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Abstract. We prove necessary conditions for certain elementary symmetric functions, eλ,
to appear with nonzero coefficient in Stanley’s chromatic symmetric function as well as in
the generalization considered by Shareshian and Wachs. We do this by first considering the
expansion in the monomial or Schur basis and then performing a basis change. Using the
former, we make a connection with two fundamental graph theory invariants, the indepen-
dence and clique numbers. This allows us to prove nonnegativity of three-column coefficients
for all natural unit interval graphs. The Schur basis permits us to give a new interpretation
of the coefficient of en in terms of tableaux. We are also able to give an explicit formula for
that coefficient.

1. Introduction

Let G = (V,E) be a graph with vertex set V = {v1, . . . , vn} and edge set E. Also let
x = {x1, x2, . . .} be a set of commuting variables indexed by the positive integers P. In his
groundbreaking 1995 work, Stanley defined the chromatic symmetric function [19, Definition
2.1]

XG(x) =
∑
κ

xκ(v1) · · ·xκ(vn),

where the sum is over all proper colourings of G, which are functions κ : V → P such that
whenever ij ∈ E, we have κ(i) ̸= κ(j). Consider the expansion

(1.1) XG(x) =
∑
λ

cλeλ

in the basis of elementary symmetric functions. We reserve the notation cλ for these coeffi-
cients. We say that XG(x) is e-positive if all the cλ are nonnegative, that is, every eλ which
appears does so with positive coefficient. Stanley and Stembridge [19, Conjecture 5.1], [21,
Conjecture 5.5] made the following conjecture which has become one of the driving forces
behind the study of XG(x).

Conjecture 1.1 ((3+1)-free Conjecture). If G is the incomparability graph of a (3+1)-free
poset, then XG(x) is e-positive.
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Guay-Paquet [12, Theorem 5.1] showed that it suffices to prove e-positivity whenever G is
the incomparability graph of a poset which is both (3+1)- and (2+2)-free. These are called
unit interval graphs. Shareshian and Wachs defined a q-analogue of XG(x) [18, Definition
1.2] as follows. Suppose G has vertex set V = [n] := {1, . . . , n}. Now a proper coloring
κ : [n] → N has ascent number

ascκ = #{ij ∈ E | i < j and κ(i) < κ(j)},
where we will use a hash tag or a pair of vertical bars to denote cardinality. Now define the
chromatic quasisymmetric function to be

XG(x; q) =
∑
κ

qasc(κ)xκ(1) · · ·xκ(n),

summed over proper κ : [n] → N. To generalize Conjecture 1.1 to this setting, it suffices to
consider unit interval graphs with a particular labeling. Say that G = ([n], E) is a natural
unit interval graph if for all 1 ≤ i < j < k ≤ n we have

(1.2) ik ∈ E implies ij ∈ E and jk ∈ E.

Although XG(x; q) is not generally symmetric in the x variables, Shareshian and Wachs
[18, Theorem 4.5] showed that XG(x; q) is symmetric whenever G is a natural unit interval
graph. So we have an elementary symmetric function expansion

(1.3) XG(x; q) =
∑
λ

cλ(q)eλ

where the cλ(q) are polynomials in q. Again, the notation cλ(q) will always refer to these
coefficients. Call the expansion e-positive if the coefficients in each cλ(q) are nonnegative.
This leads to the following conjecture.

Conjecture 1.2 (Shareshian-Wachs). If G is a natural unit interval graph then XG(x; q) is
e-positive.

Note that when we set q = 1 we recover Conjecture 1.1, so cλ(1) = cλ. Several authors
proved e-positivity for particular classes of natural unit interval graphs G. Harada and
Precup [13, Theorem 6.1] proved that XG(x; q) is e-positive whenever G has independence
number 2 using cohomology of abelian Hessenberg varieties and Cho and Huh [4, Theorem
3.3] gave a purely combinatorial proof. Cho and Hong [3, Theorem 1.8] proved that XG(x)
is e-positive whenever G has independence number 3. Dahlberg [7, Corollary 5.4] proved
that XG(x) is e-positive whenever G has clique number 3. Gebhard and Sagan [9, Corollary
7.7] proved that XG(x) is e-positive whenever G is formed by joining a sequence of cliques
at single vertices and Tom [22, Corollary 4.20] proved that XG(x; q) is e-positive for such
graphs by finding an explicit formula.

One can alternatively take a dual approach to the Stanley–Stembridge conjecture by fixing
a particular partition λ and proving nonnegativity of cλ(q) or cλ for all natural unit interval
graphs G. Hwang [14, Theorem 5.13] proved that cλ(q) is nonnegative whenever λ is a hook.
Abreu and Nigro [1, Corollary 1.10] and independently Rok and Szenes [15, Theorem 4.1]
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proved that cλ is nonnegative whenever λ has exactly two rows. Clearman, Hyatt, Shelton
and Skandera [6, Theorem 10.3] proved that cλ(q) is nonnegative whenever λ has exactly
two columns, using a connection to characters of Hecke algebras.

The rest of this paper is structured as follows. In the next section, we will collect the
results we have obtained about the e-expansions of XG(x) and XG(x; q) by passing through
the monomial symmetric function basis. In particular, we are able to relate the appearance
of an eλ in these symmetric functions to two fundamental graphical invariants called the
independence and clique numbers. As a consequence, we are able to show that for certain
partitions λ, all graphs considered in Conjectures 1.1 or Conjecture 1.2 contain eλ with
nonnegative coefficient. In Section 3 we pass through the Schur basis to obtain a new
combinatorial interpretation of the coefficient of en in XG(x; q) in terms of tableaux. This
interpretation allows us to give an explicit formula for this coefficient in terms of q-integers.
We also provide a bijection between these tableaux and the acyclic orientations of G known
to be counted by this coefficient. We end with a section giving further directions for research
and a log-concavity conjecture. Throughout, we will assume that G is a graph with vertices
[n] and edges E unless otherwise stated.

2. The monomial basis

Our main tool in this section is a result we call the Alpha-Omega Lemma (Lemma 2.2)
which will connect the coefficients in (1.1) and (1.3) to two classical graph invariants, namely
the independence and clique numbers of G. This will allow us to make progress on Conjec-
tures 1.1 and 1.2. We will also prove a result about the divisibility of these coefficients by
a product of certain factorials. Background on partitions and symmetric functions can be
found in the books of Sagan [16] or Stanley [20].

Definition 2.1. An independent set in G is a subset of vertices I ⊆ [n] where every pair is
not joined by an edge. The independence number of G is

α(G) = the size of the largest independent set in G.

A clique in G is a subset of vertices C ⊆ [n] where every pair is joined by an edge. The
clique number of G is

ω(G) = the size of the largest clique in G.

We denote by λ′ the conjugate of a partition λ. Note that λ′1 is the number of parts of λ.
We can now prove one of the main tools of this section.

Lemma 2.2 (Alpha-Omega Lemma). Let G be a graph and let XG(x) =
∑

λ cλeλ be its
chromatic symmetric function. If cλ ̸= 0, then we must have

(1) α(G) ≥ λ′1, and
(2) ω(G) ≤ λ1.

Moreover, suppose that G is a graph for which the chromatic quasisymmetric function is
in fact symmetric, and let XG(x; q) =

∑
λ cλ(q)eλ. If cλ(q) ̸= 0, then again both inequalities

hold.
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Proof. First consider the expansion

XG(x) =
∑
µ

aµmµ

in the basis of monomial symmetric functions. If aµ ̸= 0, then there must exist a proper
colouring with µ1 1’s, µ2 2’s and so on. Because the set of vertices coloured 1 must form
an independent set, we must have α(G) ≥ µ1. And because the vertices of a clique must be
coloured with distinct colours, we must have ω(G) ≤ µ′

1.
Now the change of basis from monomial to elementary symmetric functions has the form

(2.1) mµ =
∑
λ

Aλ,µeλ,

where Aλ,µ = 0 unless the dominance relation µ′ � λ holds. Therefore, if cλ ̸= 0, then there
must be some µ with µ′ � λ and aµ ̸= 0, and so

(2.2) α(G) ≥ µ1 ≥ λ′1 and ω(G) ≤ µ′
1 ≤ λ1.

Finally, if XG(x; q) is symmetric and XG(x; q) =
∑

µ aµ(q)mµ, then aµ(q) is now the sum

of qascκ over proper colourings with µ1 1’s, µ2 2’s, and so on. In particular, if aµ(q) ̸= 0, then
there must exist such a proper colouring. The rest of the argument proceeds as before. □

Remark 2.3. This argument also holds with ω(G) replaced by the chromatic number χ(G),
the minimum number of colours needed in a proper colouring of G. This is a stronger result
in general because χ(G) ≥ ω(G). However, we are primarily interested in natural unit
interval graphs, and we will see in Proposition 2.12 that χ(G) = ω(G) for such graphs.

Example 2.4. The bowtie graph G in Figure 1 has α(G) = 2 and ω(G) = 3, so all terms
eλ appearing in XG(x) must have first part at least 3 and length at most 2. The claw graph
H in Figure 1 has α(H) = 3 and ω(H) = 2, so all terms eλ appearing in XH(x) must have
first part at least 2 and length at most 3. Note that Lemma 2.2 holds even though XH(x)
is not e-positive. Because G is a natural unit interval graph, XG(x; q) is symmetric and the
same conditions are required for eλ to appear. We can verify by direct computation that

(2.3) XG(x; q) = q2(1 + q)2e32 + q(1 + q)2(1 + q + q2)e41 + (1 + q)2(1 + q + q2 + q3 + q4)e5.

We now use the Alpha-Omega Lemma to prove several positivity results about the coeffi-
cients of particular partitions in all natural unit interval graphs.

Corollary 2.5. Let λ be a partition with λ1 ≤ 2. Then for every natural unit interval graph
G, the coefficient cλ(q) of eλ in XG(x; q) is a nonnegative polynomial.

Proof. By Lemma 2.2, this coefficient cλ(q) is identically 0 (which is clearly nonnegative)
unless ω(G) ≤ λ1 ≤ 2. However, by (1.2), this means that the connected components of
G must be paths, for which Shareshian and Wachs proved that XG(x; q) is e-positive [18,
Section 5]. □
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G =

1
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H =

1
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XG(x) = 4e32 + 12e41 + 20e5 XH(x) = e211 − 2e22 + 5e31 + 4e4

Figure 1. The bowtie graph, the claw graph, and their chromatic symmetric functions

In that case that G is a disjoint union of paths, there is an explicit formula showing that
the coefficient c2a1b(q) is 0 unless the connected components of G consist of exactly b paths
of odd size and some number e of paths of even size, in which case c2a1b(q) = (1 + q)e. In
the case q = 1 we can extend Corollary 2.5 to an even wider class of λ.

Corollary 2.6. Let λ be a partition with λ1 ≤ 3. Then for every natural unit interval graph
G, the coefficient cλ of eλ in XG(x) is nonnegative.

Proof. By the Alpha-Omega Lemma, this coefficient cλ is 0 unless ω(G) ≤ λ1 ≤ 3. However,
Dahlberg [7, Corollary 5.4] proved that XG(x) is e-positive for such graphs. □

In general, this argument shows that proving e-positivity of XG(x) for graphs with clique
number at most k would prove nonnegativity of coefficients cλ with λ1 ≤ k for all natural
unit interval graphs. In the next result we use |λ| for the sum of the parts of the partition λ.

Corollary 2.7. Let λ be a partition of the form λ = (µ1, . . . , µk, 1, . . . , 1) for some partition
µ = (µ1, . . . , µk). If |µ| ≤ 6, then for every natural unit interval graph G, the coefficient
cλ(q) is nonnegative. If |µ| ≤ 11, then for every natural unit interval graph G, the coefficient
cλ is nonnegative.

Proof. We will prove the first statement by induction on n = |λ|. We have checked by
computer that the Shareshian–Wachs conjecture holds for all natural unit interval graphs G
with at most 10 vertices, so we may assume that n ≥ 11. We may also assume that k ≥ 2
because Hwang [14, Theorem 5.13] showed that cλ(q) is nonnegative for hooks.
Suppose that G is not connected, with G = H1 ⊔ H2. The coefficient cλ(q) in XG(x; q)

arises from summing products of coefficients cν(q) in XH1(x; q) and cρ(q) in XH2(x; q) over
all ways of splitting the parts of λ into partitions ν and ρ. By induction, such coefficients
cν(q) and cρ(q) are nonnegative polynomials, so the coefficient cλ(q) must be as well.
Now suppose that G is connected. By (1.2), G must contain the edges i(i+1) for 1 ≤ i ≤

n− 1. But now the independence number of G satisfies

α(G) ≤ ⌈n/2⌉ < n− 4 ≤ n− |µ|+ k = λ′1,

so by the Alpha-Omega Lemma, the coefficient cλ(q) is the zero polynomial in this case.



6 BRUCE E. SAGAN AND FOSTER TOM

The argument is similar for the second statement. Guay-Paquet [12, Page 8] checked by
computer that the Stanley–Stembridge conjecture holds for all natural unit interval graphs
G with at most 20 vertices, so we may assume that n ≥ 21. If G is not connected, the
coefficient cλ is nonnegative by induction on n, and if G is connected, we have

α(G) ≤ ⌈n/2⌉ < n− 9 ≤ n− |µ|+ k = λ′1,

so by Lemma 2.2, the coefficient cλ = 0. □

The Alpha-Omega Lemma can also be used to translate results about particular partitions
to results about particular natural unit interval graphs. As an example, we give another proof
of e-positivity for graphs with independence number 2.

Proposition 2.8. Let G be a natural unit interval graph with α(G) = 2. Then XG(x) is
e-positive.

Proof. By Lemma 2.2, the only nonzero coefficients cλ appearing in the e-expansion of XG(x)
are when λ has at most two parts. If λ = n has a single part, then Stanley showed that cn is
nonnegative [19, Theorem 3.3]. If λ has exactly two parts, then Abreu–Nigro [1, Corollary
1.10] and Rok–Szenes [15, Theorem 4.1] independently proved that cλ is nonnegative. □

In general, this argument shows that proving positivity of coefficients cλ with λ′1 ≤ k
would prove e-positivity for all natural unit interval graphs with independence number at
most k.

Recall that an acyclic orientation of G = ([n], E) is an assignment O of directions to each
edge of G such that there are no directed cycles. Directed edges are also called arcs and an
arc from i to j is denoted i → j. Vertex i is a sink of O if there are no outgoing arcs from
i. The ascent set of O is

AscO = {i→ j | i < j}
with ascent number

ascO = #AscO.

Stanley [19, Theorem 3.3] proved that for an arbitrary graph G, the sum

(2.4) aj :=
∑

λ: λ′
1=j

cλ

is the number of acyclic orientations of G with exactly j sinks. Shareshian and Wachs [18,
Theorem 5.3] proved that if G is a natural unit interval graph, we have

(2.5) aj(q) :=
∑

λ: λ′
1=j

cλ(q) =
∑

O: exactly j sinks

qascO.

Therefore, even if XG(x) is not e-positive, these sums of coefficients must be nonnegative.
We can ask whether it is possible for this sum to be 0 without every individual coefficient
being 0. We use the Alpha-Omega Lemma to show that this cannot be the case.
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Proposition 2.9. Let G = ([n], E) be a graph and suppose that cλ ̸= 0 for some partition
λ with λ′1 = j. Then the sum aj in (2.4) is not 0. Moreover, if G is a natural unit interval
graph and cλ(q) ̸= 0 for some partition λ with λ′1 = j, then the sum aj(q) in (2.5) is not the
zero polynomial.

Proof. We will construct an acyclic orientation O of G with exactly j sinks, which shows that
aj is not 0, and if G is a natural unit interval graph, that aj(q) is not the zero polynomial.
First suppose that G is connected. By Lemma 2.2 we have α(G) ≥ j, so there is an

independent set I in G with |I| = j. We label the vertices of G with 1 through n as follows,
where boldface numbers are being used to distinguish these labels from the ones given by the
natural unit interval labeling. Label the vertices of I with the numbers 1 through j in any
way, then successively select an unlabelled vertex adjacent to a labelled vertex and assign it
the smallest unused label. Note that because G is connected, every vertex receives a label.
We now define O by directing each edge from the larger label to the smaller. By construction,
O is an acyclic orientation. The elements of I are independent and have the smallest labels,
so they are sinks of O. The vertices not in I are adjacent to a previously-labelled vertex and
so have an outgoing edge in O. Thus they are not sinks.

Now suppose that G has connected components H1, . . . , Hk. In order to have cλ(q) ̸= 0,
there must be a way to split the parts of λ into partitions ν(1), . . . , ν(k) where for every
1 ≤ r ≤ k, the coefficient cν(r)(q) of eν(r) in XHr(x; q) is nonzero. By the Alpha-Omega
Lemma we have α(Hr) ≥ ν(r)′1, so there are independent sets Ir in Hr with |Ir| = ν(r)′1. But
now the above argument shows that each Hr has an acyclic orientation Or with exactly ν(r)′1
sinks, and therefore G has an acyclic orientation O with exactly ν(1)′1+ · · ·+ν(k)′1 = λ′1 = j
sinks. □

We now prove a stronger version of the Alpha-Omega Lemma in the spirit of Greene’s
generalization [11] of Schensted’s theorem [17] about longest increasing and decreasing sub-
sequences of a permutation. Let ρ = {B1, . . . , Bk} be a collection of disjoint subsets of
vertices in a graph G = ([n], E). We say that ρ is an independent partition if each Bi is an
independent set in G and we say that ρ is a clique partition if each Bi is a clique in G. We
now define

αk(G) = the maximum number of vertices in an independent partition ρ = {B1, . . . , Bk}
ωk(G) = the maximum number of vertices in a clique partition ρ = {B1, . . . , Bk}.

Lemma 2.10. Let G be a graph and let XG =
∑

λ cλeλ be its chromatic symmetric function.
If cλ ̸= 0, then for all k we must have

(1) αk(G) ≥ λ′1 + · · ·+ λ′k, and
(2) ωk(G) ≤ λ1 + · · ·+ λk.

Moreover, suppose that G is a graph for which the chromatic quasisymmetric function is
in fact symmetric, and let XG(x; q) =

∑
λ cλ(q)eλ. If cλ(q) ̸= 0, then again both inequalities

hold.
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Proof. As in the proof of Lemma 2.2, we first consider the expansion XG(x) =
∑

µ aµmµ in
the basis of monomial symmetric functions. If aµ ̸= 0, then there exists a proper colouring
κ of G with µ1 1’s, µ2 2’s, and so on. Letting Bi be the set of vertices coloured i, then
ρ = {B1, . . . , Bk} is precisely an independent partition of size µ1 + · · · + µk, which means
that

αk(G) ≥ µ1 + · · ·+ µk.

On the other hand, let ρ = {C1, . . . , Ck} be a clique partition of G with ωk(G) vertices.
Because every colour is used at most once in each clique and therefore at most k times in
the vertices of ρ, we have

ωk(G) = |C1|+ · · ·+ |Ck| ≤
n∑

i−1

min{µi, k} = µ′
1 + · · ·+ µ′

k.

Now if cλ ̸= 0, then there must be some µ with µ′ � λ and aµ ̸= 0, and so

αk(G) ≥ µ1 + · · ·+ µk ≥ λ′1 + · · ·+ λ′k

and

ωk(G) ≤ µ′
1 + · · ·+ µ′

k ≤ λ1 + · · ·+ λk.

If XG(x; q) is symmetric with XG(x; q) =
∑

µ aµ(q)mµ and aµ(q) ̸= 0, then again there
exists such a proper colouring, so again the inequalities hold. □

We can use Lemma 2.10 to prove analogues of results obtained using the Alpha-Omega
Lemma for other partitions λ. Recall that a cut vertex of a connected graph G is a vertex
whose removal would disconnect G.

Corollary 2.11. Let G = ([n], E) be a connected natural unit interval graph with no
cut vertex and let λ be a partition of the form λ = (µ1, . . . , µk, 2, . . . , 2, 1, . . . , 1) for some
partition µ = (µ1, . . . , µk). If |µ| ≤ 4, then the coefficient cλ(q) is nonnegative. If |µ| ≤ 8,
then the coefficient cλ is nonnegative.

Proof. We first consider cλ(q) where we can assume, as in the proof of Corollary 2.7, that
n ≥ 11. By (1.2), because G is connected, G must contain the edges i(i + 1) for 1 ≤ i ≤
n − 1, and because G has no cut vertex, G must also contain the edges (i − 1)(i + 1) for
2 ≤ i ≤ n − 1. Now the largest possible independent partition of G with two blocks is
ρ = {{1, 4, 7, . . .}, {2, 5, 8, . . .}}. So, using the bound on n,

α2(G) ≤ ⌈2n/3⌉ < n− 2 ≤ n− |µ|+ 2k = λ′1 + λ′2,

Thus, by Lemma 2.10, for such λ we have cλ(q) = 0.
Similarly, for cλ we need only check n ≥ 21 as in Corollary 2.7’s demonstration. The

previously displayed inequalities hold with n−2 replaced by n−6. So in this case, as before,
cλ = 0 completing the proof. □
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G =
1 2 3 4 5

κ = 1 2 3 1 2

Figure 2. The bowtie graph G and the proper colouring κG

For each natural unit interval graphG = ([n], E) we will now identify the unique dominance-
minimal partition λG for which cλG

̸= 0, which provides a sort of converse to the Alpha-
Omega Lemma. Define a proper colouring κG of G inductively as follows. Let κG(1) = 1
and if the values κG(1), . . . , κG(j − 1) are defined, then let

(2.6) κG(j) = min([n] \ {κG(i) | i < j and ij ∈ E}).

In other words, we colour the vertices one at a time, always using the smallest available
colour. Note that, by (1.2), if κG(j) = k then the vertex j has at least (k − 1) smaller
neighbours and so, by (1.2), belongs to a clique of size k. Therefore, the colouring κ uses
exactly ω(G) different colours. See Figure 2 for an example.

Define the type of a coloring κ to be the weak composition α = (α1, . . . , αm) where m is
the maximum value of a color and

αi = the number of vertices colored i by κ

for i ∈ [m]. We will use the notation µG for the type of κG. As the notation suggests, we
will see in the next proposition that µG is indeed a partition.

Proposition 2.12. Let G = ([n], E) be a natural unit interval graph. Then µG is a partition
and cλG

, cλG
(q) ̸= 0 where λG = µ′

G. Furthermore, if cλ ̸= 0 then λ�λG. Similarly, cλ(q) ̸= 0
implies λ� λG.

Proof. To show that µG is a partition it suffices to show, for all k ≥ 1, that there is a
matching M from the vertices with color k + 1 into the vertices with color k. Suppose
κG(j) = k+1. Then by the definition of κG, vertex j must be adjacent to vertices previously
colored 1, . . . , k. Since G is a natural unit interval graph, the set of smaller neighbours of j
is a clique and so there is a unique vertex i adjacent to j with i < j and κG(i) = k. Put
ij into M and do this for all the vertices colored k + 1. To show that this is a matching,
we must prove that we can’t have κ(j) = κ(j′) = k + 1 with ij, ij′ ∈ E. Without loss of
generality j < j′. So i < j < j′ which together with ij′ ∈ E implies jj′ ∈ E. But we can
not have two vertices of the same color adjacent in G, the desired contradiction.

We now use induction on n to prove that if G has a proper colouring κ of type α, then

(2.7) (µG)1 + · · ·+ (µG)j ≥ α1 + · · ·+ αj
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for every j. This is clear if n = 1, so suppose that n ≥ 2. Let κG(n) = k. We first prove that
(2.7) holds for every j ≥ k. Let µ̃ and α̃ be the types of the colourings κG and κ restricted
to the vertices {1, . . . , n − 1}. Then by our induction hypothesis, we have for every j ≥ k
that

(µG)1 + · · ·+ (µG)j = µ̃1 + · · ·+ µ̃j + 1 ≥ α̃1 + · · ·+ α̃j + 1 ≥ α1 + · · ·+ αj.

We now prove that (2.7) holds for every j < k. Let m be minimal such that the vertices
C = {m, . . . , n} form a clique in G. Let µ̃ and α̃ be the types of the colourings κG and
κ restricted to the vertices {1, . . . ,m − 1}. By construction, κG uses the colours 1, . . . , k
exactly once each in C, so (µG)i = µ̃i + 1 for every 1 ≤ i ≤ k. Because C is a clique, κ uses
every colour at most once each in C, so αi ≤ α̃i + 1 for every i. Therefore, by our induction
hypothesis, we have for every j < k that

(µG)1 + · · ·+ (µG)j = µ̃1 + · · ·+ µ̃j + j ≥ α̃1 + · · ·+ α̃j + j ≥ α1 + · · ·+ αj.

Therefore, (2.7) holds for every j. In particular, if the type of κ is a partition ν, then µG�ν.
Now the change of basis from monomial to elementary symmetric functions has the form

mν =
∑
ρ

Aν,ρeρ,

where Aν,ρ = 0 unless ν ′ � ρ, and Aν,ν = 1. Therefore, cλG
̸= 0 and cλG

(q) ̸= 0. And if ρ is
a partition for which cρ ̸= 0 or cρ(q) ̸= 0, then there must be a partition ν for which aν ̸= 0
and ν ′ � ρ, so

ρ� ν ′ � µ′
G = λG

which completes the proof. □

Example 2.13. The colouring κG for the bowtie graph is shown in Figure 2. It has type
λG = (2, 2, 1). So Proposition 2.12 implies that the unique dominance-minimal partition for
which cλ ̸= 0 is λ = µ′ = 32. This agrees with the expression for XG(x) given in Figure 1.

We conclude this section by using the monomial change of basis to prove a divisibility
result. The closed neighborhood of a vertex v of G is the set consisting of v and all its
adjacent vertices. Let us say that vertices u and v of a graph G = ([n], E) are equivalent if
they have the same closed neighbourhood. Note that equivalent vertices must be adjacent.
We now prove a divisibility result about the coefficients cλ and cλ(q). For an integer k we
define the standard q-analogues

[k]q = 1 + q + q2 + · · ·+ qk−1 =
qk − 1

q − 1

and
[k]q! = [k]q[k − 1]q · · · [2]q[1]q.

Proposition 2.14. Let G = ([n], E) and let C1, . . . , Ck be the equivalence classes of the
vertex set [n]. Then every coefficient cλ is divisible by |C1|! · · · |Ck|!. If G is a graph for
which XG(x; q) is symmetric, then every coefficient cλ(q) is divisible by [|C1|]q! · · · [|Ck|]q!.
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K6,6 =
1

2 4

3 5

6

7 9

8 10

11

XK6,6(x; q) = [5]q![5]q!(q
5e65 + q4[3]qe74 + q3[5]qe83 + q2[7]qe92 + q[9]qe(10)1 + [11]qe(11))

Figure 3. The graph K6,6 and its chromatic quasisymmetric function XK6,6(x; q)

Proof. We will show that every coefficient aµ in the expansion XG(x) =
∑

µ aµmµ is divisible

by |C1|! · · · |Ck|!, from which the first statement follows because the coefficients in the change
of basis from monomial to elementary symmetric functions are all integers. Recall that aµ is
the number of proper colourings of G of type µ, meaning they use µ1 1’s, µ2 2’s, and so on.
We first note that because each Ci is a clique in G, a proper colouring κ of G must colour

the vertices of Ci with |Ci| distinct colours. Let us say that proper colourings κ and κ′ are
similar if they use the same colours on every Ci, in other words we have

{κ(v) : v ∈ Ci} = {κ′(v) : v ∈ Ci} for every 1 ≤ i ≤ k.

Let us call a proper colouring κ initial if it has no ascents on any Ci, in other words we have

(2.8) κ(u) > κ(v) whenever u < v and u, v ∈ Ci for some 1 ≤ i ≤ k.

Now every proper colouring of G is similar to a unique initial colouring given by permuting
the colours in each Ci so that (2.8) holds. Conversely, given an initial proper colouring κ,
there are exactly |C1|! · · · |Ck|! proper colourings κ′ similar to it, given by permuting the
colours in each Ci in all possible ways. Therefore, the coefficient aµ is equal to |C1|! · · · |Ck|!
multiplied by the number of initial proper colourings of type µ.
For the second statement, we note that when we obtain a proper colouring κ′ from an

initial proper colouring κ by applying a permutation σi to the vertices in Ci, the number of
ascents increases by exactly

(2.9) des(σi) = |{(u, v) : u, v ∈ Ci, u < v, σi(u) > σi(v)}|.

We also note that
∑

σ∈S(Ci)
qdes(σ) = [|Ci|]q!. Therefore, we have

aµ(q) =
∑

κ of type µ

qascκ = [|C1|]q! · · · [|Ck|]q!
∑

κ initial of type µ

qascκ.

In particular, the coefficient aµ(q) is divisible by [|C1|]q! · · · [|Ck|]q! and so the coefficient cµ(q)
must be as well. □
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Example 2.15. Let Ka,b denote the graph with n = a+ b− 1 vertices obtained by gluing a
clique of size a and a clique of size b at a single vertex, to be precise,

Ka,b = ([n], {ij : 1 ≤ i ≤ j ≤ a} ∪ {ij : a ≤ i ≤ j ≤ n}).
Then the equivalence classes of the vertices of Ka,b are C1 = {1, . . . , a − 1}, C2 = {a}, and
C3 = {a + 1, . . . , n}. The chromatic quasisymmetric function XKa,b

(x; q) has the explicit
formula [22, Corollary 4.14]

(2.10) XKa,b
(x; q) = [a− 1]q![b− 1]q!

n∑
k=max{a,b}

qn−k[2k − n]qek(n−k).

Indeed, every coefficient cλ(q) is divisible by [|C1|]q![|C2|]q![|C3|]q! = [a− 1]q![1]q![b− 1]q!.

3. The Schur basis

If G is a natural unit interval graph then equation (2.5) gives an interpretation of the
coefficient of en in XG(x; q) as a generating function for the acyclic orientations of G with
one sink. In this section, we use the Schur basis to give another interpretation for the
coefficient of en in terms of tableaux. Throughout this section G = ([n], E) will be a natural
unit interval graph. Gasharov [8, Theorem 4] proved a combinatorial formula for the Schur
expansion of XG(x) in terms of certain tableaux and Shareshian and Wachs [18, Theorem
6.3] proved a q-analogue of this result. We will write our Young diagrams in English notation.

Definition 3.1. A G-tableau of shape λ is a bijective filling T of the diagram of λ with the
numbers 1 through n such that the following two conditions hold.

(C1) If an entry i is directly to the left of an entry j in the same row, then i < j and
ij /∈ E.

(C2) If an entry i is directly above an entry j in the same column, then either i < j or
ij ∈ E.

Let GTabλ denote the set of G-tableaux of shape λ. An inversion of T is a pair of entries
(i, j) such that

(I1) i < j,
(I2) ij ∈ E, and
(I3) i is in a lower row than j.

We denote by Inv T the set of inversions of T and inv T = #Inv T .

Theorem 3.2 ([18]). The chromatic quasisymmetric function of a natural unit interval
graph G satisfies

(3.1) XG(x; q) =
∑
λ

∑
T∈GTabλ

qinv T sλ.

In particular, XG(x; q) is Schur-positive.
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1 4
2 5
3

1 5
2 4
3

2 4
1 5
3

2 5
1 4
3

{(3, 4), (3, 5)} {(3, 4), (3, 5), (4, 5)} {(1, 2), (3, 4), (3, 5)} {(1, 2), (3, 4), (3, 5), (4, 5)}

Figure 4. The four G-tableaux of shape λ = 221 for the bowtie graph G

Example 3.3. Let G be the bowtie graph from Figure 1. The four G-tableaux of shape
λ = 221 and their inversion sets are given in Figure 4. By Theorem 3.2, the coefficient of
s221 in XG(x; q) is (q

2 + 2q3 + q4).

Now we can calculate coefficients in the elementary basis by first using Theorem 3.2 and
then converting Schur functions to elementary symmetric functions using the dual Jacobi–
Trudi determinantal identity [16, Theorem 4.5.1], [20, Corollary 7.16.2],

(3.2) sλ = det(eλ′
i−i+j)

λ1
i,j=1.

In particular, the coefficient of en in sλ is nonzero only if λ is a hook, meaning a partition of
the form λ = k1n−k for some 1 ≤ k ≤ n, in which case this coefficient is (−1)k−1. Let

HT(G) = {T | T is a G-tableau of hook shape},

and if T ∈ HT(G) has shape k1n−k then define its sign to be

sgnT = (−1)k−1.

By Theorem 3.2 and (3.2), the coefficient of en in XG(x; q) is

(3.3) cn(q) =
∑

T∈HT(G)

(sgnT )qinv T .

We now define a sign-reversing involution φG on HT(G) to obtain a positive combinatorial
description for cn(q). The idea will be to move entries between the arm and leg of T , which
are the first row and first column of T , respectively, excluding the corner entry in the (1, 1)-
cell. We will only move entries if we can preserve the inversion set.

Definition 3.4. Let T ∈ HT(G) be a G-tableau. An entry j in the arm of T is movable if
it can be moved to the leg of T to produce a tableau T j such that

(M1) T j ∈ HT(G), and
(M2) Inv T j = Inv T .

Similarly, entry j is movable from the leg to the arm if the resulting tableau T j satisfies (M1)
and (M2).

We will see shortly that if j is movable then the position to which j can be moved, and
hence T j, are uniquely determined.
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G =
1 2 3 4 5

T =

1 3 5
2
4

T 3 =

1 5
3
2
4

T 5 =

1 3
2
5
4

Figure 5. A natural unit interval graph G, a G-tableau T , and two T j

Example 3.5. In the first line of Figure 5 we see a natural unit interval graph, G, and one
of its G-tableaux, T , of hook shape. It is easy to check that Inv T = {(2, 3), (4, 5)}. Both
3 and 5 are movable and the resulting G-tableaux are displayed in the second line. The
elements 2 and 4 are not movable.

Lemma 3.6. Let T ∈ HT(G) be a G-tableau.

(a) An entry j in the leg of T is movable if and only if every entry i of T in a row above
j satisfies ij /∈ E.

(b) If the entry j is movable, there is a unique position to which it can be moved and
every entry i above j in the leg of T satisfies i < j.

Proof. (a) If j is movable, then we must have ij /∈ E for every entry i in the first row of T
by (C1) and because G is a natural unit interval graph. We also must have ij /∈ E for every
entry i in the leg of T above j because otherwise there would be a change in inversions.

Conversely, suppose that ij /∈ E for every entry i above j and let T j be the tableau
obtained by moving j to the arm so that it is strictly increasing, so (C1) holds. We have
Inv T j = Inv T because the only change in relative positions occurred between non-adjacent
vertices of G. If there are entries x and y respectively directly above and below j in T , we
cannot have x > y and xy /∈ E because then either j > x > y and yj /∈ E because G is
a natural unit interval graph, violating (C2), or j < x and xj /∈ E by assumption, again
violating (C2). Therefore, the tableau T j is indeed a G-tableau and the entry j is movable.
(b) First note that uniqueness holds because the first row of T j must be strictly increasing

by (C1). Next, suppose that j is movable and there is an entry i > j above j in the leg of
T . We have shown that ij /∈ E so i must not be directly above j by (C2). Therefore, there
is some other entry i′ directly above j, and i′j ̸∈ E because j is movable, so i′ < j. But now
because i > j > i′, there must be entries x and y in the leg of T above j with x directly
above y and x > j > y. But because j is movable we have jx /∈ E, and xy /∈ E because G
is a natural unit interval graph, which violates (C2). □
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Lemma 3.7. Let T ∈ HT(G) be a G-tableau. Every entry in the arm of T is movable and
can be moved to a unique position.

Proof. Let j be an entry in the arm of T and let x1, . . . , xℓ be the entries of the first column
of T from top to bottom. By (C1) and the fact that G is a natural unit interval graph, we
have x1 < j and x1j /∈ E. Therefore, there is some maximal index i with 1 ≤ i ≤ ℓ such that
we have xt < j and xtj /∈ E for every 1 ≤ t ≤ i. We claim that the entry j is movable to the
position directly below the entry xi. The first row of the resulting tableau T j satisfies (C1)
because G is a natural unit interval graph. We have xi < j by definition and we cannot have
both xi+1 < j and xi+1j /∈ E by maximality of i, so the first column of T j satisfies (C2). We
have Inv T j = Inv T because the entries in the arm of T j and the entries x1, . . . , xi that are
now above j are not adjacent to j so there is no change in inversions.

Finally, the entry j could not have moved to a higher position because (C2) would not
hold by definition of i. Also, the entry j could not have moved to a lower position because
then it would be movable in T j, which means by Lemma 3.6 that xi+1 < j and xi+1j /∈ E,
contradicting maximality of i. □

Note that by Lemma 3.6 and Lemma 3.7, movable entries can be moved to a unique
position so the tableau T j is well-defined, as promised.

Definition 3.8. Let T ∈ HT(G) be a G-tableau. We define the G-tableau

(3.4) φG(T ) =

{
T if T has no movable entry,

T j if T has smallest movable entry j.

We denote by FixφG the set of fixed points of φG, meaning those tableaux T for which
φG(T ) = T .

We now show that the map φG : HT(G) → HT(G) is an inv-preserving, sign-reversing
involution.

Lemma 3.9. We have φG(φG(T )) = T and invφG(T ) = inv T for every T ∈ HT(G). Also

sgnφG(T ) =

{
1 if T ∈ FixφG,

− sgnT else.

Proof. This first statement is clear if T has no movable entry because φG(T ) = T , so suppose
that T has smallest movable entry j, so that φG(T ) = T j. We have inv T j = inv T by
definition of φG. By construction, the entry j of T j is movable and the unique position to
which it can be moved was its original position in T . However, we need to check that the
entry j of T j is in fact the smallest movable entry. We will show that if a smaller entry i < j
of T j is movable, then i was movable in T , contradicting minimality of j.
By Lemma 3.7 (a), every entry in the arm of a hook tableau is movable. So if i were in

the arm of T j then it would have been movable in T . Now suppose that i is in the leg of T j.
By Lemma 3.6, the condition for i to be movable is that it is not adjacent to any entries in a
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higher row. So i movable in T j but not T means that it is not adjacent to everything above
it in T j but adjacent to something above in T . This can only happen if j is in the arm of T ,
moves to the leg of T j below i, and ij ∈ E. But j being movable in T j implies ij /∈ E which
is a contradiction.

Finally, if T ∈ FixφG, then T has no movable entry. By Lemma 3.7, there are no elements
in the arm so that T has shape 1n and sgnT = 1. If T /∈ FixφG, then φG changes the number
of columns in passing from T to φG(T ) by exactly one. It follows that sgnφG(T ) = − sgnT
which completes the proof. □

Corollary 3.10. Let G be a natural unit interval graph. Then the coefficient of en in
XG(x; q) is given by

(3.5) cn(q) =
∑

T∈FixφG

qinv T .

Proof. By Lemma 3.9, the map φG is an inversion-preserving bijection between the positively-
signed non-fixed points and the negatively-signed non-fixed points, so the sum in (3.3) is
equal to the sum over the fixed points, which are positively signed. □

We now describe the fixed points of φG to get an explicit formula for cn(q) which will
follow from Corollary 3.14 below.

Theorem 3.11. Let G = ([n], E) be a natural unit interval graph. For 2 ≤ k ≤ n, let bk
denote the number of smaller neighbours of vertex k in G. Then the coefficient of en in the
chromatic quasisymmetric function XG(x; q) is

(3.6) cn(q) = [n]q[b2]q[b3]q · · · [bn]q.

By considering the reverse graph obtained by relabeling vertex k to n − k + 1, we could
equivalently think about the number of larger neighbours of each vertex.

Example 3.12. For the bowtie graph G from Figure 1, the coefficient of e5 in XG(x; q) is

(3.7) c5(q) = [5]q[2]q[2]q = (1 + q + q2 + q3 + q4)(1 + q)2.

We will use induction on n to enumerate the fixed points of φG. Suppose that n ≥ 2 and
let G′ denote the graph G with the vertex n removed. For a tableau T of column shape, we
denote by Ti the i-th entry from the top.

Lemma 3.13. If bn = 0, then FixφG = ∅. Otherwise, the tableaux T ∈ FixφG arise
precisely by taking a tableau T ′ ∈ FixφG′ and inserting the entry n either at the bottom,
directly above a neighbour of n other than the one occurring highest in T ′, or at the top if
T ′
1 is a neighbour of n.

Proof. If bn = 0, then a G-tableau T ∈ GTab1n must have the entry n at the bottom to
satisfy (C2). But then the n is movable by Lemma 3.6. So assume that bn ≥ 1. A tableau
T constructed from T ′ in one of the three given ways will satisfy (C2) because n is either at
the bottom or directly above a neighbour, and will have no movable elements by Lemma 3.6
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because n is either at the top or below a neighbour, so we have T ∈ FixφG. We now show
that a tableau T ∈ FixφG must arise in this way.

Let T ′ denote the tableau obtained from T by removing the entry n. We must first
show that T ′ still satisfies (C2). Suppose, to the contrary, that there are entries x and y
respectively above and below the entry n in T with x > y and xy /∈ E. But since G is a
natural unit interval graph this would force yn /∈ E since n > y. So T would not satisfy
(C2), a contradiction.

Also we claim that T ′ has no movable elements. Suppose that T ′ has a movable element
j. By Lemma 3.6, every element i above j in T ′ must satisfy i < j and ij /∈ E. Because j
is not movable in T , the entry n must be above j in T and jn ∈ E by Lemma 3.6 (a). Now
every entry i above n in T satisfies i < j < n which implies in /∈ E because G is a natural
unit interval graph. So, by Lemma 3.6 (a) again, the only way for n to not be movable in T
is if T1 = n. If T2 = j, then T ′

1 = j so j is not movable in T ′. Otherwise, T2 must be some
other entry k. However, because k is above j in T ′, we have shown that k < j and kj /∈ E.
This forces k < n and kn /∈ E so that T does not satisfy (C2). This final contradiction
shows that no element of T ′ is movable.

Therefore T ′ ∈ FixφG and indeed T arises by inserting the entry n somewhere in T ′. In
order to satisfy (C2), the entry n must be inserted either at the bottom or directly above a
neighbour of n, and in order for n to not be movable, by Lemma 3.6, it must be either at
the top or have a neighbour above it. □

Theorem 3.11 follows from the next corollary by summing over 1 ≤ j ≤ n.

Corollary 3.14. LetG = ([n], E) be a natural unit interval graph. Then for every 1 ≤ j ≤ n,
we have

(3.8)
∑

T∈FixφG, T1=j

qinv T = qj−1[b2]q · · · [bn]q.

Proof. We use induction on n, the case of n = 1 trivial, so suppose that n ≥ 2. If bn = 0,
then the statement holds by Lemma 3.13, so assume that bn ≥ 1 and note that because G is
a natural unit interval graph, the neighbours of n are exactly n−bn, . . . , n−1. If j < n, then
by Lemma 3.13, every tableau T ∈ FixφG with T1 = j arises from a tableau T ′ ∈ FixφG′ by
inserting the entry n in one of bn possible positions. Inserting n in the i-th place from the
bottom results in (i− 1) new inversions, so by our induction hypothesis, we have∑

T∈FixφG, T1=j

qinv T = (1 + q + · · ·+ qbn−1)
∑

T ′∈FixφG′ , T ′
1=j

qinv T = qj−1[b2]q · · · [bn]q.

If j = n, then by Lemma 3.13, every tableau T ∈ FixφG with T1 = n arises from a tableau
T ′ ∈ FixφG with n− bn ≤ T ′

1 ≤ n−1 by inserting the entry n at the top. Doing so produces
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bn new inversions, so by our induction hypothesis, we have∑
T∈FixφG, T1=n

qinv T =
n−1∑

i=n−bn

∑
T ′∈FixφG′ , T ′

1=i

qinv T+bn

= qbn
n−1∑

i=n−bn

qi−1[b2]q · · · [bn−1]q = qn−1[b2]q · · · [bn]q,

which completes the proof. □

When q = 1, a similar formula holds for a wider family of graphs. If G = (V,E) and
v ∈ V then N(v) will denote the (open) neighborhood of v which is all vertices adjacent
to v. We say that a graph G has a perfect elimination order(peo) if there is a permutation
v1, v2, . . . , vn of V such that for all k ∈ [n] the vertices of N(vk) ∩ {v1, v2, . . . , vk−1} form a
clique. This condition is equivalent to G being chordal which means that every cycle C of
length at least 4 has a chord, that is, an edge of G connecting two vertices of C which are
not adjacent along the cycle. It is easy to see that if G is a natural unit interval graph then
1, 2, . . . , n is a perfect elimination order. But there are graphs with a peo, for example, k ≥ 3
triangles with a vertex of each identified, such that no labeling of the vertices with [n] gives
a natural unit interval graph.

Theorem 3.15. Let G have a perfect elimination order v1, v2, . . . , vn. For 2 ≤ k ≤ n, let

bk = #{vj | vj ∈ N(vk) and j < k}.

Then the coefficient of en in XG(x) is the product

cn = nb2b3 · · · bn.

Proof. By Stanley’s Theorem on acyclic orientations [19, Theorem 3.3], cn is equal to the
number of acyclic orientations of G with a unique sink. Greene and Zaslavsky [10, Theorem
7.3] showed that the number of acyclic orientations of G with unique sink v is independent
of v and equal to the absolute value of the linear coefficient of the chromatic polynomial
χ(G; t). We make use of the perfect elimination order to count the number of ways to colour
the vertices of G in the order v1, v2, . . . , vn using t colours. There are t choices for the colour
of v1. For every 2 ≤ k ≤ n, the bk neighbours of vk coloured already form a clique and so
were given different colours. It follows that there are (t− bk) choices for the colour of vk and

χ(G; t) = t(t− b2) · · · (t− bn).

Thus the number of acyclic orientations with unique sink v is b2b3 · · · bn. Since there are n
choices of unique sink v, there are nb2b3 · · · bn acyclic orientations with a unique sink and
the theorem follows from Stanley’s result. □

We conclude this section by relating G-tableaux of column shape to the set O(G) of acyclic
orientations of G. Given a G-tableau T ∈ GTab1n , let ψ(T ) be the acyclic orientation of G
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where every edge ij is oriented from the entry occurring lower in T to the entry occurring
higher.

Theorem 3.16. The map ψ : GTab1n → O(G) is a bijection. If ψ(T ) = O, then

(a) Inv T = AscO,
(b) the sinks of O are precisely the entry T1 along with the movable elements of T , and
(c) the smallest sink of O is T1.

In particular, ψ restricts to a bijection between FixφG and the acyclic orientations of G
with a unique sink.

Proof. By construction, because we orient edges from lower entries to higher entries, O is
indeed an acyclic orientation of G, inversions of T are exactly ascents of O, and T1 is a sink
of O. By Lemma 3.6 (a), an entry j in the leg of T is movable if and only if it has no
neighbours above it, which is exactly the condition for O to have no outgoing edges from j
and for j to be a sink. Also by Lemma 3.6, every movable entry T is larger than the entries
above it, so the smallest sink of O is T1.

It remains to show that the map ψ is a bijection. Given an acyclic orientation O, we
construct the tableau T = ψ−1(O) as follows. We let T1 be the smallest sink j of O and
delete vertex j to obtain an acyclic orientation O′. Then we iterate this process, letting T2
be the smallest sink of O′, and so on. The tableau T satisfies (C2) because if Ti > Ti+1, the
smaller entry Ti+1 became a sink only after vertex Ti was removed, so Ti+1Ti ∈ E and T is
indeed a G-tableau. The proof that the compositions ψ ◦ψ−1 and ψ−1 ◦ψ are identity maps
is routine and so omitted. □

4. Further directions

We conclude by proposing some further avenues of study. It may be fruitful to explore the
expansion of XG(x) in other symmetric function bases. The second author used the power
sum basis to produce a signed e-expansion of XG(x) [22, Theorem 5.10] and of XG(x; q)
whenever G is a natural unit interval graph [22, Theorem 3.4]. Cho and van Willigenburg
found a way to generate many new bases for symmetric functions.

Theorem 4.1. [5, Theorem 5] Fix a sequence of connected graphs G1, G2, . . . such that Gk

has k vertices for every k. For a partition λ = (λ1, . . . , λℓ), let Gλ be the disjoint union of
graphs Gλ1 · · ·Gλℓ

. Then the set {XGλ
(x) : λ ⊢ n} is a basis for the space of symmetric

functions of degree n.

For example, we could take Gk to be the star graph Sk, which is the tree with k vertices
that has a vertex of degree (k−1). Aliste-Prieto, de Mier, Orellana, and Zamora [2, Theorem
3.2] found a combinatorial formula for the expansion of XG(x) in the star basis {XSλ

(x)}.
We could try using a change-of-basis between stars and elementary symmetric functions to
further study XG(x).
One can combine the Schur expansion of XG(x; q) (3.1) with the dual Jacobi-Trudi de-

terminant (3.2) to obtain a signed expansion into elementary symmetric functions for any



20 BRUCE E. SAGAN AND FOSTER TOM

natural unit interval graph. The terms in this expansion count pairs (T, π) where T is a
G-tableau and π is the permutation indicating the term in the determinant which was used,
with the usual sign of a permutation as weight. One could then try to prove Conjecture 1.2
by finding a sign-reversing, inv-preserving involution on these pairs which could involve a new
notion of movable element. Cho and Huh [4] have used this approach to show e-positivity
of XG(x; q) for natural unit interval graphs with α(G) = 2. Also, Cho and Hong [3] showed
e-positivity of XG(x) when α(G) = 3. What other classes of graphs can be handled in this
manner?

When G is a natural unit interval graph, Shareshian and Wachs conjectured that XG(x; q)
is not only e-positive but also e-unimodal, meaning that for every λ the coefficients of the
polynomial cλ(q) = aiq

i + · · ·+ ajq
j satisfy

ai ≤ ai+1 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ aj−1 ≥ aj

for some i ≤ k ≤ j. We could ask whether XG(x; q) is e-log-concave, meaning that every
polynomial cλ(q) satisfies the stronger property that a2ℓ ≥ aℓ+1aℓ−1 for every ℓ. We have
checked by computer that this holds for every natural unit interval graph with at most 10
vertices.

Conjecture 4.2. Let G be a natural unit interval graph. Then XG(x; q) is e-log-concave.

Example 4.3. For the family of graphs Ka,b from Example 2.15, we saw in (2.10) that
every coefficient in the e-expansion of XKa,b

(x; q) is a product of q-integers. So XKa,b
(x; q)

is e-log-concave.
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