ak−d. So dascαk+1 = dascαk. But by the previous 

lemma, the right side of (7) stays the same or goes up by one when passing from πk to 
πk+1. So it continues to hold for k + 1.

For the second case, suppose ak+1 > ak. Now dascαk+1 = dascαk + 1. So it suffices 
to show that actπk+1 = actπk +1. By the proof of Lemma 4.3, this will follow if we can 
show that the site after k + 1 is active in πk+1. Since ak+1 > ak, the site where k + 1
is inserted is to the right of k. Suppose, towards a contradiction, that inserting k + 2
directly to the right of k + 1 forms a copy of σd+3. Then k + 1 and k + 2 take the roles 
of d + 2 and d + 3, respectively. This forces k to be the d + 1 and so to be the right of 
k + 1. This contradiction shows that the site after k + 1 is active as desired.

The last case is when ak−d < ak+1 ≤ ak. Again dascαk+1 = dascαk+1. So, as in the 
previous paragraph, we have to show that the site after k+1 is active in πk+1. As before, 
we assume it is not, so inserting k + 2 would form a copy k + 1, k + 2, k1, k2, . . . , kd, k
of σd+3 where k1 < k2 < . . . < kd. We claim that there is some i ∈ [d − 1] such that 
all the spaces between ki and ki+1 are inactive. For suppose this was not the case. Now 
the active space before k is labeled ak and there are at least d − 1 active spaces between 
k1 and kd. So k + 1 was inserted in a space labeled at most ak − d which contradicts 
ak+1 > ak − d.

Suppose i is chosen so there are no active spaces between ki and ki+1. Since ki < ki+1
there must be two adjacent elements pj < pj+1 of πk among the elements in the factor 
of πk from ki to ki+1. Since the space between pj and pj+1 is not active, placing k + 1
there results in a copy κ of σd+3 where pj and k + 1 plays the roles of d + 2 and d + 3, 
respectively. Since pj < pj+1, replacing k + 1 in κ by pj+1 gives a copy of σd+3 in πk

where pj and pj+1 play the roles of d + 2 and d + 3, respectively. This contradicts the 
fact that πk avoids σd+3 and completes the proof. �

We can now demonstrate Theorem 4.2 which will be an immediate consequence of the 
following result.

Theorem 4.5. For all d, n ≥ 0 the map pe : dAn → Avn(σd+3) is an injection.

Proof. From the previous proposition we know that the insertion process will produce 
a sequence π0, π1, . . . , πn = pe(α). Furthermore, each πi avoids σd+3 because elements 
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P =

1

2

36 4

5

Q =

1

2

34 5

6

Fig. 6. Two posets.

are inserted in active sites. To show that this is an injection, we induct on n. Suppose 
α = a1 . . . an and β = b1 . . . bn are distinct d-ascent sequences. If αn−1 
= βn−1 then by 
induction pe(αn−1) 
= pe(βn−1). And insertion of n into two different permutations can 
not make them equal so pe(α) 
= pe(β). The other possibility is αn−1 = βn−1 which 
forces an 
= bn. So n is inserted in different positions of pe(αn−1) = pe(βn−1) and we 
again have that pe(α) and pe(β) are distinct. �
5. Posets

Let (P, ≤P ) be a poset (partially ordered set). We say that P is (a + b)-free if it does 
not contain an (induced) subposet isomorphic to the disjoint union of an a-element chain 
and a b-element chain. The poset P whose Hasse diagram is on the left in Fig. 6 is not 
(3 + 1)-free because of the chains 1 <P 2 <P 3 and 4. But it is (4 + 1)-free because the 
only chain with four elements is 1 <P 2 <P 3 <P 5 and the remaining two elements 
are related to members of that chain. Ascent sequences are in bijection with unlabeled 
(2 + 2)-free posets as shown in [3]. Claesson and Linusson [14] introduced a family of 
labeled posets called factorial posets which are (2 + 2)-free. Then in [1] a bijective map 
was constructed between weak ascent sequences and factorial posets which do not contain 
a specially labeled 3 + 1 subposet. In this section we will introduce a specially labeled 
(d −1) +1 poset Pd and show that for all d ≥ 1 there is always an injection from d-ascent 
sequences to factorial posets which are special Pd+3-free.

Let P be a poset with elements [n] for some n. We will use <P for the partial order on 
P and < for the total order on the integers. Call P factorial if it satisfies the following 
rule reminiscent of the transitive law:

i < j and j <P k =⇒ i <P k (8)

for all i, j, k ∈ [n]. The reason they are called factorial is because there are n! such posets 
on [n]. As an example, it is easy to check that the poset P on the left in Fig. 6 is factorial. 
But the poset Q on the right is not because 4 < 5 and 5 <P 6 but 4 
<P 6. It is not hard 
to see that a factorial poset is naturally labeled in that i <P j implies i < j.
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Table 2
Comparison of # dAn when d = 2 and # Av(P5).

n 1 2 3 4 5 6 7 8
# dAn 1 2 6 24 118 682 4506 33376
# Av(P5) 1 2 6 24 119 700 4747 36370

We define a special poset Pd to be a disjoint union (d −1) +1 together with a labeling 
of the form

...Pd =

i1

i2

i3

id−3

id−2

id−1

id−2 + 1

where i1 < i2 < . . . < id−1 and id−2 + 1 < id−1. Call a labeled poset special Pd-free if it 
does not contain an induced subposet equal to Pd for some choice of labels. We will use 
the notation

Avn(Pd) = {P | P is a factorial poset on [n] which is special Pd-free}.

This should cause no confusion with the use of Avn in the previous section since in that 
case it was applied to a permutation, not a poset. To illustrate, note that even though 
the poset P in Fig. 6 is not (3 + 1)-free, it is special P4-free. This is because the unique 
copy of 3 +1 is 1 <P 2 <p 3 and 4, but the integer 4 is not one more then the penultimate 
element of the 3-element chain which is 2. This section’s main result is as follows.

Theorem 5.1. For all d ≥ 1 and n ≥ 0 we have

# dAn ≤ # Avn(Pd+3).

We note that for d = 1 the above inequality is actually an equality as proved in [1]. 
And, as in Theorem 4.2, the inequality can be strict for d ≥ 2 as shown in Table 2.
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For d ≥ 1 we define a map po : dAn → Avn(Pd+3) as follows. If α = a1a2 . . . an then 
we construct a poset P = po(α) on [n] by letting, for each pair i, j ∈ [n] of distinct 
elements,

i <P j if and only if dascαi < aj . (9)

For example, if d = 2 and α = 012032 then po(α) is the poset P in Fig. 6. In particular, 
if j = 6 then a6 = 2 so that 1 <P 6 and 2 <P 6 since dascα1 = 0 and dascα2 = 1 both 
of which are smaller than a6 = 2. However 6 is not related to any i > 3 since in those 
cases dascαi ≥ 2. We will first need a couple of lemmas to prove that po is well defined 
and an injection.

Lemma 5.2. Suppose d ≥ 0. For any d-ascent sequence α = a1a1 . . . an and any k ∈ [n]
we have

ak ≤ dascαk.

Proof. Induct on k where k = 1 is trivial. Assuming the result for k − 1, we have two 
cases. The first is if ak ≤ ak−1−d. But then, by induction and the definition of a d-ascent,

ak ≤ ak−1 ≤ dascαk−1 = dascαk.

The other possibility is that ak > ak−1−d. So, from the definition of a d-ascent sequence 
and induction, we have

ak ≤ dascαk−1 + 1 = dascαk

which completes the proof. �
We can now establish that the map po is well defined.

Lemma 5.3. Suppose d ≥ 1 and α ∈ dAn. Then po(α) ∈ Avn(Pd+3).

Proof. Let α = a1a2 . . . an and P = po(α). Since (9) only defines a relation on distinct 
elements, we can assume reflexivity. For antisymmetry, it suffices to show that if i <P j

then i < j as then the law will follow from antisymmetry of the total order on integers. 
Suppose, to the contrary, that j < i. Using the previous lemma and the fact that dascαk

is a weakly increasing function of k gives

aj ≤ dascαj ≤ dascαi.

But this contradicts (9). For transitivity, suppose i <P j and j <P k. By definition 
dascαi < aj and dascαj < ak. Now, using the previous sentence and Lemma 5.2 again, 
we have
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dascαi < aj ≤ dascαj < ak.

Thus i <P k.
To check the factorial condition, assume i < j and j <P k. This implies that dascαi ≤

dascαj and dascαj < ak. By transitivity in the integers, dascαi < ak which is equivalent 
to i <P k.

Finally, we need to show that P is special Pd+3-free. Take any chain

C : i1 <P i2 <P . . . <P id+1 <P id+2

in P and, to simplify notation, let i = i1, j = id+1, and k = id+2. It suffices to show 
that j+1 must be related to some element of C. There are now two cases. First suppose 
that aj+1 ≤ aj − d so that dascαj+1 = dascαj . Since j <p k we have dascαj < ak. 
Combining the inequalities gives dascαj+1 < ak so that j+1 <P k, thereby yielding the 
desired relation between j + 1 and an element of C.

In the second case, suppose that aj+1 > aj − d. Note that since d ≥ 1, that element 
i is different from j and we will show i <P j + 1. Now using the inequalities in C and 
Lemma 5.2 several more times

dascαi = dascαi1 < ai2 ≤ dascαi2 < ai3 ≤ dascαi3 < . . . < aid+1 = aj .

It follows that dascαi ≤ aj − d. Combined with the inequality assumed for this case we 
obtain dascαi < aj+1. This implies i <P j + 1 which completes the proof. �

We can now finish the proof that po is an injection.

Theorem 5.4. For all d ≥ 1 and n ≥ 0 the map po : dAn → Av(Pd+3) is an injection.

Proof. Since we have already proved that po is well defined, it just remains to prove 
that the map is injective. It suffices to show that if α = a1a2 . . . an with po(α) = P then 
the sequence α is uniquely determined by P . We will do this by induction on n where, 
as usual, we skip the base case.

By induction we can assume that a1, . . . , an−1 are determined. There are now two 
cases. First suppose that n is minimal in P . We claim that this forces an = 0. For 
suppose an > 0. But then an > 0 = dascα1 and so n >P 1, contradicting minimality of 
n.

If n is not minimal, then let

m = max{i | i <P n}

where the maximum is taken in the integers. We claim that

an = dascαm + 1 (10)
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and so is uniquely determined. Since n >P m we must have an > dascαm. There are 
now two subcases depending on whether m < n − 1 or m = n − 1. When m < n − 1 we 
have m +1 < n, and m +1 
<P n by definition of m. So (9) implies that dascαm+1 ≥ an. 
Thus

1 + dascαm ≥ dascαm+1 ≥ an > dascαm

which forces (10) to hold. Now assume m = n − 1 so that an > dascαn−1. But the 
definition of a d-ascent sequence implies an ≤ dascαn−1+1. This forces an = dascαn−1+
1 as desired. �
6. d-Increasing d-ascent sequences

Say that a sequence of nonnegative integers α = a1a2 . . . an is d-increasing if

ak+1 > ak − d

for all 1 ≤ k < n. Equivalently,

dAscα = [n− 1]. (11)

So a 0-increasing sequence is strictly increasing while a 1-increasing sequence is weakly 
increasing. In this section we will study d-increasing d-ascent sequences. In other words, 
we will consider the set

dIn = {α ∈ dAn | α is d-increasing}

as well as the cardinalities

din = # dIn .

In particular, we will find a recursion for din and show that in the case d = 2 these 
numbers count the rooted duplication trees introduced in [23].

It follows from equation (11) that in a d-increasing sequence we have dascαk = k− 1
for all k. Combining this observation with the definitions of d-increasing and d-ascent 
sequence, we have that α = a1a2 . . . an ∈ dIn if and only if

(I1) a1 = 0, and
(I2) ak − d < ak+1 ≤ k for k ∈ [n − 1].

Notice that if d = 0 then there is a unique element in dIn, namely α = 01 . . . n −1. When 
d = 1, the α ∈ dIn are weakly increasing sequences of nonnegative integers satisfying 
ak < k for all k ∈ [n]. In this case din = Cn, the nth Catalan number. To see this, just 
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interpret ak as the height of the kth east step in a lattice path from the origin to (n, n)
using steps north and east and never going above the line y = x. We will now derive a 
recursive formula for din for any d ≥ 0. The sign-reversing involution proof which we use 
to obtain this result has wide applicability to sequence enumeration problems. It was 
first used by Fröberg [22] and by Carlitz, Scoville and Vaughn [16]. For more information 
about sign-reversing involution proofs in general, see the text of Sagan [35].

Theorem 6.1. For d ≥ 0 and n ≥ 1 we have

din =
∑
k≥1

(−1)k−1
(
n− kd + d

k

)
din−k .

Proof. When d = 0 we have din = 1 for all n and the identity is well known. So we 
will assume that d ≥ 1. Putting everything on the left side of the equation, the desired 
formula can be rewritten

∑
k≥0

(−1)k
(
n− kd + d

k

)
din−k = 0. (12)

We will prove this by using a sign-reversing involution.
Let S be the set of all ordered pairs (α, S) consisting of α = a1a2 . . . an−k ∈ dIn−k for 

some k ≥ 0 and a set S = {s1 < s2 < . . . < sk} ⊆ {0, 1, . . . , n − k} such that

si+1 − si ≥ d (13)

for all 1 ≤ i < k. Notice that such S are in bijection with unrestricted subsets

S′ = {s1, s2 − d + 1, s3 − 2d + 2, . . . , sk − (k − 1)d + (k − 1)}

of {0, 1, . . . , n − kd + d − 1} so that the number of possible S is 
(
n−kd+d

k

)
. To each pair 

we associate a sign

sgn(α, S) = (−1)k.

It follows directly from the definitions above that

∑
(α,S)∈S

sgn(α, S) =
∑
k≥0

(−1)k
(
n− kd + d

k

)
din−k .

Thus it suffices to find a sign-reversing involution on S with no fixed points.
Define ι : S → S as follows. Keeping the notation of the previous paragraph we let 

ι(α, S) = (β, T ) where there are two cases depending on an−k, the last element of α, and 
m which is the maximum element of S. In particular, we define
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(β, T ) =
{

(αm, S − {m}) if the concatenation αm ∈ dIn−k+1,
(α− an−k, S ∪ {an−k}) otherwise,

where α−an−k is α with its last element removed. We first need to check that this is well 
defined in that (β, T ) ∈ S. First consider the case when αm ∈ dIn−k+1. Then β = αm

is still a d-increasing d-ascent sequence by definition and has length n − k + 1. Also 
T = S−{m} is of size k−1. By equation (13) it has largest element at most n −k−1 (in 
fact, at most n − k− d) and still satisfies that inequality for 0 ≤ i < k− 1. So (β, T ) ∈ S
as desired. Now consider the second case. Removing an element from a d-increasing d-
ascent sequence does not change these characteristics, so β = α − an−k ∈ dIn−k−1. By 
condition (I2) above we have an−k ≤ n − k − 1. So, T ⊆ {0, 1, . . . , n − k − 1} which is 
the correct superset. Finally, we claim that T has cardinality k + 1 and satisfies (13) for 
0 ≤ i < k+1. Because we are in the second case, it must be that αm is not a d-increasing 
d-ascent sequence. Since α is d-increasing, the number of d-ascents in α is n − k − 1. So 
concatenation of α with any number in {0, 1, . . . , n −k} yields a d-ascent sequence. Thus 
it must be that αm is not d-increasing. But this means that m ≤ an−k − d. Since m is 
the maximum of S, it follows that T = {s1 < s2 < . . . < m < an−k} has k + 1 elements 
and that (13) continues to hold.

We will be finished if we can show that ι2 is the identity map since it clearly has 
no fixed points. Given (α, S) ∈ S we let ι(α, S) = (β, T ). Suppose first that (β, T ) is 
obtained from (α, S) as in the first case of the definition of ι. So β = αm and T = S−{m}. 
But now we can not remove the largest element of T and append it to β. Indeed, β ends 
with m and the largest element l of S − {m} satisfies l ≤ m − d. So βl = αml is not d-
increasing. It follows that we must apply case two when computing ι(β, T ) and will thus 
recover (α, S). Now assume that ι(α, S) is computed using case two. Then β = α−an−k

and, as shown in the previous paragraph, an−k becomes the largest element of T . Hence 
it is clearly possible to concatenate β and an−k to reform α and the first case will be 
applied resulting in ι(β, T ) = (α, S), �

When d = 2 there is a bijection between 2-increasing 2-ascent sequences and rooted 
duplication trees which we will now explain. Recall that we use the prefix t, rather than 
d, in our notation in the d = 2 case. A sequence of genes σ = σ1σ2 . . . σn can evolve 
by having some factor σiσi+1 . . . σi+a duplicate itself. For example, on the left in Fig. 7
the sequence σ has the factor σ2σ3σ4 duplicate itself as indicated by the arrows to form 
σ′. The duplication process is specified by two parameters: a ≥ 0 which is the number 
of genes after the duplicated segment, and r ≥ 1 which is the number of genes in the 
duplicated segment. This is called a (a, r)-duplication and we write σ′ = φa,r(σ). In the 
example of the figure, a = 2, r = 3 and σ′ = φ2,3(σ).

One can model a sequence of duplications using certain trees T . Such T have a rooted 
edge, R, indicating the beginning of the process. They are also binary because a factor is 
doubled at each stage. The leaves are bijectively labeled by [n] for some n and represent 
the genes σ1, . . . , σn. The distance between two leaves in the tree weakly increases with 
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σ′ = σ′
1 σ′

2 σ′
3 σ′

4 σ′
5 σ′

6 σ′
7 σ′

8 σ′
9

σ = σ1 σ2 σ3 σ4 σ5 σ6

�→

φ2,3

r = 3 a = 2

T =

6

3

1

4

2

5

R
�→

φ2,3

T ′ =

9

3

6

1
4

7

2

5
8

R

Fig. 7. A (2, 3)-duplication.

each duplication. If two leaves {
, m} are siblings then we call them a leaf pair. Suppose 
that tree T corresponds to a sequence σ = σ1 . . . σn on which an (a, r)-duplication is 
performed to obtain σ′. Then this is mirrored in a tree T ′ = φa,r(T ) obtained from T as 
follows.

1. The leaves 
 ∈ [n − a + 1, n] are all renumbered as 
 + r.
2. Each leaf 
 ∈ [n − a − r + 1, n − a] becomes the parent of a leaf pair {
, 
 + r}.

If the sequence σ in Fig. 7 has resulted from a history whose duplication tree is T as 
given at the top-right, the resulting T ′ = φ2,3(T ) corresponding to σ′ is displayed on the 
bottom-right.

We can now formally define the set of rooted duplication trees, RDT, inductively as 
follows.

1. The tree

T2 := 1 2R

is in RDT.
2. If T ∈ RDT has n leaves then φa,r(T ) ∈ RDT for any a, r such that a ≥ 0 and 

1 ≤ r ≤ n − a.

We also let

RDTn = {T ∈ RDT | T has n leaves}.
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Fig. 8. A tree in RDT12.

Note that T2 will always stand for the unique element in RDT2.
A complication with this definition of RDT is that the same tree can be constructed 

by different applications of the φ-maps. For example, φ2,1(φ0,1(T2)) = φ0,1(φ1,1(T2)). 
Gasceul et al. [23] gave a canonical way to describe a given tree T based on picking 
one of the most recent duplications which could lead to T . Say that T contains a visible 
(a, r)-duplication event if there is a tree T ′ such that φa,r(T ′) = T . Note that the roles 
of T and T ′ have switched from the way they were used in Fig. 7. Having a visible (a, r)-
duplication event for T ∈ RDTn is equivalent to there being a, r such that {
, 
 − r} are 
leaf pairs for 
 ∈ [n −a − r+1, n −a]. For example, suppose T is as in Fig. 8. The visible 
duplication events in T are as follows:

• {2, 3} is a leaf pair so T contains a visible (9, 1)-duplication event,
• {4, 7}, {5, 8}, {6, 9} are leaf pairs so T contains a visible (3, 3)-duplication event,
• {10, 11} is a leaf pair so T contains a visible (1, 1)-duplication event.

Importantly, if T contains a visible (a, r)-duplication event then a uniquely determines 
r since leaf n − a must have a sibling. Moreover, if the label of that sibling is m then 
r = n − a −m. The leftmost visible (a, r)-duplication event for T is the one with largest 
a. By the observation just made, this is well defined.

We now define the canonical reduction history of T ∈ RDTn to be the sequence of 
trees

T = Tn, Tn−1, Tn−2, . . . , T2 (14)

such that Tk ∈ RDTk for k ∈ [2, n] as follows. If Tk, where k ∈ [3, n], has leftmost du-
plication event with parameters (a, r) = (ak, rk) then we will construct Tk−1 = ψa,r(Tk)
by performing an operation which corresponds to reducing the length of the duplicated 
string by one and call Tk−1 the canonical (a, r)-reduction of Tk. Formally, Tk−1 is ob-
tained from Tk by
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T8 =

8
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R
T7 =ψ5,1�→
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4

2

5 6

R

T6 =ψ1,1�→

6
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1

4

2

5

R
T5 =ψ0,3�→ 5

1

3

2

4

R

T4 =ψ1,2�→ 4

3

1

2

R
T3 =ψ2,1�→ 3

2

1

R

T2 =ψ1,1�→ 2 1
R

Fig. 9. A canonical reduction history.

(1) The leaf pair {k − a, k − a − r} is removed and the parent is labeled k − a.
(2) Each leaf 
 > k − a − r is relabeled 
 − 1.

So after step (1) the leaves are labeled by [k] \ {k− a − r} and then step (2) adjusts the 
labels to be in [k − 1]. We also define the canonical reduction sequence of T to be

α(T ) = (a2, a3, . . . , an)

where a2:=0. Fig. 9 shows the canonical reduction history for the tree in its upper-left 
corner. So the tree T = T8 has canonical reduction sequence

α(T ) = (0, 1, 2, 1, 0, 1, 5).

In order to prove that the map T 
→ α(T ) is a bijection from RDTn to tIn−1 we will 
need the following lemma.
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Lemma 6.2. Suppose that in a canonical reduction history we have three consecutive trees 
T , T ′ = ψa,r(T ), and T ′′ = ψa′,r′(T ′).

(a) If r ≥ 2 then

a′ = a + 1 and r′ = r − 1.

(b) If r = 1 then

a′ ≤ a.

Proof. (a) Since ψa,r was applied to T , that tree’s leftmost visible duplication consisted 
of leaf pairs {
, 
 − r} for 
 ∈ [n − a − r + 1, n − a] where a is maximum. In T ′, the leaf 
pair {n − a, n − a − r} was replaced by a leaf n − a − 1 and the rest of the pairs became 
{
 − 1, 
 − r} for 
 ∈ [n − a − r + 1, n − a − 1]. Since r ≥ 2 there is at least one such 
pair, and these pairs form a visible (a +1, r− 1)-duplication event in T ′. So to finish the 
demonstration, we just need to show they are leftmost.

Suppose, towards a contradiction, that in T ′ there was a visible (a′′, r′′)-duplication 
event with a′′ > a + 1. But then n − a′′ ≤ n − a − 2 and n − a − 2 is in one of the 
pairs for the (a, r)-duplication event in T . So the (a′′, r′′)-duplication event in T ′ must 
correspond to a duplication event in T which is to the left of the (a, r)-duplication event. 
This contradicts the fact that the (a, r)-duplication event is leftmost in T .

(b) The proof is similar to that of the second paragraph of the demonstration of (a). 
So it is left to the reader. �
Theorem 6.3. The map T 
→ α(T ) is a bijection RDTn → tIn−1.

Proof. We first need to show that the map is well defined in that α(T ) = (a2, . . . , an) ∈
tIn−1. We have a2 = 0 by definition. So we only need to verify that the inequalities in 
(I2) hold for d = 2. Taking into account that α(T ) starts with index 2, these inequalities 
translate as

ak − 1 ≤ ak+1 ≤ k − 1.

We prove this by induction on k where the base case is easy.
Assume that the inequalities hold for k − 1 and let the canonical reduction history 

trees of T be as in (14). Also, adopt the notation of the previous lemma where T = Tk+1, 
T ′ = Tk, and T ′′ = Tk−1. So we wish to prove that

a′ − 1 ≤ a ≤ k − 1.

The largest a can be is if T has a single visible duplication event consisting of leaf pair 
{1, 2}. Since T has k+1 leaves, this results in a = (k+1) −2 = k−1 which is the desired 



M. Dukes, B.E. Sagan / Advances in Applied Mathematics 159 (2024) 102736 25
upper bound. Cases (a) and (b) of Lemma 6.2 immediately imply that a ≥ a′ − 1 which 
confirms the lower bound.

To show we have a bijection we will construct the inverse. Given α = (a2, a3, . . . , an) ∈
tIn−1 we will construct a sequence of trees T2, T3, . . . , Tn = T and nonnegative integers 
r2, r3, . . . , rn. We start with r2 = 1 and T2 as the unique tree in RDT2. Given Tk and rk
we construct Tk+1 and rk+1 as follows. First, we let

rk+1 =
{

rk + 1 if ak+1 = ak − 1,
1 otherwise.

Letting a = ak+1 and r = rk+1, we create Tk+1 from Tk by

1. Each leaf 
 > k − a − r is relabeled 
 + 1.
2. The leaf labeled k − a + 1 is given a sibling k − a − r + 1.

We leave the verification that this is well defined and the inverse of the map T 
→ α(T )
as a straightforward exercise. �
7. Restricted growth functions

The reader will have noticed that Theorem 5.1 is only true for d ≥ 1 and so only applies 
starting with the poset P4. It is natural to ask if anything can be said about factorial 
posets which are special P3-free, and it turns out that these are in natural bijection 
with restricted growth functions (RGFs). These sequences are a way of modeling set 
partitions and have been widely studied [2,12,25,27,29–32,36–38]. We will also see how 
these sequences are related to pattern avoidance, matrices, and matchings.

A restricted growth function (RGF) of length n is a sequence of nonnegative integers 
ρ = r1r2 . . . rn satisfying

(r1) r1 = 0, and
(r2) rk+1 ≤ 1 + max ρk for k ∈ [n − 1],

where, as with d-ascent sequences, we let ρk = r1r2 . . . rk and the maximum of a sequence 
is the maximum value of its elements as integers. Since ρk+1 = ρkrk+1 and ρ is an RGF, 
it must be that for all k < n we have

max ρk ≤ max ρk+1 ≤ max ρk + 1, (15)

where ρk+1 achieving its upper bound forces rk+1 = max ρk+1. Let

RGFn = {ρ | ρ is a restricted growth function of length n}.

It is not hard to see that
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RGFn ⊆ An,

the set of length n ascent sequences. Also, the RGFs of length n are in natural bijection 
with the partitions of [n] so that

# RGFn = Bn, (16)

the nth Bell number.
We will show that there is a bijection rp : RGFn → Avn(P3). Given ρ ∈ RGFn we 

define a poset P = rp(ρ) by

i <P j if and only if max ρi < rj . (17)

Note the similarity with the definition of po(α) (9). We must first show that this map is 
well defined.

Lemma 7.1. If ρ ∈ RGFn then P = rp(ρ) ∈ Avn(P3).

Proof. The fact that P is a poset is proved in much the same way as in Lemma 5.3, 
and so is omitted. To show that P is factorial, assume i < j and j <P k. Since ρi is a 
subsequence of ρj we have max ρi ≤ max ρj . Also, j <P k implies max ρj < rk. So, by 
transitivity, max ρi < rk which is equivalent to i <P k.

We show that P avoids a special P3 by induction on n, where the statement is obvious 
for n ≤ 2. Assume, that for RGFs of length n − 1 their image under rp is special P3-free. 
Now consider an RGF ρ of length n and assume, towards a contradiction, that P = rp(ρ)
contains a special P3 labeled as

j

k

j + 1

where j + 1 < k. Now the prefix ρ′ = ρn−1 of ρ is of length n − 1. So, by induction, 
P ′ = rp(ρ′) is special P3-free. But by (17), the poset P ′ is the restriction of P to the 
elements of the set [n − 1]. So the only way that P ′ could avoid P3 while P contains a 
copy would be if that copy includes n. Since k is the largest integer in our copy, it must 
be that k = n.

Now j <P n and j + 1 ≮P n implies max ρj < rn ≤ max ρj+1. Combining the 
previous sentence with equation (15) and the comment which follows it, we must have 
rj+1 = max ρj+1 = max ρj + 1. But j ≮P j + 1 and so max ρj ≥ rj+1 which contradicts 
the previous sentence. �

In order to provide an inverse for rp, we will need the following lemmas. For k in a 
factorial poset P we will use the notation
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M(k) = max{i ∈ P | i <P k},

where the maximum is taken in the integers. It follows easily from properties of factorial 
posets that if M(k) = m then

{i ∈ P | i <P k} = [m]. (18)

Lemma 7.2. If ρ = r1r2 . . . rn and P = rp(ρ) then for all k ∈ [n] we have

rk =
{

0 if k is minimal in P ,
max ρM(k) + 1 otherwise.

(19)

Proof. Suppose first that k is minimal in P . If k = 1 then r1 = 0 by definition of an 
RGF. If k > 1 then we must have max ρj ≥ rk for all j < k. Letting j = 1 this becomes 
0 = max ρ1 ≥ rk which forces rk = 0.

Now assume that k is not minimal and let m = M(k). Since m <P k we have 
max ρm < rk. On the other hand, m + 1 ≮P rk so that max ρm+1 ≥ rk. Using the 
previous inequalities and equation (15) gives max ρm < rk ≤ max ρm + 1. This implies 
rk = max ρm + 1 as desired. �

Now we defined a map rp−1 : Avn(P3) → RGFn by letting rp−1(P ) be the sequence 
ρ defined by equation (19). Again, we need to worry about whether the map is well 
defined.

Lemma 7.3. If P ∈ Avn(P3) then ρ = rp−1(P ) ∈ RGFn.

Proof. We claim that since P is factorial we must have that 1 is a minimal element. Sup-
pose this were not the case. Then the set of elements below 1 would not form an interval
of the form [m] for some m > 2 since all such intervals contain 1, which contradicts (18). 
But 1 being minimal means that ρ1 = 0 as needed for an RGF.

We now prove that (r2) in the definition of an RGF holds. If k is minimal then rk = 0
and the inequality is trivial. If k is not minimal then let m = M(k). Since P is factorial 
we have m ≤ k − 1. It follows that max ρm ≤ max ρk−1. Combining this with (19) gives

rk = max ρm + 1 ≤ max ρk−1 + 1

which is what we wished to prove. �
We can now show that the maps rp and rp−1 are indeed inverses. We compose func-

tions from right to left.

Theorem 7.4. The map rp : RGFn → Avn(P3) is a bijection with inverse rp−1. Thus

# Avn(P3) = Bn.
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Proof. By (16), the cardinality result will follow once we know that rp is a bijection.
Since equation (19) was shown to hold for rp and then used to define rp−1, we au-

tomatically have that rp−1 ◦ rp is the identity map. For the other composition, consider 
P ∈ Avn(P3) and let ρ = rp−1(P ) and P ′ = rp(ρ). By induction on n we can assume 
that P equals P ′ when both are restricted to [n −1]. There are now two cases depending 
on the element n. Note that since P and P ′ are both naturally labeled, it suffices to 
consider the elements below n in the two posets.

Suppose first that n is minimal in P . By the definition of rp−1 we have rn = 0. But 
then there is no i with max ρi < rn. So n is also minimal in P ′ and we are done.

If n is not minimal in P then let m = M(n) computed in P . We need to show that 
m is the element of maximum label below n in P ′. First note that by (19) we have

rn = max ρm + 1.

So, in particular, max ρm < rn and the definition of rp implies m <P ′ n. Thus we will 
be done if we can prove that m + 1 ≮P ′ n. If, instead, we have m + 1 <P ′ n then this 
is equivalent to max ρm+1 < rn. Combining this with the previous displayed equation 
gives

max ρm ≤ max ρm+1 < rn = max ρm + 1.

It follows that

max ρm+1 = max ρm.

Now recall that P has no special P3. But m <P n and m + 1 ≮P n so we must have 
m + 1 >P m otherwise m, m + 1, and n form a special P3. And since m, m + 1 are 
consecutive integers this forces m = M(m +1) computed in P . Now (19) implies rm+1 =
max ρm + 1. This in turn yields max ρm+1 = max ρm + 1 which directly contradicts the 
previous displayed equation. �

We will now make a connection between RGFs and pattern avoidance. Claesson [15]
showed that the number of permutations in Sn avoiding any of the following vincular 
patterns is the Bell number, Bn:

1|23, 12|3, 13|2, 2|13, 2|31, 31|2, 3|21, 32|1

These are trivially Wilf equivalent to the bivincular patterns

123, 123, 132, 213, 231, 312, 321, 321.

We will translate a version of one of his bijections from set partitions into the language 
of RGFs. Given ρ = r1r2 . . . rn ∈ RGFn we form a permutation π = p1p2 . . . pn ∈ Sn as 
follows. Suppose the indices for which ri = 0 are
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1 = i1 < i2 < . . . < ik. (20)

Then π will start with the initial segment

πk = ikik−1 . . . i1.

Now let the indices for which rj = 1 be

j1 < j2 < . . . < jl. (21)

Continue building π so that

πk+l = πkjljl−1 . . . j1.

The rest of π is built in a similar manner.

Proposition 7.5 ([15]). The map ρ 
→ π is a bijection RGFn → Sn(2|31). �
There is also a standard way to associate with any RGF a strictly upper-triangular, 0-1

matrix. This is usually expressed in the language of set partitions and rook placements 
on a triangular Ferrers board. We mention it here in translation. Given ρ ∈ RGFn

we will associate an n × n matrix M with rows and columns indexed by [n]. Start 
with M being the zero matrix. Now consider the indices in (20) and for each adjacent 
pair (i, j) = (ia, ia+1) set Mi,j = 1 giving k − 1 nonzero entries. Continue with the 
sequence (21), letting Mi,j = 1 for each pair (i, j) = (jb, jb+1), and so forth.

Proposition 7.6. The map ρ 
→ M is a bijection between RGFn and n × n strictly upper-
triangular, 0-1 matrices having no two ones in the same row or column. �

One can also associate with each RGF a perfect matching by restricting the Claesson-
Linusson bijection [14] to the inversion sequences which are RGFs. However, the descrip-
tion of the image seems a bit contrived and so we will leave the details to the reader.

8. Comments and open questions

We collect here some of the problems suggested by our work.

8.1. More on matrices

Notice that Theorem 2.1 only applies for d ≥ 1. But a similar result holds for d = 0
and the set of ascent sequences An. Specifically, factor an ascent sequence α = δ0δ1 . . . δm
by breaking at every ascent. So the δi are maximal weakly decreasing factors of α. Now 
use (4) to construct a matrix mx(α). Note that since the δi weakly decrease, it is possible 
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to add the same Ei,j multiple times so that the entries of the final matrix can be larger 
than one. In fact, it is not hard to see that the image of the map is the set Mtxn of all 
matrices M whose entries sum to n and have the following properties.

(Ma) M is upper triangular with nonnegative integer entries.
(Mb) There are no zero columns in M , and for all column indices j

rmax cj > rmin cj−1.

Thus, we have the following result

Theorem 8.1. For n ≥ 0 the map mx : An → Mtxn is a bijection. Consequently

# An = # Mtxn �
Dukes and Parviainen [18] have shown that ascent sequences are in bijection with 

another set of upper triangular matrices. Let Mtx′
n be the set of all matrices M whose 

entries sum to n and which satisfy (Ma) and

(Mc) There are no zero rows or columns in M .

Theorem 8.2 ([18]). There is a bijection mx′ : An → Mtx′
n. �

Problem 8.3. Find a direct bijection Mtxn → Mtx′
n without composing mx−1 and mx′.

8.2. More on permutations and posets

The inequalities in Theorems 4.2 and 5.1 can be strict for d ≥ 2. This raises the 
question of how different # dAn can be from # Avn(σd+3) and from # Avn(Pd+3). One 
could also ask if equality could be obtained by enlarging the set of patterns or posets to 
be avoided. Specifically, we have the following questions.

Question 8.4. Fix d ≥ 2.

(a) Does limn→∞ # dAn /# Avn(σd+3) exist and, if so, what is its value?
(b) Is there a set Σd of bivincular patterns containing σd such that # dAn =

# Avn(Σd+3) for n ≥ 0?
(c) Answer the analogues of (a) and (b) for posets.

8.3. More on rooted duplication trees

Recall that Theorem 6.3 only holds for d = 2. So a natural question to ask is the 
following.
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Table 3
The values of # dAn for d ≤ 6 and n ≤ 10.

d \ n 0 1 2 3 4 5 6 7 8 9 10
0 1 1 2 5 15 53 217 1014 5335 31240 201608
1 1 1 2 6 23 106 567 3440 23286 173704 1414102
2 1 1 2 6 24 118 682 4506 33376 273200 2444274
3 1 1 2 6 24 120 714 4896 37854 324792 3055320
4 1 1 2 6 24 120 720 5016 39624 348840 3378192
5 1 1 2 6 24 120 720 5040 40200 358800 3534120
6 1 1 2 6 24 120 720 5040 40320 362160 3600720

Question 8.5. For d ≥ 3, is there a generalization dRDTn of the set RDTn (rooted 
duplication trees with n leaves) which is in bijection with dIn−1 (d-increasing d-ascent 
sequences of length n − 1)?

We note that there is an obvious analogue of rooted duplication trees which model 
the duplication of a factor in a gene sequence d times rather than just twice. This results 
in a set of rooted d-ary trees with labeled leaves. Unfortunately, these tree are more 
numerous than d-increasing d-ascent sequences.

8.4. Generating functions

Let an = # An, the number of ascent sequences of length n. In [3] the generating 
function for an was derived using the kernel method. This series had been shown earlier 
by Zagier [40] to count matchings with neither left nor right nestings.

Theorem 8.6 ([3]). We have

∑
n≥0

ant
n =

∑
n≥0

n∏
i=1

(
1 − (1 − t)i

)
. �

Problem 8.7. Find the generating function for # dAn for all d ≥ 0. A table of these 
values for d ≤ 6 and n ≤ 10 is given in Table 3.

It is not hard to at least find a functional equation that might be of use to solve the 
previous problem. Suppose d = 1 so we are considering weak ascents. Define

W (u, v) = W (t;u, v) =
∑
n≥0

∑
α∈wAn

tnuwascαvan

where an is the last element of α. The next result can be easily derived by considering 
how the possible last elements of α affect the number of weak ascents.

Proposition 8.8. We have

[v − 1 + t(u− 1)]W (u, v) = [(1 + t)(v − 1) + tu(1− v2)]− tW (u, 1) + tuv2W (uv, 1). �
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Table 4
The values of # dIn for d ≤ 6 and n ≤ 10.

d \ n 0 1 2 3 4 5 6 7 8 9 10
0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 5 14 42 132 429 1430 4862 16796
2 1 1 2 6 22 92 420 2042 10404 54954 298648
3 1 1 2 6 24 114 612 3600 22680 150732 1045440
4 1 1 2 6 24 120 696 4512 31920 242160 1942800
5 1 1 2 6 24 120 720 4920 37200 305280 2680800
6 1 1 2 6 24 120 720 5040 39600 341280 3175200

We thank the referee for pointing out that this equation can be solved using the kernel 
method. One sets v = 1 + t(1 − u) which leads to a sequence of recursions which can be 
combined. Unfortunately, the final result is a nasty sum. So if one is to find an analogue 
as nice as Theorem 8.6, more insight will be needed.

It would also be nice to have a generating function for din, the number of d-increasing 
d-ascent sequences of length n, and not just the recursion in Theorem 6.1. Note that for 
d = 0 or d = 1 this sequence is the all ones or Catalan number sequence, respectively, 
whose generating functions are well known.

Problem 8.9. Find the generating function for din = # dIn for all d ≥ 0. A table of these 
values for d ≤ 6 and n ≤ 10 is given in Table 4.

Enumeration of lattice paths may be helpful with this problem. Take α = a1a2 . . . an ∈
dIn and form the sequence α′ = a′1a

′
2 . . . a

′
n where a′k = ak + (k − 1)(d − 1) for k ∈ [n]. 

From properties (I1) and (I2) one sees that

(I1’) a′1 = 0, and
(I2’) a′k ≤ a′k+1 ≤ kd for k ∈ [n − 1]

Letting a′k be the height of the kth east step, one obtains a lattice path using north 
and east steps and staying inside a cone. It may also be advantageous to do a linear 
transformation so that the paths in question are restricted to the first quadrant, although 
now the two steps used will not be as simple as in the conical case.

8.5. Modified d-ascent sequences

In their original paper, Bousquet-Mélou et al. [3] also defined modified ascent se-
quences. Roughly speaking, to modify an ascent sequence α, visit the ascent tops from 
left to right. At each top, increase by one all the elements to its left which are currently 
at least as large to obtain the modified version α̂.

Modified ascent sequences are in bijection with ascent sequences and sometimes yield 
information which is harder to get from the original sequence. For example, the entries of 
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α̂ give the ranks of the elements in the associated poset. They also have close connections 
with other structures counted by the Fishburn numbers as shown in [4–7].

Cerbai, Claesson, and Sagan have defined an analogue of modified ascent sequence 
and self-modified ascent sequences (those for which α = α̂) for arbitrary d. They also 
have many interesting properties which will appear in [8,9].

Note added in proof.
Zang and Zhou [41] have recently solved Problem 8.3 and provided answers to Ques-

tion 8.4 (b) in both the permutation and poset cases. Rather than add a pattern to be 
avoided in addition to σd+3, they found a subset Sn,d of Sn defined by marking certain 
elements of a permutation d-active and seeing whether these elements contained all the 
d-ascent bottoms. Then Sn,d is a subset of Avn(σd+3) and is equinumerous with dAn. 
A similar construction works for posets.
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