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Abstract. A permutation statistic st is said to be shuffle-compatible if the
distribution of st over the set of shuffles of two disjoint permutations π
and σ depends only on st π, st σ, and the lengths of π and σ. Shuffle-
compatibility is implicit in Stanley’s early work on P -partitions, and was
first explicitly studied by Gessel and Zhuang, who developed an algebraic
framework for shuffle-compatibility centered around their notion of the
shuffle algebra of a shuffle-compatible statistic. For a family of statistics
called descent statistics, these shuffle algebras are isomorphic to quo-
tients of the algebra of quasisymmetric functions. Recently, Domagalski,
Liang, Minnich, Sagan, Schmidt, and Sietsema defined a version of shuffle-
compatibility for statistics on cyclic permutations, and studied cyclic
shuffle-compatibility through purely combinatorial means. In this paper,
we define the cyclic shuffle algebra of a cyclic shuffle-compatible statis-
tic, and develop an algebraic framework for cyclic shuffle-compatibility
in which the role of quasisymmetric functions is replaced by the cyclic
quasisymmetric functions recently introduced by Adin, Gessel, Reiner,
and Roichman. We use our theory to provide explicit descriptions for the
cyclic shuffle algebras of various cyclic permutation statistics, which in
turn gives algebraic proofs for their cyclic shuffle-compatibility.
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1. Introduction

We say that π = π1π2 · · · πn is a (linear) permutation of length n if it is a
sequence of n distinct letters—not necessarily from 1 to n—in P, the set of
positive integers. (We refer to these as linear permutations to distinguish them
from cyclic permutations, but we will often drop the descriptor “linear” if it is
clear from context that we are referring to linear permutations.) For example,
826491 is a permutation of length 6. Let |π| denote the length of a permutation
π, let Pn denote the set of permutations of length n, and Sn ⊆ Pn the set of
permutations of [n] := {1, 2, . . . , n}. Note that P0 and S0 consist only of the
empty word.

Let π ∈ Pm and σ ∈ Pn be disjoint permutations, that is, permutations
with no letters in common. We say that τ ∈ Pm+n is a shuffle of π and σ if
both π and σ are subsequences of τ . The set of shuffles of π and σ is denoted
π� σ. For example,

71� 25 = {7125, 7215, 7251, 2715, 2751, 2571}.
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Following [7], a (linear) permutation statistic is a function st on permu-
tations such that stπ = st σ whenever π and σ have the same relative order.1

Three classical permutation statistics, dating back to MacMahon [13], are the
descent set Des, descent number des, and the major index maj. We say that
i ∈ [n − 1] is a descent of π ∈ Pn if πi > πi+1. The descent set of π

Des π := { i ∈ [n − 1] : πi > πi+1 }
is the set of its descents, the descent number

des π := |Des π|
its number of descents, and the major index

maj π :=
∑

i∈Des π

i

the sum of its descents.
Several other permutation statistics—somewhat less classical but still

well-studied—are based on the notion of peaks. We say that i ∈ {2, 3, . . . , n−1}
is a peak of π ∈ Pn if πi−1 < πi > πi+1. The peak set of π

Pk π := { i ∈ {2, 3, . . . , n − 1} : πi−1 < πi > πi+1 }
is the set of its peaks, and the peak number

pk π := |Pk π|
is its number of peaks. Some related statistics, such as the left peak set and
left peak number, will be defined in Sect. 5.4.

Given a set S of permutations and a permutation statistic st, the distri-
bution of st over S is the multiset

stS := {{ st π : π ∈ S }}
of all values of st among permutations in S, including multiplicity. For in-
stance,

desS3 = {{0, 14, 2}};

among the six permutations in S3, only 123 has no descents, only 321 has two
descents, and the other four have one descent each.

All of the statistics defined above have a remarkable property related to
shuffles, called “shuffle-compatibility”. We say that st is shuffle-compatible if
the distribution of st over the shuffles of any two disjoint permutations π and
σ depends only on stπ, st σ, and the lengths of π and σ. In other words, st is
shuffle-compatible if st(π�σ) = st(π′

�σ′) whenever st π = stπ′, st σ = stσ′,
|π| = |π′|, and |σ| = |σ′|.

Shuffle-compatibility dates back to the early work of Stanley, as the
shuffle-compatibility of the descent set, descent number, and major index are
implicit consequences of the theory of P -partitions [16]. Likewise, Stembridge’s
work on enriched P -partitions imply that the peak set and peak number are

1The standardization of a permutation π ∈ Pn is the permutation in Sn obtained by
replacing the smallest letter in π by 1, the second smallest by 2, and so on. Then two
permutations are said to have the same relative order if they have the same standardization.
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shuffle-compatible. Gessel and Zhuang coined the term “shuffle-compatibility”
and initiated the study of shuffle-compatibility per se in 2018; in [7], they
developed an algebraic framework for shuffle-compatibility centered around
the notion of the shuffle algebra of a shuffle-compatible permutation statistic,
which is well-defined if and only if the statistic is shuffle-compatible and whose
multiplication encodes the distribution of the statistic over sets of shuffles.

Gessel’s [4] quasisymmetric functions serve as natural generating func-
tions for P -partitions, and for a special family of statistics called “descent
statistics”, one can use quasisymmetric functions to characterize shuffle alge-
bras and prove shuffle-compatibility results. Notably, the multiplication rule
for fundamental quasisymmetric functions shows that the descent set is shuffle-
compatible and that its shuffle algebra is isomorphic to the algebra QSym of
quasisymmetric functions. One of Gessel and Zhuang’s main results is a neces-
sary and sufficient condition for shuffle-compatibility of descent statistics which
implies that the shuffle algebra of any shuffle-compatible descent statistic is
isomorphic to a quotient algebra of QSym.

In the past few years, shuffle-compatibility has become an active topic of
research; see [1–3,6,9,10,14,20,21] for a selection of references. Most relevant
to our present work are the recent papers of Adin–Gessel–Reiner–Roichman
[1] and Liang [10] on cyclic quasisymmetric functions and toric [ �D]-partitions,
and of Domagalski–Liang–Minnich–Sagan–Schmidt–Sietsema [3] which defined
and studied a notion of shuffle-compatibility for cyclic permutations.

1.1. Cyclic Permutations, Statistics, and Shuffles

Given a linear permutation π = π1π2 · · · πn, let [π] be the equivalence class of
π under cyclic rotation, that is,

[π] := {π1π2 · · · πn, πnπ1 · · · πn−1, . . . , π2 · · · πnπ1}.

The sets [π] are called cyclic permutations. The length of a cyclic permutation
[π] refers to the length of π, which makes sense because all linear permutation
representatives of [π] have the same length. For example,

[168425] = {168425, 516842, 251684, 425168, 842516, 684251}
has length 6.

In analogy to linear permutation statistics, let us define a cyclic permu-
tation statistic to be a function cst on cyclic permutations such that cst[π] =
cst[σ] whenever π and σ have the same relative order. Two examples of cyclic
permutation statistics are the cyclic descent set cDes and the cyclic descent
number cdes. First, define the cyclic descent set of a linear permutation π ∈ Pn

by

cDes π := { i ∈ [n] : πi > πi+1 where i is considered modulo n };

the elements of cDes π are called cyclic descents of π. The cyclic descent set
of a cyclic permutation [π] is the multiset

cDes[π] := {{ cDes π̄ : π̄ ∈ [π] }},
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i.e., the distribution of the linear statistic cDes over all linear permutation
representatives of [π]. For example, we have

cDes[168425] = {{ {3, 4, 6}, {1, 4, 5}, {2, 5, 6}, {1, 3, 6}, {1, 2, 4}, {2, 3, 5} }},

and

cDes[279358] = {{ {3, 6}2, {1, 4}2, {2, 5}2 }.

Note that cDes[π] can also be characterized as the multiset of cyclic shifts of
cDes π. More precisely, given S ⊆ [n] and an integer i, define the cyclic shift
S + i by

S + i := { s + i : s ∈ S }
where the values are considered modulo n; then

cDes[π] = {{ cDes π + i : i ∈ [n] }}.
The cyclic descent number of a linear permutation π is given by

cdes π := |cDes π| ,
and we can then define the cyclic descent number of a cyclic permutation [π]
by

cdes[π] := cdes π,

which is well-defined because all linear permutations in [π] have the same
number of cyclic descents. The cyclic peak set cPk and cyclic peak number
cpk can be defined in an analogous way, and we will state their definitions in
Sect. 4.1. On the other hand, finding a suitable cyclic analogue of the major
index statistic is challenging; we will address this in Sect. 5.3.

Given disjoint π ∈ Pm and σ ∈ Pn, we say that [τ ] is a cyclic shuffle of
[π] and [σ] if τ ∈ Pm+n and there exist π̄ ∈ [π] and σ̄ ∈ [σ] such that τ is a
(linear) shuffle of π̄ and σ̄. Let [π]� [σ] denote the set of cyclic shuffles of [π]
and [σ]. For instance, we have

[63]� [24] = {[6324], [6234], [6243], [6342], [6432], [6423]}.

A cyclic permutation statistic cst is called cyclic shuffle-compatible if
the distribution of cst over all cyclic shuffles of [π] and [σ] depends only on
cst[π], cst[σ], and the lengths of [π] and [σ]. That is, cst is cyclic shuffle-
compatible if we have cst([π]� [σ]) = cst([π′]� [σ′]) whenever cst[π] = cst[π′],
cst[σ] = cst[σ′], |π| = |π′|, and |σ| = |σ′|.

The first results in cyclic shuffle-compatibility were implicit in the work
of Adin et al. [1], which introduced toric [ �D]-partitions (a toric poset analogue
of P -partitions) and cyclic quasisymmetric functions (which are natural gener-
ating functions for toric [ �D]-partitions). In particular, Adin et al. established a
multiplication formula for fundamental cyclic quasisymmetric functions which
implies that the cyclic descent set cDes is cyclic shuffle-compatible, and they
also proved the formula

∑

[τ ]∈[π]�[σ]

qcdes τ = (1 − q)|π|+|σ|
∞∑

k=0

(k + |π| − cdes π − 1

|π| − 1

)(k + |σ| − cdes σ − 1

|σ| − 1

)
kqk
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which implies that the cyclic descent number cdes is cyclic shuffle-compatible.
In [3], Domagalski et al. formally defined cyclic shuffle-compatibility and

proved a result called the “lifting lemma,” which allows one (under certain nice
conditions) to prove that a cyclic statistic is cyclic shuffle-compatible from the
shuffle-compatibility of a related linear statistic. They then used the lifting
lemma to prove the cyclic shuffle-compatibility of all four statistics cDes, cdes,
cPk, and cpk.

Most recently, Liang [10] defined and studied enriched toric [ �D]-partitions,
an analogue of enriched P -partitions for toric posets, whose generating func-
tions are “cyclic peak quasisymmetric functions”. She derived a multiplication
formula for these cyclic peak quasisymmetric functions which gives a different
proof for the cyclic shuffle-compatibility of the cyclic peak set cPk.

The lifting lemma of Domagalski et al. is purely combinatorial, but the
work of Adin et al. and Liang suggest that there is an algebraic framework
for cyclic shuffle-compatibility à la Gessel and Zhuang, in which the role of
quasisymmetric functions is replaced by cyclic quasisymmetric functions. The
goal of our paper is to develop this algebraic framework.

See [11] for an extended abstract of this work.

1.2. Outline

The organization of this paper is as follows. In Sect. 2, we review Gessel and
Zhuang’s definition of the shuffle algebra of a shuffle-compatible permutation
statistic, and then we define the cyclic shuffle algebra of a cyclic shuffle-
compatible statistic. We prove several general results about cyclic shuffle-
compatibility via cyclic shuffle algebras, including a result (Theorem 2.8) al-
lowing one to construct cyclic shuffle algebras from linear ones.

In Sect. 3, we review the role of quasisymmetric functions in the theory
of (linear) shuffle-compatibility, and then we develop an analogous theory con-
cerning cyclic quasisymmetric functions and cyclic shuffle-compatibility. We
use Theorem 2.8 to construct the non-Escher subalgebra cQSym− of cyclic
quasisymmetric functions from the algebra QSym of quasisymmetric func-
tions, which gives another proof that cDes is cyclic shuffle-compatible and
shows that the cyclic shuffle algebra of cDes is isomorphic to cQSym−. We
then give a necessary and sufficient condition for cyclic shuffle-compatibility
of cyclic descent statistics which implies that the cyclic shuffle algebra of any
cyclic shuffle-compatible cyclic descent statistic is isomorphic to a quotient
algebra of cQSym−.

In Sect. 4, we use the theory developed in Sect. 3 to give explicit descrip-
tions of the shuffle algebras of the statistics cPk, cpk cdes, and (cpk, cdes)
which in turn yields algebraic proofs for their cyclic shuffle-compatibility.

In Sect. 5, we define a family of multiset-valued cyclic statistics induced
from linear statistics, and investigate cyclic shuffle-compatibility for some of
these statistics. This approach yields a definition of a cyclic major index which
is different from the one proposed earlier by Ji and Zhang [8]; unfortunately,
neither of these cyclic major index statistics are cyclic shuffle-compatible.
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We conclude the paper in Sect. 6 with a discussion of open problems and
questions related to our work.

2. Cyclic Shuffle Algebras

At the heart of Gessel and Zhuang’s algebraic framework for shuffle-compatibility
is the notion of a shuffle algebra. In this section, we review the definition of the
shuffle algebra of a shuffle-compatible (linear) permutation statistic, define a
cyclic analogue of shuffle algebras for cyclic shuffle-compatible statistics, and
prove several general results about cyclic shuffle-compatibility through cyclic
shuffle algebras, including one that can be used to construct cyclic shuffle
algebras from shuffle algebras of linear permutation statistics.

2.1. Definitions

Let st be a permutation statistic. We say that π and σ are st-equivalent if
st π = st σ and |π| = |σ|. In this way, every permutation statistic induces an
equivalence relation on permutations, and we write the st-equivalence class of
π as πst.2

Let Ast denote the Q-vector space consisting of formal linear combina-
tions of st-equivalence classes of permutations. If st is shuffle-compatible, then
we can turn Ast into a Q-algebra by endowing it with the multiplication

πstσst =
∑

τ∈π�σ

τst

for any disjoint representatives π ∈ πst and σ ∈ σst; this multiplication is
well-defined (i.e., the choice of π and σ does not matter) precisely when st
is shuffle-compatible. The Q-algebra Ast is called the (linear) shuffle algebra
of st. Observe that Ast is graded by length, that is, πst belongs to the nth
homogeneous component of Ast if π has length n.

Our definition of cyclic shuffle algebras will be analogous to that of linear
ones. Let cst be a cyclic permutation statistic. Then the cyclic permutations
[π] and [σ] are called cst-equivalent if cst[π] = cst[σ] and |π| = |σ|, and we use
the notation [π]cst to denote the cst-equivalence class of the cyclic permutation
[π]. We associate to cst a Q-vector space Acyc

cst by taking as a basis the set of
all cst-equivalence classes of permutations, and then we give this vector space
a multiplication by defining

[π]cst[σ]cst =
∑

[τ ]∈[π]�[σ]

[τ ]cst

for any disjoint π and σ with [π] ∈ [π]cst and [σ] ∈ [σ]cst; this multiplication
is well-defined if and only if cst is cyclic shuffle-compatible. The resulting Q-
algebra Acyc

cst is called the cyclic shuffle algebra of cst, and is also graded by
length.

2In [7], the authors write [π]st for the st-equivalence class of π, but here we will use this
notation for st-equivalence classes of cyclic permutations in place of the more cumbersome
[[π]]st.
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2.2. Two General Results on Cyclic Shuffle Algebras

We now give two general results on cyclic shuffle algebras, which are analogous
to Theorems 3.2 and 3.3 of [7] on linear shuffle algebras. We provide proofs for
completeness, although they follow in essentially the same way as the proofs
of the corresponding results in [7].

Given two cyclic permutation statistics cst1 and cst2, we say that cst1
is a refinement of cst2 if for all cyclic permutations [π] and [σ] of the same
length, cst1[π] = cst1[σ] implies cst2[π] = cst2[σ]; when this is true, we also
say that cst2 is a coarsening of cst1. Coarsenings of the cyclic descent set are
called cyclic descent statistics.

Theorem 2.1. Suppose that cst1 is cyclic shuffle-compatible and is a refinement
of cst2. Let A be a Q-algebra with basis {vα} indexed by cst2-equivalence classes
α, and suppose that there exists a Q-algebra homomorphism φ : Acyc

cst1 → A such
that for every cst1-equivalence class β, we have φ(β) = vα where α is the cst2-
equivalence class containing β. Then cst2 is cyclic shuffle-compatible and the
map vα �→ α extends by linearity to an isomorphism from A to Acyc

cst2 .

Proof. It suffices to show that for any disjoint π and σ, we have

v[π]cst2
v[σ]cst2

=
∑

[τ ]∈[π]�[σ]

v[τ ]cst2
.

To that end, we have

v[π]cst2
v[σ]cst2

= φ([π]cst1)φ([σ]cst1)

= φ([π]cst1 [σ]cst1)

= φ

(
∑

[τ ]∈[π]�[σ]

[τ ]cst1

)

=
∑

[τ ]∈[π]�[σ]

v[τ ]cst2
,

which completes the proof. �
We say that cst1 and cst2 are equivalent if cst1 is a simultaneously a

refinement and a coarsening of cst2, that is, if for all cyclic permutations [π]
and [σ] of the same length, cst1[π] = cst1[σ] implies cst2[π] = cst2[σ] and vice
versa.

Theorem 2.2. Let cst1 and cst2 be equivalent cyclic permutation statistics. If
cst1 is cyclic shuffle-compatible with cyclic shuffle algebra Acyc

cst1 , then cst2 is
also cyclic shuffle-compatible with cyclic shuffle algebra Acyc

cst2 isomorphic to
Acyc

cst1 .

Proof. Because equivalent statistics have the same equivalence classes on cyclic
permutations, we know that Acyc

cst1 and Acyc
cst2 have the same basis elements.

Since cst1 and cst2 are equivalent, we have

[π]st2 [σ]st2 = [π]st1 [σ]st1 =
∑

[τ ]∈[π]�[σ]

[τ ]st1 =
∑

[τ ]∈[π]�[σ]

[τ ]st2 ,
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which proves the result. �

2.3. Symmetries and Cyclic Shuffle Algebras

Many permutation statistics—both linear and cyclic—are related via various
symmetries, such as reversal, complementation, and reverse-complementation.
For a linear permutation π = π1π2 · · · πn ∈ Pn, we define the reversal πr

of π by πr := πnπn−1 · · · π1, the complement πc of π to be the permutation
obtained by (simultaneously) replacing the ith smallest letter in π with the ith
largest letter in π for all 1 ≤ i ≤ n, and the reverse-complement πrc of π by
πrc := (πr)c = (πc)r. For example, given π = 318269, we have πr = 962813,
πc = 692831, and πrc = 138296.

More generally, let f be an involution on linear permutations which pre-
serves the length, i.e., |f(π)| = |π| for all π. We shall write πf in place of f(π).
For a set S of permutations, let

Sf := {πf : π ∈ S },

so f induces an involution on sets of permutations as well. In particular, this
lets us define [π]f for a cyclic permutation [π]. Going further, if C is a set of
cyclic permutations, then

Cf := { [π]f : [π] ∈ C }.

Following Gessel and Zhuang [7], we say that f is shuffle-compatibility-
preserving if for any pair of disjoint permutations π and σ, there exist disjoint
permutations π̂ and σ̂ with the same relative order as π and σ, respectively,
such that (π�σ)f = π̂f

� σ̂f and (π̂� σ̂)f = πf
�σf . (This definition implies

that πf and σf are disjoint, and similarly with π̂f and σ̂f .)
Furthermore, we call two linear permutation statistics st1 and st2 f -

equivalent if st1 ◦f is equivalent to st2—that is, st1 πf = st1 σf if and only
if st2 π = st2 σ. In other words, st1 and st2 are f -equivalent if and only if
(πf )st1 = (πst2)

f for all π. It is easy to see that, if st1 πf = st2 π for all π, then
st1 and st2 are f -equivalent (although this is not a necessary condition).

For example, the peak set Pk is c-equivalent to the valley set Val defined
in the following way. We call i ∈ {2, 3, . . . , n − 1} a valley of π ∈ Pn if
πi−1 > πi < πi+1, and we let Val π be the set of valleys of π. We also define
valπ to be the number of valleys of π; then, pk and val are c-equivalent as
well.

Despite its name, f -equivalence is not an equivalence relation (although it
is symmetric). However, it turns out that if the statistics involved are shuffle-
compatible, then f -equivalences induce isomorphisms on the corresponding
shuffle algebras. This idea is expressed in the following theorem, which is The-
orem 3.5 of Gessel and Zhuang [7].

Theorem 2.3. Let f be shuffle-compatibility-preserving, and suppose that st1
and st2 are f-equivalent (linear) permutation statistics. If st1 is shuffle-compatible
with shuffle algebra Ast1 , then st2 is also shuffle-compatible, and the linear map
defined by πst1 �→ πf

st2 is a Q-algebra isomorphism between their shuffle alge-
bras Ast1 and Ast2 .
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Gessel and Zhuang proved that reversal, complementation, and reverse-
complementation are all shuffle-compatibility-preserving. Thus, they were able
to use Theorem 2.3 to prove a collection of shuffle-compatibility results for
statistics that are r-, c-, or rc-equivalent to another statistic whose shuffle-
compatibility had already been established. For example, it follows from the
shuffle-compatibility of the peak set Pk that the valley set Val is shuffle-
compatible with shuffle algebra AVal isomorphic to APk.

Moving onto the cyclic setting, let us call f rotation-preserving if [π]f =
[πf ] for all π. We now prove that if f is both shuffle-compatibility-preserving
and rotation-preserving, then f satisfies a cyclic version of the shuffle-compatibility-
preserving property.

Lemma 2.4. If f is shuffle-compatibility-preserving and rotation-preserving,
then for any pair of disjoint permutations π and σ, there exist disjoint per-
mutations π̂ and σ̂ with the same relative order as π and σ, respectively, for
which ([π]� [σ])f = [π̂f ]� [σ̂f ] and ([π̂]� [σ̂])f = [πf ]� [σf ].

Proof. Let [τ ] ∈ [π]� [σ], so that τ ∈ π̄� σ̄ for some π̄ ∈ [π] and σ̄ ∈ [σ], and
thus τf ∈ (π̄ � σ̄)f . Since f is shuffle-compatibility-preserving, we have that
τf ∈ ˆ̄πf

� ˆ̄σf where ˆ̄π and ˆ̄σ are disjoint permutations with the same relative
order as π̄ and σ̄, respectively. Since π̄ is a rotation of π and ˆ̄π has the same
relative order as π̄, it follows that ˆ̄π is a rotation of a permutation π̂ with the
same relative order as π, and similarly ˆ̄σ is a rotation of a permutation σ̂ with
the same relative order as σ. Clearly, π̂ and σ̂ are disjoint because ˆ̄π and ˆ̄σ are
disjoint. Because f is rotation-preserving, ˆ̄π ∈ [π̂] and ˆ̄σ ∈ [σ̂] imply ˆ̄πf ∈ [π̂f ]
and ˆ̄σ ∈ [σ̂f ]. Therefore, τf ∈ ˆ̄πf

� ˆ̄σf implies [τ ]f = [τf ] ∈ [π̂f ]� [σ̂f ].
We have shown that ([π]� [σ])f is a subset of [π̂f ]� [σ̂f ], but since these

two sets have the same cardinality, they are in fact equal. We omit the proof
of ([π̂]� [σ̂])f = [πf ]� [σf ] as it is similar. �

Lemma 2.5. Reversal, complementation, and reverse-complementation are all
rotation-preserving.

Proof. Let π = π1π2 · · · πn be a (linear) permutation. We have

[π]r = {π1π2 · · · πn, πnπ1 · · · πn−1, . . . , π2 · · · πnπ1}r

= {πn · · · π2π1, πn−1 · · · π1πn, . . . , π1πn · · · π2}
= [πr],

so reversal is rotation-preserving. Moreover, it is clear that taking the comple-
ment of the permutation πi+1 · · · πnπ1 · · · πi (obtained by rotating the last n−i
letters of π to the front) yields the same result as first taking the complement
of π and then rotating the last n − i letters of πc to the front, so complemen-
tation is rotation-preserving. Lastly, since we have established that [πc] = [π]c

for all permutations π, we can replace π by πr to obtain [πrc] = [πr]c = [π]rc,
so reverse-complementation is rotation-preserving as well. �
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In analogy with f -equivalence of linear permutation statistics, let us call
two cyclic permutation statistics cst1 and cst2 f -equivalent if cst1 ◦f is equiv-
alent to cst2, or equivalently, if [πf ]cst1 = ([π]cst2)

f . The following is a cyclic
version of Theorem 2.3.

Theorem 2.6. Let f be shuffle-compatibility-preserving and rotation-preserving,
and let cst1 and cst2 be f-equivalent cyclic permutation statistics. If cst1 is
cyclic shuffle-compatible, then cst2 is cyclic shuffle-compatible with Acyc

cst2 iso-
morphic to Acyc

cst1 .

Proof. Let [π] and [π̃] be cyclic permutations in the same cst2-equivalence class,
and similarly with [σ] and [σ̃], such that π and σ are disjoint and π̃ and σ̃ are
disjoint. We know from Lemma 2.4 that there exist permutations π̂, σ̂, ˆ̃π, and
ˆ̃σ—having the same relative order as π, σ, π̃, and σ̃, respectively—satisfying
([π]� [σ])f = [π̂f ]� [σ̂f ], ([π̂]� [σ̂])f = [πf ]� [σf ], ([π̃]� [σ̃])f = [ˆ̃πf ]� [ˆ̃σf ],
and ([ˆ̃π]� [ˆ̃σ])f = [π̃f ]� [σ̃f ].

Because π̂ and ˆ̃π have the same relative order as π and π̃, respectively,
we have

[π̂]cst2 = [π]cst2 = [π̃]cst2 = [ˆ̃π]cst2 .

Then, because cst1 and cst2 are f -equivalent, we have

[π̂f ]cst1 = ([π̂]cst2)
f = ([ˆ̃π]cst2)

f = [ˆ̃πf ]cst1 ,

so [π̂f ] and [ˆ̃πf ] are cst1-equivalent. The same reasoning shows that [σ̂f ] and
[ˆ̃σf ] are also cst1-equivalent.

By cyclic shuffle-compatibility of cst1, we have the multiset equality

{{ cst1[τ ] : [τ ] ∈ [π̂f ]� [σ̂f ] }} = {{ cst1[τ ] : [τ ] ∈ [ˆ̃πf ]� [ˆ̃σf ] }},
which—by f -equivalence of cst1 and cst2—is equivalent to

{{ cst2[τf ] : [τ ] ∈ [π̂f ]� [σ̂f ] }} = {{ cst2[τf ] : [τ ] ∈ [ˆ̃πf ]� [ˆ̃σf ] }},
which is in turn equivalent to

{{ cst2[τ ] : [τ ]f ∈ [π̂f ]� [σ̂f ] }} = {{ cst2[τ ] : [τ ]f ∈ [ˆ̃πf ]� [ˆ̃σf ] }}
because f is rotation-preserving. Since ([π]� [σ])f = [π̂f ]� [σ̂f ] and ([π̃]�
[σ̃])f = [ˆ̃πf ]� [ˆ̃σf ], we have

{{ cst2[τ ] : [τ ] ∈ [π]� [σ] }} = {{ cst2[τ ] : [τ ] ∈ [π̃]� [σ̃] }},
which shows that cst2 is cyclic shuffle-compatible.

It remains to prove that Acyc
cst2 is isomorphic to Acyc

cst1 . Define the linear
map λ : Acyc

cst2 → Acyc
cst1 by [π]cst2 �→ [πf ]cst1 . Observe that

∑

[τ ]∈[π]�[σ]

[τ ]cst2 =
∑

[τ ]∈[π̂]�[σ̂]

[τ ]cst2
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because cst2 is cyclic shuffle-compatible, and thus we have

λ([π]cst2 [σ]cst2) = λ

(
∑

[τ ]∈[π]�[σ]

[τ ]cst2

)

= λ

(
∑

[τ ]∈[π̂]�[σ̂]

[τ ]cst2

)

=
∑

[τ ]∈[π̂]�[σ̂]

[τf ]cst1

=
∑

[τ ]f∈[π̂]�[σ̂]

[τ ]cst1

=
∑

[τ ]∈[πf ]�[σf ]

[τ ]cst1

= [πf ]cst1 [σ
f ]cst1

= λ([π]cst2)λ([σ]cst2).

Hence, λ is a Q-algebra isomorphism from Acyc
cst2 to Acyc

cst1 . �

Corollary 2.7. Suppose that the cyclic permutation statistics cst1 and cst2 are
r-equivalent, c-equivalent, or rc-equivalent. If cst1 is cyclic shuffle-compatible,
then cst2 is cyclic shuffle-compatible with cyclic shuffle algebra Acyc

cst2 isomor-
phic to Acyc

cst1 .

2.4. Constructing Cyclic Shuffle Algebras from Linear Ones

The following theorem—one of the main results of this paper—allows us to con-
struct cyclic shuffle algebras from shuffle algebras of shuffle-compatible (linear)
permutation statistics.

Theorem 2.8. Let cst be a cyclic permutation statistic and let st be a shuffle-
compatible (linear) permutation statistic. Given a cyclic permutation [π], let

v[π] =
∑

π̄∈[π]

π̄st ∈ Ast.

Suppose that v[π] = v[σ] whenever [π] and [σ] are cst-equivalent, and that {v[π]}
(ranging over all cst-equivalence classes) is linearly independent. Then cst is
cyclic shuffle-compatible and the map ψcst : Acyc

cst → Ast given by

ψcst([π]cst) = v[π]

extends linearly to a Q-algebra isomorphism from Acyc
cst to the span of {v[π]},

a subalgebra of Ast.

Proof. Since v[π] = v[σ] whenever [π] and [σ] are cst-equivalent, we know that
ψcst is a well-defined linear map on Acyc

cst . (We do not yet know whether Acyc
cst is

an algebra; here we are only considering Acyc
cst as a vector space.) Furthermore,

because {v[π]} is linearly independent, the linear map ψcst is a vector space
isomorphism from Acyc

cst to a subspace of Ast.
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To show that cst is cyclic shuffle-compatible, we show that

[π]cst[σ]cst =
∑

[τ ]∈[π]�[σ]

[τ ]cst

is a well-defined multiplication in Acyc
cst . Let [π′], [π′′] ∈ [π]cst and let [σ′], [σ′′] ∈

[σ]cst, where π′ and σ′ are disjoint and so are π′′ and σ′′. Then

ψcst

(
∑

[τ ]∈[π′]�[σ′]

[τ ]cst

)
=

∑

[τ ]∈[π′]�[σ′]

v[τ ]

=
∑

[τ ]∈[π′]�[σ′]

∑

τ̄∈[τ ]

τ̄st

=
∑

π̄∈[π′]

∑

σ̄∈[σ′]

∑

τ̄∈π̄�σ̄

τ̄st

= v[π′]v[σ′]

and similarly

ψcst

⎛

⎝
∑

[τ ]∈[π′′]�[σ′′]

[τ ]cst

⎞

⎠ = v[π′′]v[σ′′].

Since [π′] and [π′′] are cst-equivalent and similarly with [σ′] and [σ′′], we have

ψcst

⎛

⎝
∑

[τ ]∈[π′]�[σ′]

[τ ]cst

⎞

⎠ = v[π′]v[σ′] = v[π′′]v[σ′′] = ψcst

⎛

⎝
∑

[τ ]∈[π′′]�[σ′′]

[τ ]cst

⎞

⎠

and thus
∑

[τ ]∈[π′]�[σ′]

[τ ]cst =
∑

[τ ]∈[π′′]�[σ′′]

[τ ]cst

due to injectivity of ψcst. We have shown that the multiplication of the cyclic
shuffle algebra Acyc

cst is well-defined, and therefore cst is shuffle-compatible.
Finally, we have

ψcst([π]cst[σ]cst) = ψcst

(
∑

[τ ]∈[π]�[σ]

[τ ]cst

)

= v[π]v[σ]

= ψcst([π]cst)ψcst([σ]cst),

so ψcst is a Q-algebra isomorphism from Acyc
cst to the span of {v[π]}. �

3. Shuffle-Compatibility and Quasisymmetric Functions

The focus of this section is the relationship between cyclic shuffle-compatibility
and cyclic quasisymmetric functions. We shall begin by providing the neces-
sary background on descent compositions, cyclic descent compositions, and
(ordinary) quasisymmetric functions.
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3.1. Descent Compositions

Every permutation can be uniquely decomposed into a sequence of maximal
increasing consecutive subsequences, which we call increasing runs. For ex-
ample, the increasing runs of 4783291 are 478, 3, 29, and 1. Equivalently, an
increasing run of π is a maximal consecutive subsequence with no descents.

The number of increasing runs of a nonempty permutation is one more
than its number of descents; in fact, the lengths of the increasing runs deter-
mine the descents, and vice versa. Given a subset S ⊆ [n − 1] with elements
s1 < s2 < · · · < sj , let Comp S be the composition of n defined by

Comp S := (s1, s2 − s1, . . . , sj − sj−1, n − sj);

also, given a composition L = (L1, L2, . . . , Lk), let

Des L := {L1, L1 + L2, . . . , L1 + · · · + Lk−1}
be the corresponding subset of [n−1]. It is straightforward to verify that Comp
and Des are inverse bijections. If π ∈ Pn has descent set S ⊆ [n − 1], then
we say that Comp S is the descent composition of π, which we also denote by
Comp π. By convention, the empty permutation has descent composition ∅.

Continuing the example above, we have Comp 4783291 = (3, 1, 2, 1). Ob-
serve that the descent composition of π gives the lengths of the increasing runs
of π in the order that they appear. Conversely, if π has descent composition
L, then its descent set Des π is Des L.

We call a permutation statistic st a descent statistic if it depends only
on the descent composition, that is, if Comp π = Comp σ implies st π = st σ.
Equivalently, a descent statistic depends only on the descent set and length.
If st is a descent statistic, then we can extend the notion of st-equivalence
classes of permutations to that of compositions. First, let stL indicate the
value of st on any permutation with descent composition L. Then we say that
two compositions L and K of the same size—where the size of a composition
is the sum of its parts—are st-equivalent if stL = stK. For example, the
compositions (2, 3, 1) and (1, 1, 4) are des-equivalent because any permutation
with one of these descent compositions has exactly two descents.

3.2. Cyclic Descent Compositions

The notion of descent compositions for linear permutations can be extended to
cyclic permutations. To do so, we shall need a few more preliminary definitions.
A cyclic shift of a composition L = (L1, L2, . . . , Lk) is a composition of the
form

(Lj , Lj+1, . . . , Lk, L1, . . . , Lj−1).

A cyclic composition of n is then the equivalence class of a composition of n
under cyclic shift. For example,

[2, 1, 3] = {(2, 1, 3), (1, 3, 2), (3, 2, 1)}
and

[1, 2, 1, 2] = {(1, 2, 1, 2), (2, 1, 2, 1)}
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are both cyclic compositions. By convention, we’ll also allow the empty set ∅

to be a cyclic composition.
Let us call S a non-Escher3 subset of [n] if S is the cyclic descent set of

some linear permutation of length n. When n = 0 or n = 1, only the empty
set is non-Escher, and when n ≥ 2, all subsets of [n] are non-Escher except for
the empty set and [n] itself. We associate to each non-Escher subset S ⊆ [n] a
composition cComp S defined by

cComp S :=

⎧
⎪⎨

⎪⎩

(s2 − s1, . . . , sj − sj−1, n − sj + s1), if n ≥ 2,

(1), if n = 1,

∅, if n = 0.

It is easy to see that if S′ is a cyclic shift of S, then cComp S′ is a cyclic shift
of cComp S. So, if [S] is the equivalence class of S under cyclic shift, then we
can let cComp[S] be the cyclic composition defined by

cComp[S] := [cComp S].

We say that a cyclic composition is non-Escher if it is an image of this induced
map cComp, and one can check that cComp is a bijection from equivalence
classes of non-Escher subsets of [n] under cyclic shift to non-Escher cyclic
compositions of n. If S is the cyclic descent set of a linear permutation π, then
we call cComp[S] the cyclic descent composition of the cyclic permutation [π].
We denote the cyclic descent composition of [π] simply as cComp[π].

For example, take π = 179624. Then π has cyclic descent set S = {3, 4, 6},
so the cyclic descent composition of [π] is cComp[S] = [1, 2, 3], which we also
denote by cComp[π].

A cyclic permutation statistic cst is called a cyclic descent statistic if
it depends only on the cyclic descent composition—that is, if cComp[π] =
cComp[σ] implies cst[π] = cst[σ]. (This is equivalent to the definition given in
Sect. 2.2.) Similar to the notation stL, we can write cst[L] for the value of cst
on any cyclic permutation with cyclic descent composition [L], and we shall
say that two cyclic compositions [L] and [K] of the same size—which means
that L and K have the same size—are cst-equivalent if cst[L] = cst[K].

3.3. Quasisymmetric Functions

A formal power series f ∈ Q[[x1, x2, . . . ]] of bounded degree in countably many
commuting variables x1, x2, . . . is called a quasisymmetric function if for any
positive integers a1, a2, . . . , ak, i1 < i2 < · · · < ik, and j1 < j2 < · · · < jk, we
have equality of the monomial coefficients

[xa1
i1

xa2
i2

· · · xak
ik

] f = [xa1
j1

xa2
j2

· · · xak
jk

] f.

The Q-vector space QSymn of quasisymmetric functions homogeneous
of degree n has dimension 2n−1, the number of compositions of n. An im-
portant basis of QSymn is the basis of fundamental quasisymmetric functions

3We borrow the term “non-Escher” from [1] and other recent works on cyclic descent ex-
tensions. As explained there, this term is a reference to M. C. Escher’s painting “Ascending
and Descending”.
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{Fn,L}L�n defined by

Fn,L :=
∑

i1≤i2≤···≤in
ij<ij+1 if j∈Des L

xi1xi2 · · · xin .

Sometimes, it is more convenient to index fundamental quasisymmetric func-
tions by subsets of [n− 1] as opposed to compositions of n, in which case we’ll
use the notation

Fn,S := Fn,Comp S .

The product of two quasisymmetric functions is again quasisymmetric.
The multiplication rule for the fundamental basis is given by the following
theorem, which can be proved using P -partitions; see [17, Exercise 7.93].

Theorem 3.1. Let m and n be non-negative integers, and let A ⊆ [m − 1] and
B ⊆ [n − 1]. Then

Fm,AFn,B =
∑

τ∈π�σ

Fm+n,Des τ

where π is any permutation of length m with descent set A and σ is any
permutation (disjoint from π) of length n with descent set B.

If f ∈ QSymm and g ∈ QSymn, then fg ∈ QSymm+n. Therefore QSym :=⊕∞
n=0 QSymn is a graded Q-algebra called the algebra of quasisymmetric func-

tions (with coefficients in Q), a subalgebra of Q[[x1, x2, . . . ]]. Motivated by
Stanley’s theory of P -partitions, Gessel introduced quasisymmetric functions
in [4] and developed the basic algebraic properties of QSym. Further properties
of QSym and its connections with many topics of study in combinatorics and
algebra were developed in the subsequent decades; see [5, Section 5], [12], [15,
Chapter 8], and [18, Section 7.19] for several basic references.

From Theorem 3.1, we see that the descent set shuffle algebra ADes is
isomorphic to QSym; this is Corollary 4.2 of [7].

3.4. Cyclic Quasisymmetric Functions and the Cyclic Shuffle Algebra of cDes
We are now ready to discuss cyclic quasisymmetric functions and their role in
cyclic shuffle-compatibility.

Given a subset S of [n] where n ≥ 1, let

F cyc
n,S :=

∑

i∈[n]

Fn,(S+i)∩[n−1],

and let F cyc
0,∅ := 1; these are the fundamental cyclic quasisymmetric functions

introduced by Adin, Gessel, Reiner, and Roichman [1]. It is clear from this
definition that the F cyc

n,S are invariant under cyclic shift; in other words, if
S′ = S+i for some integer i, then F cyc

n,S = F cyc
n,S′ . As such, if [S] is the equivalence

class of the set S under cyclic shift, then it makes sense to define

F cyc
n,[S]

:= F cyc
n,S .
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We can also index fundamental cyclic quasisymmetric functions using compo-
sitions; for a composition L of n, let

F cyc
L := F cyc

n,cDes L and F cyc
[L]

:= F cyc
L .

Note that n is not needed in the subscript when using L or [L] since it is
determined from the sum of the parts of L.

Let cQSym− denote the span of {F cyc
n,[S]} over all n ≥ 0 and all equiva-

lence classes [S] of non-Escher subsets S ⊆ [n]. The following theorem, proven
by Adin et al. [1, Theorem 3.22], gives a multiplication rule for the funda-
mental cyclic quasisymmetric functions in cQSym−, which also implies that
the cyclic descent set cDes is cyclic shuffle-compatible and has cyclic shuffle
algebra isomorphic to cQSym−.

Theorem 3.2. Let m and n be non-negative integers, and let A ⊆ [m] and
B ⊆ [n] be non-Escher subsets. Then

F cyc
m,[A]F

cyc
n,[B] =

∑

[τ ]∈[π]�[σ]

F cyc
m+n,cDes[τ ] (1)

where [π] is any cyclic permutation of length m with cyclic descent set [A] and
[σ] is any cyclic permutation (with σ disjoint from π) of length n with cyclic
descent set [B].

Adin et al. proved Theorem 3.2 using toric [ �D]-partitions; we now supply
an alternative proof using Theorem 2.8.

Proof. We know that the descent set Des is shuffle-compatible and its shuffle
algebra ADes is isomorphic to the algebra of quasisymmetric functions, QSym,
through the isomorphism φDes(πDes) = F|π|,Des(π). Then, using the notation of
Theorem 2.8, we have

φDes(v[π]) = φDes

( ∑

π̄∈[π]

π̄Des

)
=

∑

i∈[n]

Fn,(cDes π+i)∩[n−1] = F cyc
n,cDes[π]

where n = |π|. If [π] and [σ] are cDes-equivalent, then both φDes(v[π]) and
φDes(v[σ]) are equal to F cyc

n,[S] where n = |π| = |σ| and [S] = cDes[π] = cDes[σ],
so v[π] = v[σ]. The linear independence of the F cyc

n,[S] can be established by
showing that the monomial cyclic quasisymmetric functions are linearly inde-
pendent and expressing each F cyc

n,[S] in terms of monomial cyclic quasisymmet-
ric functions; see [1, Section 2] for details. Theorem 2.8 implies that cDes is
cyclic shuffle-compatible and that Acyc

cDes is isomorphic to cQSym− via the
isomorphism [π]cDes �→ F cyc

|π|,cDes[π], from which the multiplication rule (1)
follows. �

As a direct consequence of Theorem 3.2, we have that cQSym− is a graded
Q-subalgebra of QSym. Adin et al. also show that the span of

{F cyc
0,∅ , F cyc

1,∅ , F cyc
1,{1}} ∪ {F cyc

n,[S]}n≥2, ∅	=S⊆[n],
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denoted cQSym, is a graded Q-subalgebra of QSym, although this result is less
relevant to cyclic shuffle-compatibility. Thus we have the subalgebra relations

cQSym− ⊆ cQSym ⊆ QSym,

and cQSym− is called the non-Escher subalgebra of cQSym.
Before moving on, let us explicitly state the cyclic shuffle-compatibility

of cDes as a corollary of the preceding theorem.

Corollary 3.3. (Cyclic shuffle-compatibility of cDes) The cyclic descent set
cDes is cyclic shuffle-compatible, and the linear map on Acyc

cDes defined by
[π]cDes �→ F cyc

|π|,cDes[π] is a Q-algebra isomorphism from Acyc
cDes to cQSym−.

3.5. A General Cyclic Shuffle-Compatibility Criterion for Cyclic Descent Sta-
tistics

The theorem below is [7, Theorem 4.3], which provides a necessary and suffi-
cient condition for shuffle-compatibility of descent statistics in terms of qua-
sisymmetric functions, and implies that the shuffle algebra of any shuffle-
compatible descent statistic is a quotient algebra of QSym.

Theorem 3.4. A descent statistic st is shuffle-compatible if and only if there
exists a Q-algebra homomorphism φst : QSym → A, where A is a Q-algebra
with basis {uα} indexed by st-equivalence classes α of compositions, such that
φst(FL) = uα whenever L ∈ α. In this case, the linear map on Ast defined by

πst �→ uα,

where Comp π ∈ α, is a Q-algebra isomorphism from Ast to A.

We now prove our main result of this section: a cyclic analogue of Theo-
rem 3.4.

Theorem 3.5. A cyclic descent statistic cst is cyclic shuffle-compatible if and
only if there exists a Q-algebra homomorphism φcst : cQSym− → A, where
A is a Q-algebra with basis {vα} indexed by cst-equivalence classes α of non-
Escher cyclic compositions, such that φcst(F

cyc
[L] ) = vα whenever [L] ∈ α. In

this case, the linear map on Acyc
cst defined by

[π]cst �→ vα,

where cComp[π] ∈ α, is a Q-algebra isomorphism from Acyc
cst to A.

Proof. Suppose that the cyclic descent statistic cst is cyclic shuffle-compatible.
Let A = Acyc

cst be the cyclic shuffle algebra of cst, and let vα = [π]cst for any
[π] satisfying cComp[π] ∈ α, so that

vβvγ =
∑

α

cα
β,γvα

where cα
β,γ is the number of cyclic permutations with cyclic descent compo-

sition in α that are obtained as a cyclic shuffle of two disjoint cyclic permu-
tations, one with cyclic descent composition in β and the other with cyclic
descent composition in γ. Observe that cα

β,γ =
∑

[L]∈α cL
J,K for any choice of
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[J ] ∈ β and [K] ∈ γ, where cL
J,K is the number of cyclic permutations with

cyclic descent composition [L] that are obtained as a cyclic shuffle of two
disjoint cyclic permutations, one with cyclic descent composition [J ] and the
other with cyclic descent composition [K].

Define the linear map φcst : cQSym− → A by φcst(F
cyc
[L] ) = vα for [L] ∈ α.

Then any [J ] ∈ β and [K] ∈ γ satisfy

φcst(F
cyc
[J] F cyc

[K] ) = φcst

(
∑

[L]

cL
J,KF cyc

[L]

)

=
∑

α

∑

[L]∈α

cL
J,Kvα

=
∑

α

cα
β,γvα

= vβvγ

= φcst(F
cyc
[J] )φcst(F

cyc
[K] ),

so φcst is a Q-algebra homomorphism, thus completing one direction of the
proof.

The converse follows from Theorem 2.1, where we take cst1 to be cDes
(which is cyclic shuffle-compatible by Corollary 3.3) and cst2 to be cst. �

Corollary 3.6. If cst is a cyclic shuffle-compatible descent statistic, then Acyc
cst

is isomorphic to a quotient algebra of cQSym−.

To conclude this section, we state a special case of Theorem 3.5 in which
the homomorphism φcst is given in terms of the homomorphism φst of a related
(linear) descent statistic; c.f. Theorem 2.8. We will use this theorem to prove
cyclic shuffle-compatibility results for cyclic analogues of shuffle-compatible
descent statistics.

Theorem 3.7. Let cst be a cyclic descent statistic and let st be a shuffle-
compatible (linear) descent statistic, so that there exists a Q-algebra homo-
morphism φst : QSym → A satisfying the conditions in Theorem 3.4. Define
the Q-algebra homomorphism φcst : cQSym− → A by

φcst(F
cyc
n,S) =

∑

i∈[n]

φst(Fn,(S+i)∩[n−1]).

Suppose that φcst(F
cyc
n,S) = φcst(F

cyc
n,T ) whenever cComp[S] and cComp[T ] are

cst-equivalent cyclic compositions—so that we can write φcst(F
cyc
n,S) = vα when-

ever cComp[S] ∈ α—and suppose that {vα} is linearly independent. Then cst
is cyclic shuffle-compatible and the linear map on Acyc

cst defined by

[π]cst �→ vα,

where cComp[π] ∈ α, is a Q-algebra isomorphism from Acyc
cst to the span of

{vα}, a subalgebra of A.
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4. Characterizations of Cyclic Shuffle Algebras

Our next goal is to use the theory developed in the previous section to give
explicit descriptions of cyclic shuffle algebras. First, let us discuss a couple
statistics—the cyclic peak set cPk and the cyclic peak number cpk—whose
definitions were omitted from the introduction. We will then characterize the
cyclic shuffle algebras of cPk, (cpk, cdes), cpk, and cdes. This yields new proofs
for the cyclic shuffle-compatibility of the statistics cPk, cpk, and cdes, as well
as the first proof for (cpk, cdes).

4.1. The Cyclic Peak Set and Cyclic Peak Number

The cyclic peak set of a linear permutation π ∈ Pn is defined by

cPk π := { i ∈ [n] : πi−1 < πi > πi+1 where i is considered modulo n }.

and the elements of cPk π are called cyclic peaks of π. Then the cyclic peak set
of a cyclic permutation [π] is defined to be the multiset

cPk[π] := {{ cPk π̄ : π̄ ∈ [π] }}.
For example, we have cPk[184756] = {{ {2, 4, 6}3, {1, 3, 5}3 }}. It is clear from
the definitions that, in general, cPk[π] is the multiset consisting of all cyclic
shifts of cPk π.

The cyclic peak number of a linear permutation π is defined by

cpk π := |cPk π| ,
and the cyclic peak number of a cyclic permutation [π] by

cpk[π] := cpkπ,

which is well-defined because every linear permutation in [π] has the same num-
ber of cyclic peaks. It is easy to see that cPk and cpk are both cyclic descent
statistics, so they are uniquely determined by the cyclic descent composition
(equivalently, the cyclic descent set and length).

When we characterize the (cpk, cdes) cyclic shuffle algebra, we shall need
to determine all values that the (cpk, cdes) statistic can take, which we can do
with the help of two lemmas. The first of these lemmas is Proposition 2.5 of
[7], so we omit its proof.

Lemma 4.1. Let n ≥ 1.
(a) If π ∈ Pn, then 0 ≤ pkπ ≤ �(n − 1)/2� and pk π ≤ des π ≤ n − pk π − 1.
(b) If j and k are integers satisfying 0 ≤ j ≤ �(n − 1)/2� and j ≤ k ≤

n − j − 1, then there exists π ∈ Pn with pk π = j and des π = k.

Lemma 4.2. Let n ≥ 2. If π ∈ Pn−1 and m is greater than the largest letter
of π, then cpk[πm] = pkπ + 1 and cdes[πm] = des π + 1, where πm is the
permutation in Pn obtained by appending the letter m to π.

Proof. Every peak of π is a cyclic peak of πm, and every cyclic peak of πm is
either m or a peak of π. The same relationship is true for descents of π and
cyclic descents of πm. �

Corollary 4.3. Let n ≥ 2.
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(a) If π ∈ Pn, then 1 ≤ cpkπ ≤ �n/2� and cpk π ≤ cdes π ≤ n − cpkπ.
(b) If j and k are integers satisfying 1 ≤ j ≤ �n/2� and j ≤ k ≤ n − j, then

there exists π ∈ Pn with cpk π = j and cdes π = k.

Proof. Fix π ∈ Pn. Let m be the largest letter of π, let π̄ be the unique
representative of [π] which ends with m, and let π′ be the permutation of
length n−1 obtained from π̄ upon removing its last letter m. Applying Lemma
4.2, we obtain

cpkπ = cpk[π̄] = pkπ′ + 1 and cdes π = cdes[π̄] = des π′ + 1.

Then part (a) follows from these equations and Lemma 4.1 (a).
To prove part (b), let j and k be integers in the specified ranges. By

Lemma 4.1 (b), we know there exists a permutation π′ ∈ Pn−1 with pkπ′ =
j − 1 and desπ′ = k − 1. Let m ∈ P be greater than the largest letter of π′;
then it follows from Lemma 4.2 that πm is a permutation in Pn satisfying
cpk π = j and cdes π = k. �

4.2. The Cyclic Shuffle Algebra of cPk
We will construct the cyclic shuffle algebra Acyc

cPk from the linear shuffle algebra
APk. The latter is known to be isomorphic to a subalgebra Π of QSym—
introduced by Stembridge [19]—called the algebra of peaks, which is spanned by
the peak quasisymmetric functions Kn,S where n ranges over all non-negative
integers and S over all possible peak sets of permutations in Pn. We won’t
need the precise definition of Kn,S here, only that the isomorphism from APk

to Π sends πPk to K|π|,Pk π. We state this fact in the following theorem, which
appears as Theorem 4.7 of [7].

Theorem 4.4. (Shuffle-compatibility of Pk) The peak set Pk is shuffle-compatible,
and the linear map on APk defined by πPk �→ K|π|,Pk π is a Q-algebra isomor-
phism from APk to Π.

The analogue of Stembridge’s quasisymmetric peak functions in the cyclic
setting are the cyclic peak quasisymmetric functions Kcyc

n,S recently introduced
by Liang [10]. Here, we shall define the cyclic peak functions Kcyc

n,S in terms of
the Kn,S . For brevity, let us say that S is a cyclic peak set of [n] if S is the
cyclic peak set of some permutation of length n. Then, if S is a cyclic peak set
of [n], let

Kcyc
n,S :=

∑

i∈[n]

Kn,(S+i)\{1,n} =
∑

π̄∈[π]

Kn,Pk π̄

where π is any permutation in Pn with cyclic peak set S. We can also write
Kcyc

n,[S]
:= Kcyc

n,S since the Kcyc
n,S are invariant under cyclic shift. Liang showed

that the Kcyc
n,[S] are linearly independent, and they span a subalgebra Λ of

cQSym called the algebra of cyclic peaks.4

4The algebra Λ should not be confused with another subalgebra of cQSym commonly de-
noted Λ: the algebra of symmetric functions.
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The following theorem—which is equivalent to Equation (5.10) of [10]—
gives a multiplication rule for the Kcyc

n,[S]. This multiplication rule also implies
that cPk is cyclic shuffle-compatible, which was first proven by Domagalski et
al. [3] using bijective means.

Theorem 4.5. Let m and n be non-negative integers, let A be a cyclic peak set
of [m], and let B be a cyclic peak set of [n]. Then

Kcyc
m,[A]K

cyc
n,[B] =

∑

[τ ]∈[π]�[σ]

Kcyc
m+n,cPk[τ ] (2)

where [π] is any cyclic permutation of length m with cyclic peak set [A] and
[σ] is any cyclic permutation (with σ disjoint from π) of length n with cyclic
peak set [B].

While Liang’s proof of Theorem 4.5 uses enriched toric [ �D]-partitions, we
shall now use Theorem 3.7 to supply an alternative proof.

Proof. First, we take φPk : QSym → Π to be the composition of the map
FL �→ πPk with the map πPk �→ K|π|,Pk π from Theorem 4.4 where π is any
permutation with Pkπ = PkL; then φPk satisfies the conditions in Theorem
3.4.

Let S be a non-Escher subset of [n], and let [P ] be the cyclic peak set of
any cyclic permutation [π] of length n with cyclic descent set [S]. Note that
the sets (S + i) ∩ [n − 1] where i ranges from 1 to n are precisely the descent
sets of the n linear permutations in [π]. Hence, we have

φcPk(F
cyc
n,S) =

∑

i∈[n]

φPk(Fn,(S+i)∩[n−1]) =
∑

π̄∈[π]

φPk(Fn,Des π̄) =
∑

π̄∈[π]

Kn,Pk π̄

= Kcyc
n,[P ].

Clearly, φcPk(F
cyc
n,S) depends only on the cPk-equivalence class of the cyclic

composition cComp[S], and we know that the Kcyc
n,[P ] are linearly independent.

Applying Theorem 3.7, we conclude that cPk is cyclic shuffle-compatible and
that Acyc

cPk is isomorphic to Λ via the isomorphism [π]cPk �→ Kcyc
|π|,cPk[π], from

which the multiplication rule (2) follows. �
Corollary 4.6. (Cyclic shuffle-compatibility of cPk) The cyclic peak set cPk
is cyclic shuffle-compatible, and the linear map on Acyc

cPk defined by [π]cPk �→
Kcyc

|π|,cPk[π] is a Q-algebra isomorphism from Acyc
cPk to Λ.

4.3. The Cyclic Shuffle Algebra of (cpk, cdes)
We will now use Theorem 3.7 to construct the cyclic shuffle algebra Acyc

(cpk,cdes)

from the linear shuffle algebra A(pk,des). We begin by recalling the following
result about A(pk,des), which is Theorem 5.9 of Gessel and Zhuang [7]. Below,
we will use the notation Q[[t∗]] to denote the Q-algebra of formal power series
in t where the multiplication is given by the Hadamard product ∗, defined by

( ∞∑

n=0

antn

)
∗

( ∞∑

n=0

bntn

)
:=

∞∑

n=0

anbntn.
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Theorem 4.7. (Shuffle-compatibility of (pk,des))

(a) The pair (pk,des) is shuffle-compatible.
(b) Let

u
(pk,des)
n,j,k =

tj+1(y + t)k−j(1 + yt)n−j−k−1(1 + y)2j+1

(1 − t)n+1
xn.

Then the linear map on A(pk,des) defined by

π(pk,des) �→
{

u
(pk,des)
|π|,pk π,des π, if |π| ≥ 1,

1/(1 − t), if |π| = 0,

is a Q-algebra isomorphism from A(pk,des) to the span of
{

1
1 − t

} ⋃
{u

(pk,des)
n,j,k }n≥1,

0≤j≤�(n−1)/2�,
j≤k≤n−j−1,

,

a subalgebra of Q[[t∗]][x, y].

We note that, in the definition of u
(pk,des)
n,j,k , all products should be in-

terpreted as ordinary multiplication; the Hadamard product in t is only used
when multiplying elements in the span of the u

(pk,des)
n,j,k . The same is true in

Theorems 4.8, 4.9, and 4.10 presented later in this section.

Theorem 4.8. (Cyclic shuffle-compatibility of (cpk, cdes))

(a) The pair (cpk, cdes) is cyclic shuffle-compatible.
(b) Let

v
(cpk,cdes)
n,j,k = ju

(pk,des)
n,j−1,k + ju

(pk,des)
n,j−1,k−1 + (k − j)u(pk,des)

n,j,k−1 + (n − j − k)u(pk,des)
n,j,k

= [j(y + t)(1 + yt)(1 + y + t + yt)

+ ((k − j)(1 + yt) + (n − j − k)(y + t))t(1 + y)2]

× tj(y + t)k−j−1(1 + yt)n−j−k−1(1 + y)2j−1

(1 − t)n+1
xn.

Then the linear map on Acyc
(cpk,cdes) defined by

[π](cpk,cdes) �→
{

v
(cpk,cdes)
|π|,cpk[π],cdes[π], if |π| ≥ 1,

1/(1 − t), if |π| = 0,

is a Q-algebra homomorphism from Acyc
(cpk,cdes) to the span of

{
1

1 − t
,
t(1 + y)
(1 − t)2

x

} ⋃
{v

(cpk,cdes)
n,j,k }n≥2, 1≤j≤�n/2�, j≤k≤n−j ,

a subalgebra of Q[[t∗]][x, y].
(c) For all n ≥ 2, the nth homogeneous component of Acyc

(cpk,cdes) has dimen-
sion

⌊
n2/4

⌋
.
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Proof. We shall apply Theorem 3.7 using st = (pk,des). In doing so, we take
φ(pk,des) to be the composition of the map FL �→ π(pk,des) with the map from
Theorem 4.7 (b), where π is any permutation with pkπ = pkL and desπ =
des L.

Let π be a permutation of length n ≥ 2 with cyclic descent set S, and
let j = cpk[π] and k = cdes[π] (which only depend on S and not the specific
choice of π). Let us consider the n linear permutations in [π], whose descent
sets are given by (S + i) ∩ [n − 1] where i ranges from 1 to n. Among these n
permutations, the following hold:

• Exactly j of these permutations have cpk[π] − 1 peaks and cdes[π] de-
scents, which are those that have a cyclic peak in the first position.

• Exactly j of these permutations have cpk[π] − 1 peaks and cdes[π] − 1
descents, which are those that have a cyclic peak in the last position.

• Exactly k − j of these permutations have cpk[π] peaks and cdes[π] − 1
descents, which are those that have a cyclic descent in the last position
which is not a cyclic peak.

• The remaining n − j − k permutations have cpk[π] peaks and cdes[π]
descents.
Therefore, we have

φ(cpk,cdes)(F
cyc
n,S) =

∑

i∈[n]

φ(pk,des)(Fn,(S+i)∩[n−1])

= ju
(pk,des)
n,j−1,k + ju

(pk,des)
n,j−1,k−1 + (k − j)u(pk,des)

n,j,k−1 + (n − j − k)u(pk,des)
n,j,k

= v
(cpk,cdes)
n,j,k .

For n = 0 and n = 1, we have

φ(cpk,cdes)(F
cyc
0,∅ ) =

1
1 − t

and φ(cpk,cdes)(F
cyc
1,∅ ) =

t(1 + y)
(1 − t)2

x.

Clearly, φ(cpk,cdes)(F
cyc
n,S) depends only on the (cpk, cdes)-equivalence class of

cComp[S].
To prove linear independence, let us order monomials in the variables t

and y lexicographically by the exponent of t followed by the exponent of y,
that is, tayb > tcyd if and only if either a > c, or if a = c and b > d. Since
Corollary 4.3 implies j ≥ 1, it is readily verified that the least monomial in
(1 − t)n+1v

(cpk,cdes)
n,j,k /xn is tjyk−j ; thus

{
(1 − t)n+1

xn
v
(cpk,cdes)
n,j,k

}

1≤j≤�n/2�
j≤k≤n−j

is linearly independent for each n ≥ 2, and this in turn implies that
{

1
1 − t

,
t(1 + y)
(1 − t)2

x

}⋃
{v

(cpk,cdes)
n,j,k } n≥2

1≤j≤�n/2�
j≤k≤n−j

is linearly independent. Corollary 4.3 ensures that we have the correct limits
on j and k, so we can use Theorem 3.7 to conclude that parts (a) and (b) hold.
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From Corollary 4.3, we know that for n ≥ 2, the number of (cpk, cdes)-
equivalence classes of cyclic permutations of length n is

�n/2�∑

j=1

((n − j) − j + 1) =
�n/2�∑

j=1

(n − 2j + 1),

and it is straightforward to show that this is equal to
⌊
n2/4

⌋
. Thus, part (c)

follows. �

4.4. The Cyclic Shuffle Algebras of cpk and cdes
Next, we use our characterization of the cyclic shuffle algebra Acyc

(cpk,cdes) along
with Theorem 2.1 to characterize Acyc

cpk and Acyc
cdes, which also provides an al-

ternative proof for the cyclic shuffle-compatibility of cpk and cdes.
Let N be the set of non-negative integers. In the theorems below, we use

the notation Q[x]N to denote the algebra of functions N → Q[x] in the non-
negative integer variable p. For example, the map p �→ (

p
2

)
x + p3—which we

write simply as
(
p
2

)
x + p3 for brevity—is an element of Q[x]N. Moreover, in

Theorem 4.9 below,
((

n
k

))
is the number of k-element multisubsets of [n].

Theorem 4.9. (Cyclic shuffle-compatibility of cpk)

(a) The cyclic peak number cpk is cyclic shuffle-compatible.
(b) The linear map on Acyc

cpk defined by

[π]cpk �→
⎧
⎪⎨

⎪⎩

(cpk[π](1 + t)2 + 2(|π| − 2 cpk[π])t)(4t)cpk[π](1 + t)|π|−2 cpk[π]−1

(1 − t)|π|+1
x|π|, if |π| ≥ 1,

1/(1 − t), if |π| = 0,

is a Q-algebra isomorphism from Acyc
cpk to the span of

{
1

1 − t
,

tx

(1 − t)2

} ⋃ {
(j(1 + t)2 + 2(n − 2j)t)(4t)j(1 + t)n−2j−1

(1 − t)n+1
xn

}

n≥2,
1≤j≤�n/2�

,

a subalgebra of Q[[t∗]][x].
(c) Let

wcpk
n,j = j4j

p−j∑

k=0

((
n + 1

k

))(
n − 2j + 1
p − j − k

)
xn

+ 2(n − 2j)4j

p−1−j∑

k=0

((
n + 1

k

)) (
n − 2j − 1

p − j − k − 1

)
xn.

Then the linear map on Acyc
cpk defined by

[π]cpk �→
{

wcpk
|π|,cpk[π], if |π| ≥ 1,

1, if |π| = 0,
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is a Q-algebra isomorphism from Acyc
cpk to the span of

{1} ∪ {wcpk
n,j }n≥1,

1≤j≤�n/2�
,

a subalgebra of Q[x]N.
(d) For all n ≥ 2, the nth homogeneous component of Acyc

cpk has dimension
�n/2�.

Proof. Let φ : Acyc
(cpk,cdes) → Q[[t∗]][x] be the composition of the map from

Theorem 4.8 (b) and the y = 1 evaluation map. Since

v
(cpk,cdes)
n,j,k

∣∣∣
y=1

=
(j(1 + t)2 + 2(n − 2j)t)(4t)j(1 + t)n−2j−1

(1 − t)n+1
xn

for all n ≥ 1, we see that φ is precisely the map in part (b) of this theorem. Note
that v

(cpk,cdes)
n,j,k |y=1 depends only on n and j, so the v

(cpk,cdes)
n,j,k |y=1 correspond

to cpk-equivalence classes. Furthermore, it is straightforward to verify that
the v

(cpk,cdes)
n,j,k |y=1 are linearly independent, so we may apply Theorem 2.1 to

complete the proof for parts (a), (b) and (d). Part (c) follows from part (b)
and the identity

∞∑

p=0

wcpk
|π|,cpk[π]t

p =

(
4t

(1 + t)2

)cpk[π] (1 + t

1 − t

)|π|−1 (
cpk[π] +

2 |π| t
(1 − t)2

)
x|π|

=
(cpk[π](1 + t)2 + 2(|π| − 2 cpk[π])t)(4t)cpk[π](1 + t)|π|−2 cpk[π]−1

(1 − t)|π|+1
x|π|,

where the first equality follows from [10, Proposition 5.13 and
Corollary 5.18]. �

Theorem 4.10. (Cyclic shuffle-compatibility of cdes)

(a) The cyclic descent number cdes is cyclic shuffle-compatible.
(b) The linear map on Acyc

cdes defined by

[π]cdes �→
⎧
⎨

⎩

cdes[π]tcdes[π] + (|π| − cdes[π])tcdes[π]+1

(1 − t)|π|+1
x|π|, if |π| ≥ 1,

1/(1 − t), if |π| = 0,

is a Q-algebra isomorphism from Acyc
cdes to the span of

{
1

1 − t
,

tx

(1 − t)2

} ⋃{
ktk + (n − k)tk+1

(1 − t)n+1
xn

}

n≥2,
1≤k≤n−1

,

a subalgebra of Q[[t∗]][x].
(c) The linear map on Acyc

cdes defined by

[π]cdes �→
⎧
⎨

⎩

(
p + |π| − cdes[π] − 1

|π| − 1

)
px|π|, if |π| ≥ 1,

1, if |π| = 0,
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is a Q-algebra isomorphism from Acyc
cdes to the span of

{1, px}
⋃ {(

p + n − k − 1
n − 1

)
pxn

}

n≥2,
1≤k≤n−1

,

a subalgebra of Q[x]N.
(d) For all n ≥ 2, the nth homogeneous component of Acyc

cdes has dimension
n − 1.

Proof. The proofs for parts (a), (b), and (d) follow in the same way as in for
Theorem 4.9, except that we evaluate at y = 0 as opposed to y = 1. Part (c)
follows from part (b) and the identity

ktk + (n − k)tk+1

(1 − t)n+1
=

∞∑

p=0

(
p + n − k − 1

n − 1

)
ptp,

which was established in [1, Lemma 5.8]. �

5. Cyclic Permutation Statistics Induced by Linear Permutation
Statistics

Recall that the cyclic permutation statistics cDes and cPk are defined by

cDes[π] := {{ cDes π̄ : π̄ ∈ [π] }} and cPk[π] := {{ cPk π̄ : π̄ ∈ [π] }}.
In other words, cDes[π] is simply the distribution of the linear permutation
statistic cDes over all linear permutations in [π], and similarly with cPk[π].
In fact, any linear permutation statistic st induces a multiset-valued cyclic
permutation statistic (which we also denote st by a slight abuse of notation)
if we let

st[π] := {{ st π̄ : π̄ ∈ [π] }}.
In this section, we study these multiset-valued cyclic statistics induced from
various linear permutation statistics.

5.1. The Cyclic Statistics Des, des, Pk, and pk
To begin, we note that the cyclic statistics induced from the linear statistics
Des, des, Pk, and pk are equivalent to cDes, cdes, cPk, and cpk, respectively.

Lemma 5.1. The cyclic permutation statistics Des and cDes are equivalent.

Proof. Let π ∈ Pn. For any π̄ ∈ [π], we have Des π̄ = cDes π̄\{n} if n ∈ cDes π̄
and Des π̄ = cDes π̄ otherwise. Therefore, we can obtain Des[π] from cDes[π]
by removing every n from the cyclic descent sets in cDes[π], and we can obtain
cDes[π] from Des[π] by adding n to each descent set in Des[π] with one fewer
element than the others. �

Lemma 5.2. The cyclic permutation statistics des and cdes are equivalent.
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Proof. Let π ∈ Pn. For any π̄ ∈ [π], we have des π̄ = cdes[π] − 1 if n ∈ cDes π̄
and des π̄ = cdes[π] otherwise. The unique permutation in [π] beginning with
its largest letter does not have n as a cyclic descent, so we can determine
cdes[π] from the multiset des[π] by taking the largest value in des[π].

Conversely, among the n rotations of π, there are exactly cdes[π] permu-
tations with a cyclic descent in the last position; this implies that des[π] is the
multiset with cdes[π] copies of cdes[π] − 1 and n − cdes[π] copies of cdes[π], so
we can determine des[π] from cdes[π] as well. �

Lemma 5.3. The cyclic permutation statistics Pk and cPk are equivalent.

Proof. Let π ∈ Pn. For any π̄ ∈ [π], we have Pk π̄ = cPk π̄\{1} if 1 ∈ cPk π̄,
Pk π̄ = cPk π̄\{n} if n ∈ cPk π̄, and Pk π̄ = cPk π̄ otherwise. (Note that cPk π̄
cannot simultaneously contain 1 and n.) Hence, we can obtain Pk[π] from
cPk[π] by removing every 1 and n from the cyclic peak sets in cPk[π].

Conversely, suppose that we are given Pk[π] and wish to recover cPk[π].
Let i ∈ [n] be arbitrary. Notice that, among all n representatives of [π], the
index of πi spans the entire range {1, 2, . . . , n}. If i is a cyclic peak of π in
particular, this means that the index of πi will be a peak of all n representatives
of [π] except for the linear permutation beginning with πi and the one ending
with πi; hence, if one adds up pk π̄ over all π̄ ∈ [π], then each of these πi will
contribute n − 2 to the summation. It follows that the sum of the sizes of all
peak sets in Pk[π] is equal to (n − 2) cpk[π]; in other words, we can determine
cpk[π] from Pk[π]. It remains to show that we can recover cPk[π] from cpk[π]
and Pk[π]. To do so, we divide into two cases:

• Case 1 : Suppose that there exists a peak set Pk π̄ in Pk[π] with cpk[π]
elements. Then Pk π̄ = cPk π̄, and we can recover the entire multiset
cPk[π] by taking all n cyclic shifts of Pk π̄.

• Case 2 : Suppose instead that all peak sets in Pk[π] have cpk[π] − 1
elements. Then, every linear permutation in [π] has either 1 or n as a
cyclic peak. In general, among the n representatives of [π], there are
exactly 2 cpk[π] of them with a cyclic peak at one end. This means that
2 cpk[π] = n, and since cyclic peak sets cannot contain two consecutive
indices, it follows that every cyclic peak set in cPk[π] is of the form
{1, 3, . . . , n − 1} or {2, 4, . . . , n}. More precisely, we must have

cPk[π] = {{ {1, 3, . . . , n − 1}n/2, {2, 4, . . . , n}n/2 }}.
Since cPk[π] can be recovered from Pk[π] in both cases, we are done. �

Lemma 5.4. The cyclic permutation statistics pk and cpk are equivalent.

Proof. Let π ∈ Pn. As shown in the proof of Lemma 5.3, the sum of the sizes
of all peak sets in Pk[π] is equal to (n − 2) cpk[π], but this is the same as the
sum of all elements of the multiset pk[π]. Thus, cpk[π] can be determined from
pk[π].

For the converse, we use the observation (also used in the proof of Lemma
5.3) that among the n representatives of a cyclic permutation [π], there are
exactly 2 cpk[π] of them with a cyclic peak at one end. This implies that the
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multiset pk[π] has 2 cpk[π] copies of cpk[π]−1 and n−2 cpk[π] copies of cpk[π].
Hence, cpk[π] completely determines pk[π]. �

Since cDes, cdes, cPk, and cpk are cyclic shuffle-compatible, it follows
from these equivalences and Theorem 2.2 that the cyclic statistics Des, des,
Pk, and pk are as well.

Theorem 5.5. (Cyclic shuffle-compatibility of Des, des, Pk, and pk) The cyclic
statistics Des, des, Pk, and pk are cyclic shuffle-compatible, and we have the
Q-algebra isomorphisms

Acyc
Des

∼= Acyc
cDes, Acyc

des
∼= Acyc

cdes, Acyc
Pk

∼= Acyc
cPk, and Acyc

pk
∼= Acyc

cpk.

5.2. Symmetries Revisited

Let f be a length-preserving involution on permutations that is both shuffle-
compatibility-preserving and rotation-preserving. In Sect. 2.3, we proved that
if the cyclic permutation statistics cst1 and cst2 are f -equivalent and if cst1 is
cyclic shuffle-compatible, then cst2 is also cyclic shuffle-compatible with cyclic
shuffle algebra isomorphic to that of cst1. We now show that f -equivalence of
two linear permutation statistics induces f -equivalence of their induced cyclic
statistics.

Lemma 5.6. Let f be rotation-preserving. If st1 and st2 are f-equivalent linear
permutation statistics, then their induced cyclic permutation statistics st1 and
st2 are f-equivalent.

Proof. Since st1 and st2 are f -equivalent linear permutation statistics, we have
st1 πf = st1 σf if and only if st2 π = st2 σ. Suppose that st2[π] = st2[σ]. Then,
there is a bijective correspondence g : [π] → [σ] satisfying st2 π̄ = st2 g(π̄)
for all π̄ ∈ [π], so st1 π̄f = st1 g(π̄)f for all π̄ ∈ [π]. Because f is rotation-
preserving, the permutations π̄f and g(π̄)f over all π̄ ∈ [π] are precisely the
rotations of πf and σf , respectively. Thus, we have st1[πf ] = st1[σf ]. The
converse follows from similar reasoning, so we have st1[πf ] = st1[σf ] if and
only if st2[π] = st2[σ]—in other words, the cyclic permutation statistics st1
and st2 are f -equivalent. �

Theorem 5.7. Let f be shuffle-compatibility-preserving and rotation-preserving,
and let st1 and st2 be f-equivalent linear permutation statistics. If the induced
cyclic statistic st1 is cyclic shuffle-compatible, then the induced cyclic statistic
st2 is also cyclic shuffle-compatible and Acyc

st2 is isomorphic to Acyc
st1 .

Proof. This is an immediate consequence of Theorem 2.6 and Lemma 5.6. �

Corollary 5.8. Suppose that the linear permutation statistics st1 and st2 are
r-equivalent, c-equivalent, or rc-equivalent. If the induced cyclic statistic st1
is cyclic shuffle-compatible, then the induced cyclic statistic st2 is also cyclic
shuffle-compatible and its cyclic shuffle algebra Acyc

st2 is isomorphic to Acyc
st1 .

Given π ∈ Pn, recall that the valley set Val statistic is defined by

Val π := { i ∈ [n] : πi−1 > πi < πi+1, },
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and let us also define the cyclic valley set cVal by

cVal π := { i ∈ [n] : πi−1 > πi < πi+1 where i is considered modulo n }.

As a sample application of Corollary 5.8, observe that Val is c-equivalent to Pk
(as linear permutation statistics) and similarly with cVal and cPk. Combining
this with Lemma 5.3, we immediately obtain the following.

Theorem 5.9. (Cyclic shuffle-compatibility of Val and cVal) The cyclic sta-
tistics Val and cVal are cyclic shuffle-compatible, and we have the Q-algebra
isomorphisms

Acyc
Val

∼= Acyc
Pk

∼= Acyc
cPk

∼= Acyc
cVal.

5.3. Cyclic Major Index

A natural question to ask is whether there is a nice cyclic analogue of the
major index. This question was raised in [1] and again in [3]. One first needs
to explain what one means by “nice.”

If π ∈ Pm and σ ∈ Pn, then

|π� σ| =
(

m + n

m

)
.

From Stanley’s theory of P -partitions [16], one gets the q-analogue
∑

τ∈π�σ

qmaj τ = qmaj π+maj σ

[
m + n

m

]
(3)

where
[
m+n

m

]
is a q-binomial coefficient. Note that (3) implies that maj is

shuffle-compatible.
It can be shown that

|[π]� [σ]| = (m + n − 1)
(

m + n − 2
m − 1

)

[3], so one could ask that the cyclic major index give a q-analogue of this
identity, similar to (3), or at least for the cyclic major index to be cyclic
shuffle-compatible.

Stanley also refined Eq. (3) as follows. Let

π�k σ = { τ ∈ π� σ : des τ = k }.

If des π = i and desσ = j, then
∑

τ∈π�kσ

qmaj τ = qmaj π+maj σ+(k−i)(k−j)

[
m − j + i

k − j

][
n − i + j

k − i

]
; (4)

in particular, this implies that (des,maj) is shuffle-compatible, and so we would
like a cmaj statistic for which cmaj and (cdes, cmaj) are both cyclic shuffle-
compatible.

In [1], Adin et al. computed the cardinality of

[π]�k [σ] = { [τ ] ∈ [π]� [σ] : cdes[τ ] = k }
which inspired Ji and Zhang [8] to define a cmaj statistic which gives a q-
analogue of this count. They proved a generating function formula analogous
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to (4), but unfortunately, the formula does not simplify into single product, and
one could hope for a different cyclic major index whose generating function
would do so. Furthermore, their formula does not actually show that their
(cdes, cmaj) is cyclic shuffle-compatible; in fact, neither of their cmaj and
(cdes, cmaj) are cyclic shuffle-compatible.

Each of the cyclic statistics cDes, cdes, cPk, and cpk is (or is equiva-
lent to) a multiset-valued cyclic statistic induced by a corresponding linear
permutation statistic, so a natural alternative definition for a cyclic major in-
dex would be to define cmaj first on linear permutations and then consider
the multiset-valued statistic induced by the linear cmaj. To that end, given a
linear permutation π, let

cmaj π :=
∑

k∈cDes π

k.

Unfortunately, the induced statistics cmaj and (cdes, cmaj) are not cyclic
shuffle-compatible. As a counterexample, take π = 14 7 6 9 10 8 2 5 3, σ =
13 5 4 7 6 9 10 8 2, and ρ = 11. Then cdes[π] = cdes[σ] = 5 and cmaj[π] =
cmaj[σ] = {{20, 254, 304, 35}}, but cmaj([π]� [ρ]) �= cmaj([σ]� [ρ]). For in-
stance, the multiset {{22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35}} is an element of
cmaj([π]� [ρ]) but not cmaj([σ]� [ρ]).

Another option is to consider the cyclic statistic induced by the usual ma-
jor index maj, as opposed to cmaj. Even if cmaj and (cdes, cmaj) are not cyclic
shuffle-compatible, it’s conceivable that maj and (des,maj) are. It turns out
that maj is equivalent to cmaj and similarly with (des,maj) and (cdes, cmaj),
so by Theorem 2.2, neither maj nor (des,maj) are cyclic shuffle-compatible.

Lemma 5.10. The cyclic permutation statistics (des,maj) and (cdes, cmaj) are
equivalent.

Proof. Fix a cyclic permutation [π] = {π = π(1), π(2), . . . , π(n)} of length n
where, for each i ∈ [n], π(i+1) is obtained from π(i) by rotating its last element
to the front of the permutation and i is taken modulo n. We claim that, for
all i ∈ [n],

cmaj π(i+1) =

{
cmaj π(i) + cdes[π] − n, if n ∈ cDes π(i),

cmaj π(i) + cdes[π], if n /∈ cDes π(i).
(5)

To prove (5), first assume that n ∈ cDes π(i), and let k = cdes[π]. Then

cDes π(i) = {j1 < j2 < · · · < jk = n}
whereas

cDes π(i+1) = {1 < j1 + 1 < j2 + 1 < · · · < jk−1 + 1}.

So

cmaj π(i) − cmaj π(i+1) = n − k,

which is equivalent to the first case of (5). The second case is proven using a
similar computation.
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Observe that Equation (5) is equivalent to

cmaj π(i+1) = maj π(i) + cdes[π], (6)

which allows us to determine cmaj[π] from maj[π] and cdes[π]. Moreover,
cdes[π] can be determined from des[π] by Lemma 5.2, so (cdes, cmaj)[π] can
be determined from (des,maj)[π].

Conversely, we can use (6) to determine maj[π] from cmaj[π] and cdes[π],
and des[π] can be determined from cdes[π] by Lemma 5.2; altogether, this
means that we can also determine (des,maj)[π] from (cdes, cmaj)[π]. �

Lemma 5.11. The cyclic permutation statistics maj and cmaj are equivalent.

Proof. Let π ∈ Pn. We first claim that cdes[π] can be determined either from
maj[π] or from cmaj[π]. Fix i ∈ cDes π. Among all n representatives of [π],
the index of πi spans the entire range {1, 2, . . . , n}. Hence, if one adds up
maj π̄ over all π̄ ∈ [π], then πi will contribute 1 + 2 + · · · + (n − 1) =

(
n
2

)

to the summation. Similarly, in taking the sum of all cmaj π̄, each πi will
contribute 1 + 2 + · · · + n =

(
n+1

2

)
. Thus, the sum of all elements of the

multiset maj[π] is equal to
(
n
2

)
cdes[π] and the sum of all elements of cmaj[π]

is equal to
(
n+1

2

)
cdes[π], and it follows that cdes[π] can be determined from

maj[π] or cmaj[π].
Now we are ready to prove the equivalence between maj and cmaj. For one

direction, maj[π] completely determines cdes[π] and hence determines des[π] by
Lemma 5.2. In addition, maj[π] and des[π] together determine (cdes, cmaj)[π]
by Lemma 5.10, so cmaj[π] can be determined from maj[π]. One can similarly
prove the other direction using the above claim and Lemma 5.10. �

The comajor index comaj, defined by

comaj π :=
∑

k∈Des π

(n − k)

for π ∈ Pn, is a classical variation of the major index statistic. Because the
linear permutation statistics maj and comaj are rc-equivalent and the induced
cyclic statistic maj is not cyclic shuffle-compatible, it follows from Corollary 5.8
that the induced cyclic statistic comaj is not cyclic shuffle-compatible either.
We may also define the cyclic comajor index ccomaj by

ccomaj π :=
∑

k∈cDes π

(n − k)

for π ∈ Pn; then it follows similarly that the induced cyclic statistics ccomaj,
(des,comaj), and (cdes,ccomaj) are not cyclic shuffle-compatible either.

Perhaps surprisingly, adding just a little bit of structure to our cmaj
statistic gives a statistic which is equivalent to cDes. As in the proof of Lemma
5.10, given π ∈ Pn, let us write

[π] = {π = π(1), π(2), . . . , π(n)}
where π(i+1) is obtained from π(i) by rotating its last element to the front
of the permutation and i is taken modulo n. Define the ordered cyclic major
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index of [π] to be the cyclic word

ocmaj[π] := [cmaj π(1), cmaj π(2), . . . , cmaj π(n)],

i.e., the equivalence class of the sequence (cmaj π(1), cmaj π(2), . . . , cmaj π(n))
under cyclic shift.

Theorem 5.12. The cyclic permutation statistics cDes and ocmaj are equiva-
lent.

Proof. Let us assume throughout this proof that n ≥ 2, as the cases n = 0
and n = 1 are trivial. To see that cDes is a refinement of ocmaj, suppose
cDes[π] = cDes[σ] where π and σ have the same length n. So, we can write
[σ] = {σ(1), σ(2), . . . , σ(n)} where cDes π(i) = cDes σ(i) for all i ∈ [n]. It follows
that

cmaj π(i) =
∑

k∈cDes π(i)

k =
∑

k∈cDes σ(i)

k = cmaj σ(i)

for all i, so ocmaj[π] = ocmaj[σ].
For the converse, it is sufficient to show that the cyclic descent compo-

sition cComp[π] can be reconstructed from ocmaj[π]. First, recall Equation
(5):

cmaj π(i+1) =

{
cmaj π(i) + cdes[π] − n, if n ∈ cDes π(i),

cmaj π(i) + cdes[π], if n /∈ cDes π(i).

Since n ≥ 2, we have 1 ≤ cdes[π] ≤ n − 1, and together with the above
equation, we have that n ∈ cDes π(i) if and only if cmajπ(i) > cmaj π(i+1). A
similar argument shows that we can never have cmaj π(i) = cmaj π(i+1).

Now, suppose we are given ocmaj[π] = [m1,m2, . . . ,mn] where mi =
cmaj π(i). Let s and t be two consecutive cyclic descents of ocmaj[π], i.e.,

ms > ms+1 < ms+2 < · · · < mt > mt+1

where subscripts are considered modulo n as usual. From the previous para-
graph, it follows that n is in both cDes π(s) and cDesπ(t), and that the penul-
timate descent in cDes π(s) becomes the descent n ∈ cDes π(t) with n never
being a descent for any of the intermediate cyclic descent sets. So t − s (mod-
ulo n) is a part of the cyclic composition cComp[π]. Therefore, all the parts of
cComp[π] can be determined, and their order will be the same as that induced
by the consecutive cyclic descents in ocmaj[π]. Thus we have reconstructed
cComp[π] from ocmaj[π], completing the proof. �
Corollary 5.13. (Cyclic shuffle-compatibility of ocmaj) The ordered cyclic
major index ocmaj is cyclic shuffle-compatible, and its cyclic shuffle algebra
Acyc

ocmaj is isomorphic to Acyc
cDes.

Of course, one could wonder if the unordered multiset of cmaj values
is also equivalent to cDes for cyclic permutations, but this is not the case.
Indeed, if the cyclic permutation statistics cmaj and cDes were equivalent,
then the cyclic shuffle-compatibility of cDes would imply that cmaj is cyclic
shuffle-compatible as well, which we know to be false.
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5.4. Other Descent Statistics

To conclude this section, let us consider the cyclic permutation statistics in-
duced by the following linear descent statistics:

• The valley number val, which we defined earlier to be the number of
valleys of a permutation.

• The double descent set Ddes and the double descent number ddes. We
call i ∈ {2, 3, . . . , n − 1} a double descent of π ∈ Pn if πi−1 > πi > πi+1.
Then Ddes π is the set of double descents of π, and ddesπ the number of
double descents of π.

• The left peak set Lpk and the left peak number lpk. We call i ∈ [n − 1]
a left peak of π ∈ Pn if i is a peak of π, or if i = 1 and π1 > π2. Then
Lpkπ is the set of left peaks of π, and lpkπ the number of left peaks of
π.

• The right peak set Rpk and the right peak number rpk. We call i ∈
{2, 3, . . . , n} a right peak of π ∈ Pn if i is a peak of π, or if i = n and
πn−1 < πn. Then Rpkπ is the set of right peaks of π, and rpkπ the
number of right peaks of π.

• The exterior peak set Epk and the exterior peak number epk. We call
i ∈ [n] an exterior peak of π ∈ Pn if i is a left peak or right peak of π.
Then Epkπ is the set of exterior peaks of π, and epkπ the number of
exterior peaks of π.

• The number of biruns br and the number of up-down runs udr. A birun
of π is a maximal consecutive monotone subsequence of π; an up-down
run of π is a birun of π, or the first letter π1 of π if π1 > π2. Then brπ
and udrπ are the number of biruns and the number of up-down runs,
respectively, of π.

For example, take π = 713942658. Then we have val π = 3, Ddesπ = {5},
ddes π = 1, Lpkπ = {1, 4, 7}, lpkπ = 3, Rpkπ = {4, 7, 9}, rpkπ = 3, Epkπ =
{1, 4, 7, 9}, epkπ = 4, brπ = 6, and udrπ = 7.

Aside from Ddes, ddes, and br, all of the above statistics (as linear per-
mutation statistics) are shuffle-compatible. Also, because these are all descent
statistics, each of the induced cyclic statistics are cyclic descent statistics. In-
deed, if we are given cDes[π] and the length of π, then we can determine Des[π]
by Lemma 5.1, and we can then use the descent sets in Des[π] to obtain the
multiset st[π] for any descent statistic st.

Let us begin by examining the double descent statistics Ddes and ddes.
Since neither Ddes nor ddes are shuffle-compatible as linear permutation sta-
tistics, it is perhaps unsurprising that their induced cyclic statistics are not
cyclic shuffle-compatible. As a counterexample, let π = 1234, σ = 1324, and
ρ = 5. Then both Ddes[π] = Ddes[σ] and ddes[π] = ddes[σ], but we have
Ddes([π] � [ρ]) �= Ddes([σ] � [ρ]) and ddes([π] � [ρ]) �= ddes([σ] � [ρ]). For
instance, {{∅5}} appears three times in Ddes([π] � [ρ]) but only twice in
Ddes([σ]� [ρ]), and accordingly {{05}} appears three times in ddes([π]� [ρ])
but only twice in ddes([σ]� [ρ]).
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While the linear statistic br is not shuffle-compatible, Domagalski et al. [3]
noted that the cyclic statistic cbr giving the number of cyclic biruns—maximal
consecutive monotone cyclic subsequences—is cyclic shuffle-compatible as it is
precisely twice the number of cyclic peaks.

Theorem 5.14. (Cyclic shuffle-compatibility of cbr and (cbr, cdes)) The cyclic
statistics cbr and (cbr, cdes) are cyclic shuffle-compatible, and we have the
Q-algebra isomorphisms

Acyc
cbr

∼= Acyc
cpk and Acyc

(cbr,cdes)
∼= Acyc

(cpk,cdes).

Because des and cdes are equivalent as cyclic permutation statistics and
similarly with pk and cpk, one might expect the cyclic statistics br and cbr
to be equivalent as well, but this is not the case because br is not actually
cyclic shuffle-compatible. For instance, consider π = 25673489, σ = 24567389,
and ρ = 1. Then br[π] = br[σ], but the multiset {{54, 64, 7}} appears four
times in br([π]� [ρ]) but only twice in br([σ]� [ρ]). One can also use the same
permutations π, σ, and ρ to show that (br,des) is not cyclic shuffle-compatible.

Even though the linear statistics Lpk and Epk are shuffle-compatible,
their induced cyclic statistics are not cyclic shuffle-compatible. As a coun-
terexample, take

π = 11 6 3 7 1 4 12 10 2 9 6 8, σ = 13,

π′ = 13 7 2 9 5 3 10 4 8 12 6 11, and σ′ = 1.

Then we have Lpk[π] = Lpk[π′], Lpk[σ] = Lpk[σ′], Epk[π] = Epk[π′], and
Epk[σ] = Epk[σ′], yet Lpk([π]� [σ]) �= Lpk([π′]� [σ′]) and Epk([π]� [σ]) �=
Epk([π′]� [σ′]) as the multiset

{{ {1, 5, 8, 11}, {2, 6, 9, 12}, {3, 7, 10}, {1, 4, 8, 11}, {2, 5, 9, 12}, {1, 3, 6, 10},

{1, 4, 7, 11}, {2, 5, 8, 12}, {3, 6, 9}, {1, 4, 7, 10}, {2, 5, 8, 11}, {1, 3, 6, 9, 12},

{1, 4, 7, 10} }}
belongs to Lpk([π]� [σ]) but not Lpk([π′]� [σ′]), and the multiset

{{ {1, 4, 7, 10}, {1, 4, 8, 11}, {2, 5, 8, 11}, {2, 5, 8, 12}, {2, 5, 9, 12},

{2, 6, 9, 12}, {3, 6, 9, 13}, {3, 7, 10, 13}, {1, 3, 6, 9, 12},

{1, 3, 6, 10, 13}, {1, 4, 7, 10, 13}, {1, 4, 7, 11, 13}, {1, 5, 8, 11, 13} }}
belongs to Epk([π]� [σ]) but not Epk([π′]� [σ′]).

The left peak number lpk, number of up-down runs udr, and the pairs
(lpk,des) and (udr,des) are also shuffle-compatible linear statistics whose in-
duced cyclic statistics are not cyclic shuffle-compatible. For example, take
π = 87516439, σ = 53187649, and ρ = 2. Then (lpk,des)[π] = (lpk,des)[σ] and
(udr,des)[π] = (udr,des)[σ] (and thus lpk[π] = lpk[σ] and udr[π] = udr[σ]).
However:

• {{(3, 5)6, (3, 6)3}} is in (lpk,des)([π]� [ρ]) but not (lpk,des)([σ]� [ρ]),
• {{(6, 5)3, (6, 6)3, (7, 5)3}} is in (udr,des)([π]�[ρ]) but not (udr,des)([σ]�

[ρ]),
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• {{39}} is in lpk([π]� [ρ]) but not lpk([σ]� [ρ]),
• and {{66, 73}} is in udr([π]� [ρ]) but not udr([σ]� [ρ]).

Observe that Rpk is r-equivalent to Lpk and rpk is r-equivalent to lpk. Hence,
by Corollary 5.8, neither Rpk nor rpk are cyclic shuffle-compatible. One can
also define “left”, “right”, and “exterior” versions of the valley set and val-
ley number; by similar symmetry arguments, none of these are cyclic shuffle-
compatible either.

In contrast, the exterior peak number epk and the pair (epk,des) are
cyclic shuffle-compatible because they are equivalent to cpk and (cpk, cdes),
respectively. To prove these equivalences, we will also need to consider the
cyclic valley number statistic cval: we say that i ∈ [n] is a cyclic valley of
π ∈ Sn if πi−1 > πi < πi+1 with the indices considered modulo n, and
cval[π] is defined to be the number of cyclic valleys of any permutation in [π].
Equivalently, cval[π] is the cardinality of the cyclic valley set cVal[π] defined
in Sect. 5.2.

Lemma 5.15. The cyclic permutation statistics val and cval are equivalent.

Proof. We have val[π] = pk[πc] for all π—that is, val and pk are c-equivalent—
and similarly with cval and cpk. By Lemma 5.4, pk and cpk are equivalent, so
the same is true of val and cval. �
Lemma 5.16. For any cyclic permutation [π], we have cval[π] = cpk[π].

Proof. Each cyclic birun starts with a cyclic peak and ends with a cyclic valley
or vice-versa. So 2 cpk[π] = cbr[π] = 2 cval[π]. �
Lemma 5.17. The cyclic permutation statistics epk and cpk are equivalent.

Proof. For any linear permutation π, we have epk π = valπ +1 [7, Lemma 2.1
(e)], so epk and val are equivalent as linear permutation statistics and thus as
cyclic permutation statistics. (We can obtain val[π] from epk[π] by subtracting
1 from each element in the multiset, and epk[π] from val[π] by adding 1 to each
element.) Moreover, val is equivalent to cval (Lemma 5.15) which is in turn
equivalent to cpk (Lemma 5.16); hence, epk is equivalent to cpk. �
Theorem 5.18. (Cyclic shuffle-compatibility of val, cval, epk, (val,des),
(cval, cdes), and (epk,des)) The cyclic statistics val, cval, epk, (val,des),
(cval, cdes), and (epk,des) are cyclic shuffle-compatible, and we have the Q-
algebra isomorphisms

Acyc
val

∼= Acyc
cval

∼= Acyc
epk

∼= Acyc
cpk and Acyc

(val,des)
∼= Acyc

(cval,cdes)
∼= Acyc

(epk,des)

∼= Acyc
(cpk,cdes).

Proof. The cyclic shuffle-compatibility of val, cval, and epk, and the corre-
sponding isomorphisms, follow from the cyclic shuffle-compatibility of cpk and
the equivalences between these four statistics. Furthermore, (val,des) is equiv-
alent to (cpk, cdes) because val is equivalent to cpk and des is equivalent to
cdes, and similarly (cval, cdes) and (epk,des) are equivalent to (cpk, cdes) as
well. Because (cpk, cdes) is cyclic shuffle-compatible, the results for (val,des),
(cval, cdes), and (epk,des) follow. �
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Finally, we provide counterexamples showing that neither (Pk,Val) nor
(pk, val) are cyclic shuffle-compatible. Let π = 214, σ = 536, π′ = 123, and
σ′ = 546. Then (Pk,Val)[π] = (Pk,Val)[π′] and (Pk,Val)[σ] = (Pk,Val)[σ′],
which imply (pk, val)[π] = (pk, val)[π′] and (pk, val)[σ] = (pk, val)[σ′] as well.
However,

{{ (∅, ∅), (∅, {5}), ({2}, ∅), ({3}, {2}), ({4}, {3}), ({5}, {4}) }}
is an element of (Pk,Val)([π]� [σ]) but not (Pk,Val)([π′]� [σ′]), and

{{ (0, 0), (0, 1), (1, 0), (1, 1)3 }}
is an element of (pk, val)([π]� [σ]) but not (pk, val)([π′]� [σ′]).

6. Open Problems and Questions

In Sect. 5, we studied various multiset-valued cyclic statistics induced from
linear statistics, as well as a ocmaj—an ordered version of the cmaj statistic—
which we found to be equivalent to cDes. We can generalize the construction
of ocmaj in the following way. Given any linear permutation statistic st, let
ost[π] be the cyclic word defined by

ost[π] := [st π(1), st π(2), . . . , st π(n)],

where [π] = {π = π(1), π(2), . . . , π(n)} and π(i) is defined as in Sect. 5.3.

Problem 6.1. Study the cyclic statistics ost for various linear permutation sta-
tistics st.

It would be interesting to find new cyclic shuffle-compatibility results
stemming from these statistics—i.e., if one of the ost is cyclic shuffle-compatible
and is not equivalent to another statistic already known to be shuffle-compatible.
On the other hand, it would also be interesting to find nontrivial equiva-
lences between these statistics and others, regardless of whether they are cyclic
shuffle-compatible.

Next, we pose a question related to the lifting lemma of Domagalski
et al. [3, Lemma 2.3], which provides an avenue for proving cyclic shuffle-
compatibility of a cyclic descent statistic using the shuffle-compatibility of a
related linear descent statistic. The lifting lemma involves two maps Si and
M , defined as follows. Given π ∈ Sn and i ∈ [n], let Si[π] be the unique linear
permutation in [π] which starts with i, and let M [π] be the linear permutation
of length n − 1 obtained by first applying Sn to [π] and then removing the
initial n. For example, we have S4[162453] = 453162 and M [162453] = 24531.

Lemma 6.2. (Lifting lemma) Let cst be a cyclic descent statistic and st a
shuffle-compatible linear descent statistic for which the following conditions
hold :
(a) For any π, π′ ∈ Sn, we have

st(M [π]) = st(M [π′]) implies cst[π] = cst[π′].
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(b) For any π, π′ ∈ Sn with cst[π] = cst[π′], there exists a bijection f : [n] →
[n] such that

st(Si[π]) = st(Sf(i)[π′])

for all i ∈ [n].
Then, cst is cyclic shuffle-compatible.

We would like to understand how the lifting lemma fits into our alge-
braic framework. In particular, we have tried to prove the lifting lemma from
Theorem 2.8, but our attempts have been unsuccessful because it is unclear to
us how the conditions in the lifting lemma relate to the linear independence
condition of that theorem.

Question 6.3. Can the lifting lemma be proven from Theorem 2.8?

Finally, every statistic which is known to be cyclic shuffle-compatible is
a cyclic descent statistic, so it is natural to ask whether any cyclic shuffle-
compatible statistics are not cyclic descent statistics. In the linear setting,
Gessel and Zhuang [7] had conjectured that every shuffle-compatible statistic
is a descent statistic, but a counterexample was found by Kantarcı Oğuz [9].
So, we will pose this as a question rather than as a conjecture.

Question 6.4. Is every cyclic shuffle-compatible statistic a cyclic descent statis-
tic?

We note that the cyclic statistic induced by Kantarcı Oğuz’s counterex-
ample is not cyclic shuffle-compatible.

Acknowledgements

We thank an anonymous referee for carefully reading our paper and providing
several corrections.

Data availability statement Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s



Cyclic Shuffle-Compatibility Via Cyclic Shuffle Algebras

Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Ron M. Adin, Ira M. Gessel, Victor Reiner, and Yuval Roichman. Cyclic quasi-
symmetric functions. Israel J. Math., 243(1):437–500, 2021.

[2] Duff Baker-Jarvis and Bruce E. Sagan. Bijective proofs of shuffle compatibility
results. Adv. in Appl. Math., 113:101973, 29 pp., 2020.

[3] Rachel Domagalski, Jinting Liang, Quinn Minnich, Bruce E. Sagan, Jamie
Schmidt, and Alexander Sietsema. Cyclic shuffle compatibility. Sém. Lothar.
Combin., 85:Art. B85d, 11 pp., [2020–2021].

[4] Ira M. Gessel. Multipartite P -partitions and inner products of skew Schur func-
tions. Contemp. Math., 34:289–317, 1984.

[5] Darij Grinberg and Victor Reiner. Hopf Algebras in Combinatorics. Preprint,
arXiv:1409.8356v7, 2020.

[6] Darij Grinberg. Shuffle-compatible permutation statistics II: the exterior peak
set. Electron. J. Combin., 25(4):Paper No. 4.17, 61 pp., 2018.

[7] Ira M. Gessel and Yan Zhuang. Shuffle-compatible permutation statistics. Adv.
Math., 332:85–141, 2018.

[8] Kathy Q. Ji and Dax T. X. Zhang. A cyclic analogue of Stanley’s shuffling
theorem. Electron. J. Combin., 29(4):Paper No. 4.20, 8 pp., 2022.
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