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Abstract. A permutation statistic st is said to be shuffle-compatible if the distribution
of st over the set of shuffles of two disjoint permutations π and σ depends only on stπ,
stσ, and the lengths of π and σ. Shuffle-compatibility is implicit in Stanley’s early work
on P -partitions, and was first explicitly studied by Gessel and Zhuang, who developed an
algebraic framework for shuffle-compatibility centered around their notion of the shuffle
algebra of a shuffle-compatible statistic. For a family of statistics called descent statistics,
these shuffle algebras are isomorphic to quotients of the algebra of quasisymmetric functions.

Recently, Domagalski, Liang, Minnich, Sagan, Schmidt, and Sietsma defined a version
of shuffle-compatibility for statistics on cyclic permutations, and studied cyclic shuffle-
compatibility through purely combinatorial means. In this paper, we define the cyclic
shuffle algebra of a cyclic shuffle-compatible statistic, and develop an algebraic framework
for cyclic shuffle-compatibility in which the role of quasisymmetric functions is replaced
by the cyclic quasisymmetric functions recently introduced by Adin, Gessel, Reiner, and
Roichman. We use our theory to provide explicit descriptions for the cyclic shuffle algebras
of various cyclic permutation statistics, which in turn gives algebraic proofs for their cyclic
shuffle-compatibility.
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1. Introduction

We say that π = π1π2 · · · πn is a (linear) permutation of length n if it is a sequence of n
distinct letters—not necessarily from 1 to n—in P, the set of positive integers. (We refer
to these as linear permutations to distinguish them from cyclic permutations, but we will
often drop the descriptor “linear” if it is clear from context that we are referring to linear
permutations.) For example, 826491 is a permutation of length 6. Let |π| denote the length
of a permutation π, let Pn denote the set of permutations of length n, and Sn ⊆ Pn the set
of permutations of [n] := {1, 2, . . . , n}. Note that P0 and S0 consist only of the empty word.

Let π ∈ Pm and σ ∈ Pn be disjoint permutations, that is, permutations with no letters in
common. We say that τ ∈ Pm+n is a shuffle of π and σ if both π and σ are subsequences of
τ . The set of shuffles of π and σ is denoted π� σ. For example,

71� 25 = {7125, 7215, 7251, 2715, 2751, 2571}.
Following [GZ18], a (linear) permutation statistic is a function st on permutations such that
st π = stσ whenever π and σ have the same relative order. Three classical permutation
statistics, dating back to MacMahon [Mac60], are the descent set Des, descent number des,
and the major index maj. We say that i ∈ [n− 1] is a descent of π ∈ Pn if πi > πi+1. The
descent set of π

Des π := { i ∈ [n− 1] : πi > πi+1 }
is the set of its descents, the descent number

des π := |Des π|
its number of descents, and the major index

maj π :=
∑

i∈Desπ

i

the sum of its descents.
Several other permutation statistics—somewhat less classical but still well-studied—are

based on the notion of peaks. We say that i ∈ {2, 3, . . . , n − 1} is a peak of π ∈ Pn if
πi−1 < πi > πi+1. The peak set of π

Pk π := { i ∈ {2, 3, . . . , n− 1} : πi−1 < πi > πi+1 }
is the set of its peaks, and the peak number

pkπ := |Pk π|
2



is its number of peaks. Some related statistics, such as the left peak set and left peak number,
will be defined in Section 5.4.

Given a set S of permutations and a permutation statistic st, the distribution of st over S
is the multiset

stS := {{ st π : π ∈ S }}
of all values of st among permutations in S, including multiplicity. For instance,

desS3 = {{0, 14, 2}};

among the six permutations in S3, only 123 has no descents, only 321 has two descents, and
the other four have one descent each.
All of the statistics defined above have a remarkable property related to shuffles, called

“shuffle-compatibility”. We say that st is shuffle-compatible if the distribution of st over the
shuffles of any two disjoint permutations π and σ depends only on st π, stσ, and the lengths
of π and σ. In other words, st is shuffle-compatible if st(π � σ) = st(π′

� σ′) whenever
st π = stπ′, st σ = stσ′, |π| = |π′|, and |σ| = |σ′|.
Shuffle-compatibility dates back to the early work of Stanley, as the shuffle-compatibility

of the descent set, descent number, and major index are implicit consequences of the theory
of P -partitions [Sta72]. Likewise, Stembridge’s work on enriched P -partitions imply that
the peak set and peak number are shuffle-compatible. Gessel and Zhuang coined the term
“shuffle-compatibility” and initiated the study of shuffle-compatibility per se in 2018; in [GZ18],
they developed an algebraic framework for shuffle-compatibility centered around the notion of
the shuffle algebra of a shuffle-compatible permutation statistic, which is well-defined if and
only if the statistic is shuffle-compatible and whose multiplication encodes the distribution of
the statistic over sets of shuffles.
Gessel’s [Ges84] quasisymmetric functions serve as natural generating functions for P -

partitions, and for a special family of statistics called “descent statistics”, one can use
quasisymmetric functions to characterize shuffle algebras and prove shuffle-compatibility
results. Notably, the multiplication rule for fundamental quasisymmetric functions shows
that the descent set is shuffle-compatible and that its shuffle algebra is isomorphic to the
algebra QSym of quasisymmetric functions. One of Gessel and Zhuang’s main results is a
necessary and sufficient condition for shuffle-compatibility of descent statistics which implies
that the shuffle algebra of any shuffle-compatible descent statistic is isomorphic to a quotient
algebra of QSym.
In the past few years, shuffle-compatibility has become an active topic of research; see

[AGRR21, BJS20, DLM+21, Gri18, KO22, Lia22, Mou22, YY22, Zhu22] for a selection
of references. Most relevant to our present work are the recent papers of Adin–Gessel–
Reiner–Roichman [AGRR21] and Liang [Lia22] on cyclic quasisymmetric functions and toric

[D⃗]-partitions, and of Domagalski–Liang–Minnich–Sagan–Schmidt–Sietsma [DLM+21] which
defined and studied a notion of shuffle-compatibility for cyclic permutations.

1.1. Cyclic permutations, statistics, and shuffles. Given a linear permutation π =
π1π2 · · · πn, let [π] be the equivalence class of π under cyclic rotation, that is,

[π] := {π1π2 · · · πn, πnπ1 · · · πn−1, . . . , π2 · · · πnπ1}.

The sets [π] are called cyclic permutations. The length of a cyclic permutation [π] refers to
the length of π, which makes sense because all linear permutation representatives of [π] have
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the same length. For example

[168425] = {168425, 516842, 251684, 425168, 842516, 684251}
has length 6.
In analogy to linear permutation statistics, let us define a cyclic permutation statistic to

be a function cst on cyclic permutations such that cst[π] = cst[σ] whenever π and σ have
the same relative order. Two examples of cyclic permutation statistics are the cyclic descent
set cDes and the cyclic descent number cdes. First, define the cyclic descent set of a linear
permutation π ∈ Pn by

cDes π := { i ∈ [n] : πi > πi+1 where i is considered modulo n };
the elements of cDes π are called cyclic descents of π. The cyclic descent set of a cyclic
permutation [π] is the multiset

cDes[π] := {{ cDes π̄ : π̄ ∈ [π] }},
i.e., the distribution of the linear statistic cDes over all linear permutation representatives of
[π]. For example, we have

cDes[168425] = {{ {3, 4, 6}, {1, 4, 5}, {2, 5, 6}, {1, 3, 6}, {1, 2, 4}, {2, 3, 5} }},
and

cDes[279358] = {{ {3, 6}2, {1, 4}2, {2, 5}2 }.
Note that cDes[π] can also be characterized as the multiset of cyclic shifts of cDesπ. More
precisely, given S ⊆ [n] and an integer i, define the cyclic shift S + i by

S + i := { s+ i : s ∈ S }
where the values are considered modulo n; then

cDes[π] = {{ cDes π + i : i ∈ [n] }}.
The cyclic descent number of a linear permutation π is given by

cdesπ := |cDesπ| ,
and we can then define the cyclic descent number of a cyclic permutation [π] by

cdes[π] := cdesπ,

which is well-defined because all linear permutations in [π] have the same number of cyclic
descents. The cyclic peak set cPk and cyclic peak number cpk can be defined in an analogous
way, and we will state their definitions in Section 4.1. On the other hand, finding a suitable
cyclic analogue of the major index statistic is challenging; we will address this in Section 5.3.
Given disjoint π ∈ Pm and σ ∈ Pn, we say that [τ ] is a cyclic shuffle of [π] and [σ] if

τ ∈ Pm+n and there exist π̄ ∈ [π] and σ̄ ∈ [σ] which are both (linear) subsequences of τ . Let
[π]� [σ] denote the set of cyclic shuffles of [π] and [σ]. For instance, we have

[63]� [24] = {[6324], [6234], [6243], [6342], [6432], [6423]}.
A cyclic permutation statistic cst is called cyclic shuffle-compatible if the distribution of

cst over all cyclic shuffles of [π] and [σ] depends only on cst[π], cst[σ], and the lengths of [π]
and [σ]. That is, cst is cyclic shuffle-compatible if we have cst([π]� [σ]) = cst([π′]� [σ′])
whenever cst[π] = cst[π′], cst[σ] = cst[σ′], |π| = |π′|, and |σ| = |σ′|.

The first results in cyclic shuffle-compatibility were implicit in the work of Adin et
al. [AGRR21], which introduced toric [D⃗]-partitions (a toric poset analogue of P -partitions)
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and cyclic quasisymmetric functions (which are natural generating functions for toric [D⃗]-
partitions). In particular, Adin et al. established a multiplication formula for fundamental
cyclic quasisymmetric functions which implies that the cyclic descent set cDes is cyclic
shuffle-compatible, and they also proved the formula∑

[τ ]∈[π]�[σ]

qcdes τ = (1− q)|π|+|σ|
∞∑
k=0

(
k + |π| − cdes π − 1

|π| − 1

)(
k + |σ| − cdesσ − 1

|σ| − 1

)
kqk

which implies that the cyclic descent number cdes is cyclic shuffle-compatible.
In [DLM+21], Domagalski et al. formally defined cyclic shuffle-compatibility and proved a

result called the “lifting lemma,” which allows one (under certain nice conditions) to prove
that a cyclic statistic is cyclic shuffle-compatible from the shuffle-compatibility of a related
linear statistic. They then used the lifting lemma to prove the cyclic shuffle-compatibility of
all four statistics cDes, cdes, cPk, and cpk.

Most recently, Liang [Lia22] defined and studied enriched toric [D⃗]-partitions, an analogue
of enriched P -partitions for toric posets, whose generating functions are “cyclic peak quasisym-
metric functions”. She derived a multiplication formula for these cyclic peak quasisymmetric
functions which gives a different proof for the cyclic shuffle-compatibility of the cyclic peak
set cPk.
The lifting lemma of Domagalski et al. is purely combinatorial, but the work of Adin et

al. and Liang suggest that there is an algebraic framework for cyclic shuffle-compatibility à
la Gessel and Zhuang, in which the role of quasisymmetric functions is replaced by cyclic
quasisymmetric functions. The goal of our paper is to develop this algebraic framework.

1.2. Outline. The organization of this paper is as follows. In Section 2, we review Gessel
and Zhuang’s definition of the shuffle algebra of a shuffle-compatible permutation statistic,
and then we define the cyclic shuffle algebra of a cyclic shuffle-compatible statistic. We
prove several general results about cyclic shuffle-compatibility through cyclic shuffle algebras,
including a result (Theorem 2.8) allowing one to construct cyclic shuffle algebras from linear
ones.
In Section 3, we review the role of quasisymmetric functions in the theory of (linear)

shuffle-compatibility, and then we develop an analogous theory concerning cyclic quasisym-
metric functions and cyclic shuffle-compatibility. We use Theorem 2.8 to construct the
non-Escher subalgebra cQSym− of cyclic quasisymmetric functions from the algebra QSym
of quasisymmetric functions, which gives another proof that cDes is cyclic shuffle-compatible
and shows that the cyclic shuffle algebra of cDes is isomorphic to cQSym−. We then give a
necessary and sufficient condition for cyclic shuffle-compatibility of cyclic descent statistics
which implies that the cyclic shuffle algebra of any cyclic shuffle-compatible cyclic descent
statistic is isomorphic to a quotient algebra of cQSym−.
In Section 4, we use the theory developed in Section 3 to give explicit descriptions of the

shuffle algebras of the statistics cPk, cpk cdes, and (cpk, cdes) which in turn yields algebraic
proofs for their cyclic shuffle-compatibility.
In Section 5, we define a family of multiset-valued cyclic statistics induced from linear

statistics, and investigate cyclic shuffle-compatibility for some of these statistics. This
approach yields a definition of a cyclic major index which is different from the one proposed
earlier by Ji and Zhang [JZ22]; unfortunately, neither of these cyclic major index statistics
are cyclic shuffle-compatible.
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We conclude the paper in Section 6 with a discussion of open problems and questions
related to our work.

2. Cyclic shuffle algebras
s-shufalg

At the heart of Gessel and Zhuang’s algebraic framework for shuffle-compatibility is the
notion of a shuffle algebra. In this section, we review the definition of the shuffle algebra of a
shuffle-compatible (linear) permutation statistic, define a cyclic analogue of shuffle algebras
for cyclic shuffle-compatible statistics, and prove several general results about cyclic shuffle-
compatibility through cyclic shuffle algebras, including one that can be used to construct
cyclic shuffle algebras from shuffle algebras of linear permutation statistics.

2.1. Definitions. Let st be a permutation statistic. We say that π and σ are st-equivalent
if st π = stσ and |π| = |σ|. In this way, every permutation statistic induces an equivalence
relation on permutations, and we write the st-equivalence class of π as πst.

1

Let Ast denote the Q-vector space consisting of formal linear combinations of st-equivalence
classes of permutations. If st is shuffle-compatible, then we can turn Ast into a Q-algebra by
endowing it with the multiplication

πstσst =
∑

τ∈π�σ

τst

for any disjoint representatives π ∈ πst and σ ∈ σst; this multiplication is well-defined (i.e.,
the choice of π and σ does not matter) precisely when st is shuffle-compatible. The Q-algebra
Ast is called the (linear) shuffle algebra of st. Observe that Ast is graded by length, that is,
πst belongs to the nth homogeneous component of Ast if π has length n.

Our definition of cyclic shuffle algebras will be analogous to that of linear ones. Let cst be a
cyclic permutation statistic. Then the cyclic permutations [π] and [σ] are called cst-equivalent
if cst[π] = cst[σ] and |π| = |σ|, and we use the notation [π]cst to denote the cst-equivalence
class of the cyclic permutation [π]. We associate to cst a Q-vector space Acyc

cst by taking as a
basis the set of all cst-equivalence classes of permutations, and then we give this vector space
a multiplication by defining

[π]cst[σ]cst =
∑

[τ ]∈[π]�[σ]

[τ ]cst

for any disjoint π and σ with [π] ∈ [π]cst and [σ] ∈ [σ]cst; this multiplication is well-defined if
and only if cst is cyclic shuffle-compatible. The resulting Q-algebra Acyc

cst is called the cyclic
shuffle algebra of cst, and is also graded by length.

ss-2rcsa
2.2. Two general results on cyclic shuffle algebras. We now give two general results
on cyclic shuffle algebras, which are analogous to Theorems 3.2 and 3.3 of [GZ18] on linear
shuffle algebras. We provide proofs for completeness, although they follow in essentially the
same way as the proofs of the corresponding results in [GZ18].
Given two cyclic permutation statistics cst1 and cst2, we say that cst1 is a refinement

of cst2 for all cyclic permutations [π] and [σ] of the same length, cst1[π] = cst1[σ] implies
cst2[π] = cst2[σ]; when this is true, we also say that cst2 is a coarsening of cst1. Coarsenings
of the cyclic descent set are called cyclic descent statistics.

1In [GZ18], the authors write [π]st for the st-equivalence class of π, but here we will use this notation for
st-equivalence classes of cyclic permutations in place of the more cumbersome [[π]]st.
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t-refine Theorem 2.1. Suppose that cst1 is cyclic shuffle-compatible and is a refinement of cst2. Let
A be a Q-algebra with basis {vα} indexed by cst2-equivalence classes α, and suppose that
there exists a Q-algebra homomorphism ϕ : Acyc

cst1 → A such that for every cst1-equivalence
class β, we have ϕ(β) = vα where α is the cst2-equivalence class containing β. Then cst2 is
shuffle-compatible and the map vα 7→ α extends by linearity to an isomorphism from A to
Acyc

cst2.

Proof. It suffices to show that for any disjoint π and σ, we have

v[π]cst2v[σ]cst2 =
∑

[τ ]∈[π]�[σ]

v[τ ]cst2 .

To that end, we have

v[π]cst2v[σ]cst2 = ϕ([π]cst1)ϕ([σ]cst1)

= ϕ([π]cst1 [σ]cst1)

= ϕ

( ∑
[τ ]∈[π]�[σ]

[τ ]cst1

)
=

∑
[τ ]∈[π]�[σ]

v[τ ]cst2 ,

which completes the proof. □

We say that cst1 and cst2 are equivalent if cst1 is a simultaneously a refinement and a
coarsening of cst2, that is, if for all cyclic permutations [π] and [σ] of the same length,
cst1[π] = cst1[σ] implies cst2[π] = cst2[σ] and vice versa.

t-equiv Theorem 2.2. Let cst1 and cst2 be equivalent statistics. If cst1 is shuffle-compatible with
cyclic shuffle algebra Acyc

cst1, then cst2 is also cyclic shuffle-compatible with cyclic shuffle algebra
Acyc

cst2 isomorphic to Acyc
cst1.

Proof. Because equivalent statistics have the same equivalence classes on cyclic permutations,
we know that Acyc

cst1 and Acyc
cst2 have the same basis elements. Since cst1 and cst2 are equivalent,

we have

[π]st2 [σ]st2 = [π]st1 [σ]st1 =
∑

[τ ]∈[π]�[σ]

[τ ]st1 =
∑

[τ ]∈[π]�[σ]

[τ ]st2 ,

which proves the result. □
ss-symmetries

2.3. Symmetries and cyclic shuffle algebras. Many permutation statistics—both linear
and cyclic—are related via various symmetries, such as reversal, complementation, and
reverse-complementation. For a linear permutation π = π1π2 · · · πn ∈ Pn, we define the
reversal πr of π by πr := πnπn−1 · · · π1, the complement πc of π to be the permutation
obtained by (simultaneously) replacing the ith smallest letter in π with the ith largest letter
in π for all 1 ≤ i ≤ n, and the reverse-complement πrc of π by πrc := (πr)c = (πc)r. For
example, given π = 318269, we have πr = 962813, πc = 692831, and πrc = 138296.
More generally, let f be an involution on linear permutations which preserves the length,

i.e., |f(π)| = |π| for all π. We shall write πf in place of f(π). For a set S of permutations, let

Sf := { πf : π ∈ S },
7



so f induces an involution on sets of permutations as well. In particular, this lets us define
[π]f for a cyclic permutation [π]. Going further, if C is a set of cyclic permutations, then

Cf := { [π]f : [π] ∈ C }.
Following Gessel and Zhuang [GZ18], we say that f is shuffle-compatibility-preserving if

for any pair of disjoint permutations π and σ, there exist disjoint permutations π̂ and σ̂
with the same relative order as π and σ, respectively, such that (π � σ)f = π̂f

� σ̂f and
(π̂� σ̂)f = πf

� σf . (This definition implies that πf and σf are disjoint, and similarly with
π̂f and σ̂f .)
Furthermore, we call two linear permutation statistics st1 and st2 f -equivalent if st1 ◦f

is equivalent to st2—that is, st1 π
f = st1 σ

f if and only if st2 π = st2 σ. In other words, st1
and st2 are f -equivalent if and only if (πf)st1 = (πst2)

f for all π. It is easy to see that, if
st1 π

f = st2 π for all π, then st1 and st2 are f -equivalent (although this is not a necessary
condition).

For example, the peak set Pk is c-equivalent to the valley set Val defined in the following
way. We call i ∈ {2, 3, . . . , n− 1} a valley of π ∈ Pn if πi−1 > πi < πi+1, and we let Val π be
the set of valleys of π. We also define valπ to be the number of valleys of π; then, pk and val
are c-equivalent as well.
Despite its name, f -equivalence is not an equivalence relation (although it is symmetric).

However, it turns out that if the statistics involved are shuffle-compatible, then f -equivalences
induce isomorphisms on the corresponding shuffle algebras. This idea is expressed in the
following theorem, which is Theorem 3.5 of Gessel and Zhuang [GZ18].

t-linsym Theorem 2.3. Let f be shuffle-compatibility-preserving, and suppose that st1 and st2 are
f -equivalent (linear) permutation statistics. If st1 is shuffle-compatible with shuffle algebra

Ast1, then st2 is also shuffle-compatible, and the linear map defined by πst1 7→ πf
st2 is a

Q-algebra isomorphism between their shuffle algebras Ast1 and Ast2.

Gessel and Zhuang proved that reversal, complementation, and reverse-complementation
are all shuffle-compatibility-preserving. Thus, they were able to use Theorem 2.3 to prove
a collection of shuffle-compatibility results for statistics that are r-, c-, or rc-equivalent to
another statistic whose shuffle-compatibility had already been established. For example, it
follows from the shuffle-compatibility of the peak set Pk that the valley set Val is shuffle-
compatible with shuffle algebra AVal isomorphic to APk.

Moving onto the cyclic setting, let us call f rotation-preserving if [π]f = [πf ] for all π. We
now prove that if f is both shuffle-compatibility-preserving and rotation-preserving, then f
satisfies a cyclic version of the shuffle-compatibility-preserving property.

l-cscp Lemma 2.4. If f is shuffle-compatibility-preserving and rotation-preserving, then for any
pair of disjoint permutations π and σ, there exist disjoint permutations π̂ and σ̂ with the
same relative order as π and σ, respectively, for which ([π] � [σ])f = [π̂f ] � [σ̂f ] and
([π̂]� [σ̂])f = [πf ]� [σf ].

Proof. Let [τ ] ∈ [π] � [σ], so that τ ∈ π̄ � σ̄ for some π̄ ∈ [π] and σ̄ ∈ [σ], and thus
τ f ∈ (π̄� σ̄)f . Since f is shuffle-compatibility-preserving, we have that τ f ∈ ˆ̄πf

� ˆ̄σf where
ˆ̄π and ˆ̄σ are disjoint permutations with the same relative order as π̄ and σ̄, respectively. Since
π̄ is a rotation of π and ˆ̄π has the same relative order as π̄, it follows that ˆ̄π is a rotation
of a permutation π̂ with the same relative order as π, and similarly ˆ̄σ is a rotation of a
permutation σ̂ with the same relative order as σ. Clearly, π̂ and σ̂ are disjoint because ˆ̄π
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and ˆ̄σ are disjoint. Because f is rotation-preserving, ˆ̄π ∈ [π̂] and ˆ̄σ ∈ [σ̂] imply ˆ̄πf ∈ [π̂f ] and
ˆ̄σ ∈ [σ̂f ]. Therefore, τ f ∈ ˆ̄πf

� ˆ̄σf implies [τ ]f = [τ f ] ∈ [π̂f ]� [σ̂f ].
We have shown that ([π]� [σ])f is a subset of [π̂f ]� [σ̂f ], but since these two sets have

the same cardinality, they are in fact equal. We omit the proof of ([π̂]� [σ̂])f = [πf ]� [σf ]
as it is similar. □

l-rotp Lemma 2.5. Reversal, complementation, and reverse-complementation are rotation-preserving.

Proof. Let π = π1π2 · · · πn be a (linear) permutation. We have

[π]r = {π1π2 · · · πn, πnπ1 · · · πn−1, . . . , π2 · · · πnπ1}r

= {πn · · · π2π1, πn−1 · · · π1πn, . . . , π1πn · · · π2}
= [πr],

so reversal is rotation-preserving. Moreover, it is clear that taking the complement of the
permutation πi+1 · · · πnπ1 · · · πi (obtained by rotating the last i letters of π to the front) yields
the same result as first taking the complement of π and then rotating the i last letters of πc

to the front, so complementation is rotation-preserving. Lastly, since we have established
that [πc] = [π]c for all permutations π, we can replace π by πr to obtain [πrc] = [πr]c = [π]rc,
so reverse-complementation is rotation-preserving as well. □

In analogy with f -equivalence of linear permutation statistics, let us call two cyclic
permutation statistics cst1 and cst2 f -equivalent if cst1 ◦f is equivalent to cst2, or equivalently,
if [πf ]cst1 = ([π]cst2)

f . The following is a cyclic version of Theorem 2.3.

t-cycsym Theorem 2.6. Let f be shuffle-compatibility-preserving and rotation-preserving, and let cst1
and cst2 be f -equivalent cyclic permutation statistics. If cst1 is cyclic shuffle-compatible, then
cst2 is cyclic shuffle-compatible with Acyc

cst2 isomorphic to Acyc
cst1.

Proof. Let [π] and [π̃] be cyclic permutations in the same cst2-equivalence class, and similarly
with [σ] and [σ̃], such that π and σ are disjoint and π̃ and σ̃ are disjoint. We know from

Lemma 2.4 that there exist permutations π̂, σ̂, ˆ̃π, and ˆ̃σ—having the same relative order as
π, σ, π̃, and σ̃, respectively—satisfying ([π]� [σ])f = [π̂f ]� [σ̂f ], ([π̂]� [σ̂])f = [πf ]� [σf ],

([π̃]� [σ̃])f = [ˆ̃πf ]� [ˆ̃σf ], and ([ˆ̃π]� [ˆ̃σ])f = [π̃f ]� [σ̃f ].

Because π̂ and ˆ̃π have the same relative order as π and π̃, respectively, we have

[π̂]cst2 = [π]cst2 = [π̃]cst2 = [ˆ̃π]cst2 .

Then, because cst1 and cst2 are f -equivalent, we have

[π̂f ]cst1 = ([π̂]cst2)
f = ([ˆ̃π]cst2)

f = [ˆ̃πf ]cst1 ,

so [π̂f ] and [ˆ̃πf ] are cst1-equivalent. The same reasoning shows that [σ̂f ] and [ˆ̃σf ] are also
cst1-equivalent.

By cyclic shuffle-compatibility of cst1, we have the multiset equality

{{ cst1[τ ] : [τ ] ∈ [π̂f ]� [σ̂f ] }} = {{ cst1[τ ] : [τ ] ∈ [ˆ̃πf ]� [ˆ̃σf ] }},
which—by f -equivalence of cst1 and cst2—is equivalent to

{{ cst2[τ f ] : [τ ] ∈ [π̂f ]� [σ̂f ] }} = {{ cst2[τ f ] : [τ ] ∈ [ˆ̃πf ]� [ˆ̃σf ] }},
which is in turn equivalent to

{{ cst2[τ ] : [τ ]f ∈ [π̂f ]� [σ̂f ] }} = {{ cst2[τ ] : [τ ]f ∈ [ˆ̃πf ]� [ˆ̃σf ] }}
9



because f is rotation-preserving. Since ([π]� [σ])f = [π̂f ]� [σ̂f ] and ([π̃]� [σ̃])f = [ˆ̃πf ]� [ˆ̃σf ],
we have

{{ cst2[τ ] : [τ ] ∈ [π]� [σ] }} = {{ cst2[τ ] : [τ ] ∈ [π̃]� [σ̃] }},
which shows that cst2 is cyclic shuffle-compatible.

It remains to prove that Acyc
cst2 is isomorphic to Acyc

cst1 . Define the linear map λ : Acyc
cst2 → Acyc

cst1

by [π]cst2 7→ [πf ]cst1 . Observe that∑
[τ ]∈[π]�[σ]

[τ ]cst2 =
∑

[τ ]∈[π̂]�[σ̂]

[τ ]cst2

because cst2 is cyclic shuffle-compatible, and thus we have

λ([π]cst2 [σ]cst2) = λ
( ∑

[τ ]∈[π]�[σ]

[τ ]cst2

)
= λ

( ∑
[τ ]∈[π̂]�[σ̂]

[τ ]cst2

)
=

∑
[τ ]∈[π̂]�[σ̂]

[τ f ]cst1

=
∑

[τ ]f∈[π̂]�[σ̂]

[τ ]cst1

=
∑

[τ ]∈[πf ]�[σf ]

[τ ]cst1

= [πf ]cst1 [σ
f ]cst1

= λ([π]cst2)λ([σ]cst2).

Hence, λ is a Q-algebra isomorphism from Acyc
cst2 to Acyc

cst1 . □

Corollary 2.7. Suppose that the cyclic permutation statistics cst1 and cst2 are r-equivalent,
c-equivalent, or rc-equivalent. If cst1 is cyclic shuffle-compatible, then cst2 is cyclic shuffle-
compatible with cyclic shuffle algebra Acyc

cst2 isomorphic to Acyc
cst1.

2.4. Constructing cyclic shuffle algebras from linear ones. The following theorem—one
of the main results of this paper—allows us to construct cyclic shuffle algebras from shuffle
algebras of shuffle-compatible (linear) permutation statistics.

t-AtoAcyc Theorem 2.8. Let cst be a cyclic permutation statistic and let st be a shuffle-compatible
(linear) permutation statistic. Given a cyclic permutation [π], let

v[π] =
∑
π̄∈[π]

π̄st ∈ Ast.

Suppose that v[π] = v[σ] whenever [π] and [σ] are cst-equivalent, and that {v[π]} (ranging over
all cst-equivalence classes) is linearly independent. Then cst is cyclic shuffle-compatible and
the map ψcst : Acyc

cst → Ast given by

ψcst([π]cst) = v[π]

extends linearly to a Q-algebra isomorphism from Acyc
cst to the span of {v[π]}, a subalgebra of

Ast.
10



Proof. Since v[π] = v[σ] whenever [π] and [σ] are cst-equivalent, we know that ψcst is a well-
defined linear map on Acyc

cst . (We do not yet know whether Acyc
cst is an algebra; here we are

only considering Acyc
cst as a vector space.) Furthermore, because {v[π]} is linearly independent,

the linear map ψcst is a vector space isomorphism from Acyc
cst to a subspace of Ast.

To show that cst is cyclic shuffle-compatible, we show that

[π]cst[σ]cst =
∑

[τ ]∈[π]�[σ]

[τ ]cst

is a well-defined multiplication in Acyc
cst . Let [π

′], [π′′] ∈ [π]cst and let [σ′], [σ′′] ∈ [σ]cst, where
π′ and σ′ are disjoint and so are π′′ and σ′′. Then

ψcst

( ∑
[τ ]∈[π′]�[σ′]

[τ ]cst

)
=

∑
[τ ]∈[π′]�[σ′]

v[τ ]

=
∑

[τ ]∈[π′]�[σ′]

∑
τ̄∈[τ ]

τ̄st

=
∑
π̄∈[π′]

∑
σ̄∈[σ′]

∑
τ̄∈π̄�σ̄

τ̄st

= v[π′]v[σ′]

and similarly

ψcst

( ∑
[τ ]∈[π′′]�[σ′′]

[τ ]cst

)
= v[π′′]v[σ′′].

Since [π′] and [π′′] are cst-equivalent and similarly with [σ′] and [σ′′], we have

ψcst

( ∑
[τ ]∈[π′]�[σ′]

[τ ]cst

)
= v[π′]v[σ′] = v[π′′]v[σ′′] = ψcst

( ∑
[τ ]∈[π′′]�[σ′′]

[τ ]cst

)
and thus ∑

[τ ]∈[π′]�[σ′]

[τ ]cst =
∑

[τ ]∈[π′′]�[σ′′]

[τ ]cst

due to injectivity of ψcst. We have shown that the multiplication of the cyclic shuffle algebra
Acyc

cst is well-defined, and therefore cst is shuffle-compatible.
Finally, we have

ψcst([π]cst[σ]cst) = ψcst

( ∑
[τ ]∈[π]�[σ]

[τ ]cst

)
= v[π]v[σ]

= ψcst([π]cst)ψcst([σ]cst)

so ψcst is a Q-algebra isomorphism from Acyc
cst to the span of {v[π]}. □

3. Shuffle-compatibility and quasisymmetric functions
s-scqsym

The focus of this section is the relationship between cyclic shuffle-compatibility and cyclic
quasisymmetric functions. We shall begin by providing the necessary background on descent
compositions, cyclic descent compositions, and (ordinary) quasisymmetric functions.
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3.1. Descent compositions. Every permutation can be uniquely decomposed into a se-
quence of maximal increasing consecutive subsequences, which we call increasing runs. For
example, the increasing runs of 4783291 are 478, 3, 29, and 1. Equivalently, an increasing
run of π is a maximal consecutive subsequence with no descents.

The number of increasing runs of a nonempty permutation is one more than its number of
descents; in fact, the lengths of the increasing runs determine the descents, and vice versa.
Given a subset S ⊆ [n− 1] with elements s1 < s2 < · · · < sj , let CompS be the composition
of n defined by

CompS := (s1, s2 − s1, . . . , sj − sj−1, n− sj);

also, given a composition L = (L1, L2, . . . , Lk), let

DesL := {L1, L1 + L2, . . . , L1 + · · ·+ Lk−1}
be the corresponding subset of [n − 1]. It is straightforward to verify that Comp and Des
are inverse bijections. If π ∈ Pn has descent set S ⊆ [n − 1], then we say that CompS is
the descent composition of π, which we also denote by Compπ. By convention, the empty
permutation has descent composition ∅.
Continuing the example above, we have Comp4783291 = (3, 1, 2, 1). Observe that the

descent composition of π gives the lengths of the increasing runs of π in the order that they
appear. Conversely, if π has descent composition L, then its descent set Des π is DesL.
We call a permutation statistic st a descent statistic if it depends only on the descent

composition, that is, if Compπ = Compσ implies st π = stσ. Equivalently, a descent statistic
depends only on the descent set and length. If st is a descent statistic, then we can extend
the notion of st-equivalence classes of permutations to that of compositions. First, let stL
indicate the value of st on any permutation with descent composition L. Then we say that
two compositions L and K of the same size—where the size of a composition is the sum
of its parts—are st-equivalent if stL = stK. For example, the compositions (2, 3, 1) and
(1, 1, 4) are des-equivalent because any permutation with one of these descent compositions
has exactly two descents.

3.2. Cyclic descent compositions. The notion of descent compositions for linear permuta-
tions can be extended to cyclic permutations. To do so, we shall need a few more preliminary
definitions. A cyclic shift of a composition L = (L1, L2, . . . , Lk) is a composition of the form

(Lj, Lj+1, . . . , Lk, L1, . . . , Lj−1).

A cyclic composition of n is then the equivalence class of an integer composition of n under
cyclic shift. For example,

[2, 1, 3] = {(2, 1, 3), (1, 3, 2), (3, 2, 1)}
and

[1, 2, 1, 2] = {(1, 2, 1, 2), (2, 1, 2, 1)}
are both cyclic compositions. By convention, we’ll also allow the empty set ∅ to be a cyclic
composition.
Let us call S a non-Escher 2 subset of [n] if S is the cyclic descent set of some linear

permutation of length n. When n = 0 or n = 1, only the empty set is non-Escher, and when

2We borrow the term “non-Escher” from [AGRR21] and other recent works on cyclic descent extensions.
As explained there, this term is a reference to M. C. Escher’s painting “Ascending and Descending”.
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n ≥ 2, all subsets of [n] are non-Escher except for the empty set and [n] itself. We associate
to each non-Escher subset S ⊆ [n] a composition cCompS defined by

cCompS :=


(s2 − s1, . . . , sj − sj−1, n− sj + s1), if n ≥ 2,

(1), if n = 1,

∅, if n = 0.

It is easy to see that if S ′ is a cyclic shift of S, then cCompS ′ is a cyclic shift of cCompS.
So, if [S] is the equivalence class of S under cyclic shift, then we can let cComp[S] be the
cyclic composition defined by

cComp[S] := [cCompS].

We say that a cyclic composition is non-Escher if it is an image of this induced map cComp,
and one can check that cComp is a bijection from equivalence classes of non-Escher subsets
of [n] under cyclic shift to non-Escher cyclic compositions of n. If S is the cyclic descent set
of a linear permutation π, then we call cComp[S] the cyclic descent composition of the cyclic
permutation [π]. We denote the cyclic descent composition of [π] simply as cComp[π].
For example, take π = 179624. Then π has cyclic descent set S = {3, 4, 6}, so the cyclic

descent composition of [π] is cComp[S] = [1, 2, 3], which we also denote by cComp[π].
A cyclic permutation statistic cst is called a cyclic descent statistic if it depends only on the

cyclic descent composition—that is, if cComp[π] = cComp[σ] implies cst[π] = cst[σ]. (This is
equivalent to the definition given in Section 2.2.) Similar to the notation stL, we can write
cst[L] for the value of cst on any cyclic permutation with cyclic descent composition [L], and
we shall say that two cyclic compositions [L] and [K] of the same size—which means that L
and K have the same size—are cst-equivalent if cst[L] = cst[K].

3.3. Quasisymmetric functions. A formal power series f ∈ Q[[x1, x2, . . . ]] of bounded
degree in countably many commuting variables x1, x2, . . . is called a quasisymmetric function
if for any a1, a2, . . . , ak ∈ P, i1 < i2 < · · · < ik, and j1 < j2 < · · · < jk, we have equality of
the monomial coefficients

[xa1i1 x
a2
i2
· · ·xakik ]f = [xa1j1 x

a2
j2
· · ·xakjk ]f.

The Q-vector space QSymn of quasisymmetric functions homogeneous of degree n has
dimension 2n−1, the number of compositions of n. An important basis of QSymn is the basis
of fundamental quasisymmetric functions {Fn,L}L⊨n defined by

Fn,L :=
∑

i1≤i2≤···≤in
ij<ij+1 if j∈DesL

xi1xi2 · · ·xin .

Sometimes, it is more convenient to index fundamental quasisymmetric functions by subsets
of [n− 1] as opposed to compositions of n, in which case we’ll use the notation

Fn,S := Fn,CompS.

The product of two quasisymmetric functions is again quasisymmetric. The multiplication
rule for the fundamental basis is given by the following theorem, which can be proved using
P -partitions; see [Sta01, Exercise 7.93].
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t-fqsym Theorem 3.1. Let m and n be non-negative integers, and let A ⊆ [m− 1] and B ⊆ [n− 1].
Then

{e-fundshuffle}{e-fundshuffle} (1) Fm,AFn,B =
∑

τ∈π�σ

Fm+n,Des τ

where π is any permutation of length m with descent set A and σ is any permutation (disjoint
from π) of length n with descent set B.

If f ∈ QSymm and g ∈ QSymn, then fg ∈ QSymm+n. Therefore QSym :=
⊕∞

n=0 QSymn

is a graded Q-algebra called the algebra of quasisymmetric functions (with coefficients in
Q), a subalgebra of Q[[x1, x2, . . . ]]. Motivated by Stanley’s theory of P -partitions, Gessel
introduced quasisymmetric functions in [GZ18] and developed the basic algebraic properties
of QSym. Further properties of QSym and its connections with many topics of study in
combinatorics and algebra were developed in the subsequent decades; see [GR20, Section 5],
[LMvW13], [Sag20, Chapter 8], and [Sta11, Section 7.19] for several basic references.

From Theorem 3.1, we see that the descent set shuffle algebra ADes is isomorphic to QSym;
this is Corollary 4.2 of [GZ18].

3.4. Cyclic quasisymmetric functions and the cyclic shuffle algebra of cDes. We
are now ready to discuss cyclic quasisymmetric functions and their role in cyclic shuffle-
compatibility.

Given a subset S of [n] where n ≥ 1, let

F cyc
n,S :=

∑
i∈[n]

Fn,(S+i)∩[n−1],

and let F cyc
0,∅ := 1; these are the fundamental cyclic quasisymmetric functions introduced

by Adin, Gessel, Reiner, and Roichman [AGRR21]. It is clear from this definition that the
F cyc
n,S are invariant under cyclic shift; in other words, if S ′ = S + i for some integer i, then
F cyc
n,S = F cyc

n,S′ . As such, if [S] is the equivalence class of the set S under cyclic shift, then it
makes sense to define

F cyc
n,[S]

:= F cyc
n,S .

We can also index fundamental cyclic quasisymmetric functions using compositions; for a
composition L of n, let

F cyc
L := F cyc

n,cDesL and F cyc
[L]

:= F cyc
L .

Note that n is not needed in the subscript when using L or [L] since it is determined from
the sum of the parts of L.
Let cQSym− denote the span of {F cyc

n,[S]} over all n ≥ 0 and all equivalence classes [S]

of non-Escher subsets S ⊆ [n]. The following theorem, proven by Adin et al. [AGRR21,
Theorem 3.22], gives a multiplication rule for the fundamental cyclic quasisymmetric functions
in cQSym−, which also implies that the cyclic descent set cDes is cyclic shuffle-compatible
and has cyclic shuffle algebra isomorphic to cQSym−.

t-fcycmult Theorem 3.2. Let m and n be non-negative integers and let A ⊆ [m] and B ⊆ [n] be
non-Escher subsets. Then

{e-fcycmult}{e-fcycmult} (2) F cyc
m,[A]F

cyc
n,[B] =

∑
[τ ]∈[π]�[σ]

F cyc
m+n,cDes[τ ]
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where [π] is any cyclic permutation of length m with cyclic descent set [A] and [σ] is any
cyclic permutation (with σ disjoint from π) of length n with cyclic descent set [B].

Adin et al. proved Theorem 3.2 using toric [D⃗]-partitions; we now supply an alternative
proof using Theorem 2.8.

Proof. We know that the descent set Des is shuffle-compatible and its shuffle algebra ADes

is isomorphic to the algebra of quasisymmetric functions, QSym, via the isomorphism
ϕDes(πDes) = F|π|,Des(π). Then, using the notation of Theorem 2.8, we have

ϕDes(v[π]) = ϕDes

( ∑
π̄∈[π]

π̄Des

)
=
∑
i∈[n]

Fn,(cDes(π)+i)∩[n−1] = F cyc
n,cDes[π]

where n = |π|. If [π] and [σ] are cDes-equivalent, then both ϕDes(v[π]) and ϕDes(v[σ]) are
equal to F cyc

n,[S] where n = |π| = |σ| and [S] = cDes[π] = cDes[σ], so v[π] = v[σ]. The

linear independence of the F cyc
n,[S] can be established by showing that the monomial cyclic

quasisymmetric functions are linearly independent and expressing each F cyc
n,[S] in terms of

monomial cyclic quasisymmetric functions; see [AGRR21, Section 2] for details. Theorem 2.8
implies that cDes is cyclic shuffle-compatible and that Acyc

cDes is isomorphic to cQSym− via
the isomorphism [π]cDes 7→ F cyc

|π|,cDes[π], from which the multiplication rule (2) follows. □

As a direct consequence of Theorem 3.2, we have that cQSym− is a graded Q-subalgebra
of QSym. Adin et al. also show that the span of

{F cyc
0,∅ , F

cyc
1,∅ , F

cyc
1,{1}} ∪ {F cyc

n,[S]}n≥2, ∅≠S⊆[n],

denoted cQSym, is a graded Q-subalgebra of QSym, although this result is less relevant to
cyclic shuffle-compatibility. Thus we have the subalgebra relations

cQSym− ⊆ cQSym ⊆ QSym,

and cQSym− is called the non-Escher subalgebra of cQSym.
Before moving on, let us explicitly state the cyclic shuffle-compatibility of cDes as a

corollary of the preceding theorem.

c-cDes Corollary 3.3 (Cyclic shuffle-compatibility of cDes). The cyclic descent set cDes is cyclic
shuffle-compatible, and the linear map on Acyc

cDes defined by [π]cDes 7→ F cyc
|π|,cDes[π] is a Q-algebra

isomorphism from Acyc
cDes to cQSym−.

3.5. A general cyclic shuffle-compatibility criterion for cyclic descent statistics.
The theorem below is [GZ18, Theorem 4.3], which provides a necessary and sufficient condition
for shuffle-compatibility of descent statistics in terms of quasisymmetric functions, and implies
that the shuffle algebra of any shuffle-compatible descent statistic is a quotient algebra of
QSym.

t-scQSym Theorem 3.4. A descent statistic st is shuffle-compatible if and only if there exists a Q-
algebra homomorphism ϕst : QSym → A, where A is a Q-algebra with basis {uα} indexed by
st-equivalence classes α of compositions, such that ϕst(FL) = uα whenever L ∈ α. In this
case, the linear map on Ast defined by

πst 7→ uα,

where Compπ ∈ α, is a Q-algebra isomorphism from Ast to A.
15



We now prove our main result of this section: a cyclic analogue of Theorem 3.4.

t-csccQSym Theorem 3.5. A cyclic descent statistic cst is cyclic shuffle-compatible if and only if there
exists a Q-algebra homomorphism ϕcst : cQSym− → A, where A is a Q-algebra with basis
{vα} indexed by cst-equivalence classes α of non-Escher cyclic compositions, such that
ϕcst(F

cyc
[L] ) = vα whenever [L] ∈ α. In this case, the linear map on Acyc

cst defined by

[π]cst 7→ vα,

where cComp[π] ∈ α, is a Q-algebra isomorphism from Acyc
cst to A.

Proof. Suppose that the cyclic descent statistic cst is cyclic shuffle-compatible. Let A = Acyc
cst

be the cyclic shuffle algebra of cst, and let vα = [π]cst for any [π] satisfying cComp[π] ∈ α, so
that

vβvγ =
∑
α

cαβ,γvα

where cαβ,γ is the number of cyclic permutations with cyclic descent composition in α that
are obtained as a cyclic shuffle of two disjoint cyclic permutations, one with cyclic descent
composition in β and the other with cyclic descent composition in γ. Observe that cαβ,γ =∑

[L]∈α c
L
J,K for any choice of [J ] ∈ β and [K] ∈ γ, where cLJ,K is the number of cyclic

permutations with cyclic descent composition [L] that are obtained as a cyclic shuffle of two
disjoint cyclic permutations, one with cyclic descent composition [J ] and the other with cyclic
descent composition [K].

Define the linear map ϕcst : cQSym− → A by ϕcst(F
cyc
[L] ) = vα for [L] ∈ α. Then any [J ] ∈ β

and [K] ∈ γ satisfy

ϕcst(F
cyc
[J ] F

cyc
[K] ) = ϕcst

(∑
[L]

cLJ,KF
cyc
[L]

)
=
∑
α

∑
[L]∈α

cLJ,Kvα

=
∑
α

cαβ,γvα

= vβvγ

= ϕcst(F
cyc
[J ] )ϕcst(F

cyc
[K] ),

so ϕcst is a Q-algebra homomorphism, thus completing one direction of the proof.
The converse follows from Theorem 2.1, where we take cst1 to be cDes (which is cyclic

shuffle-compatible by Corollary 3.3) and cst2 to be cst. □

Corollary 3.6. If cst is a cyclic shuffle-compatible descent statistic, then Acyc
cst is isomorphic

to a quotient algebra of cQSym−.

To conclude this section, we state a special case of Theorem 3.5 in which the homomorphism
ϕcst is given in terms of the homomorphism ϕst of a related (linear) descent statistic; c.f.
Theorem 2.8. We will use this theorem to prove cyclic shuffle-compatibility results for cyclic
analogues of shuffle-compatible descent statistics.

t-main Theorem 3.7. Let cst be a cyclic descent statistic and let st be a shuffle-compatible (linear)
descent statistic, so that there exists a Q-algebra homomorphism ϕst : QSym → A satisfying
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the conditions in Theorem 3.4. Define the Q-algebra homomorphism ϕcst : cQSym− → A by

ϕcst(F
cyc
n,S ) =

∑
i∈[n]

ϕst(Fn,(S+i)∩[n−1]).

Suppose that ϕcst(F
cyc
n,S ) = ϕcst(F

cyc
n,T ) whenever the cyclic compositions cComp[S] and cComp[T ]

are cst-equivalent—so that we can write ϕcst(F
cyc
n,S ) = vα whenever cComp[S] ∈ α—and sup-

pose that {vα} is linearly independent. Then cst is cyclic shuffle-compatible and the linear
map on Acyc

cst defined by
[π]cst 7→ vα,

where cComp[π] ∈ α, is a Q-algebra isomorphism from Acyc
cst to the span of {vα}, a subalgebra

of A.

4. Characterizations of cyclic shuffle algebras
s-charcsa

Our next goal is to use the theory developed in the previous section to give explicit
descriptions of cyclic shuffle algebras. First, let us discuss a couple statistics—the cyclic
peak set cPk and the cyclic peak number cpk—whose definitions were omitted from the
introduction. We will then characterize the cyclic shuffle algebras of cPk, (cpk, cdes), cpk,
and cdes. This yields new proofs for the cyclic shuffle-compatibility of the statistics cPk, cpk,
and cdes, as well as the first proof for (cpk, cdes).

ss-cPkcpk
4.1. The cyclic peak set and cyclic peak number. The cyclic peak set of a linear
permutation π ∈ Pn is defined by

cPk π := { i ∈ [n] : πi−1 < πi > πi+1 where i is considered modulo n }.
and the elements of cPk π are called cyclic peaks of π. Then the cyclic peak set of a cyclic
permutation [π] is defined to be the multiset

cPk[π] := {{ cPk π̄ : π̄ ∈ [π] }}.
For example, we have cPk[184756] = {{ {2, 4, 6}3, {1, 3, 5}3 }}. It is clear from the definitions
that, in general, cPk[π] is the multiset consisting of all cyclic shifts of cPk π.

The cyclic peak number of a linear permutation π is defined by

cpk π := |cPk π| ,
and the cyclic peak number of a cyclic permutation [π] by

cpk[π] := cpkπ,

which is well-defined because every linear permutation in [π] has the same number of cyclic
peaks. It is easy to see that cPk and cpk are both cyclic descent statistics, so they are
uniquely determined by the cyclic descent composition (equivalently, the cyclic descent set
and length).

When we characterize the (cpk, cdes) cyclic shuffle algebra, we shall need to determine all
values that the (cpk, cdes) statistic can take, which we can do with the help of two lemmas.
The first of these lemmas is Proposition 2.5 of [GZ18], so we omit its proof.

l-pkdes Lemma 4.1. Let n ≥ 1.

(a) If π ∈ Pn, then 0 ≤ pkπ ≤ ⌊(n− 1)/2⌋ and pkπ ≤ des π ≤ n− pkπ − 1.
(b) If j and k are integers satisfying 0 ≤ j ≤ ⌊(n− 1)/2⌋ and j ≤ k ≤ n − j − 1, then

there exists π ∈ Pn with pkπ = j and des π = k.
17



l-cpkcdes Lemma 4.2. Let n ≥ 2. If π ∈ Pn−1 and m is greater than the largest letter of π, then
cpk[πm] = pkπ + 1 and cdes[πm] = des π + 1, where πm is the permutation in Pn obtained
by appending the letter m to π.

Proof. Every peak of π is a cyclic peak of πm, and every cyclic peak of πm is either m or a
peak of π. The same relationship is true for descents of π and cyclic descents of πm. □

c-cpkcdes Corollary 4.3. Let n ≥ 2.

(a) If π ∈ Pn, then 1 ≤ cpkπ ≤ ⌊n/2⌋ and cpkπ ≤ cdesπ ≤ n− cpk π.
(b) If j and k are integers satisfying 1 ≤ j ≤ ⌊n/2⌋ and j ≤ k ≤ n− j, then there exists

π ∈ Pn with cpk π = j and cdes π = k.

Proof. Fix π ∈ Pn. Let m be the largest letter of π, let π̄ be the unique representative of
[π] which ends with m, and let π′ be the permutation of length n− 1 obtained from π̄ upon
removing its last letter m. Applying Lemma 4.2, we obtain

cpkπ = cpk[π̄] = pk π′ + 1 and cdes π = cdes[π̄] = des π′ + 1.

Then part (a) follows from these equations and Lemma 4.1 (a).
To prove part (b), let j and k be integers in the specified ranges. By Lemma 4.1 (b),

we know there exists a permutation π′ ∈ Pn−1 with pkπ′ = j − 1 and des π′ = k − 1. Let
m ∈ P be greater than the largest letter of π′; then it follows from Lemma 4.2 that πm is a
permutation in Pn satisfying cpk π = j and cdes π = k. □

4.2. The cyclic shuffle algebra of cPk. We will construct the cyclic shuffle algebra Acyc
cPk

from the linear shuffle algebra APk. The latter is known to be isomorphic to a subalgebra Π
of QSym—introduced by Stembridge [Ste97]—called the algebra of peaks, which is spanned
by the peak quasisymmetric functions Kn,S where n ranges over all non-negative integers and
S over all possible peak sets of permutations in Pn. We won’t need the precise definition of
Kn,S here, only that the isomorphism from APk to Π sends πPk to K|π|,Pkπ. We state this
fact in the following theorem, which appears as Theorem 4.7 of [GZ18].

t-Pk Theorem 4.4 (Shuffle-compatibility of Pk). The peak set Pk is shuffle-compatible, and the
linear map on APk defined by πPk 7→ K|π|,Pkπ is a Q-algebra isomorphism from APk to Π.

The analogue of Stembridge’s quasisymmetric peak functions in the cyclic setting are the
cyclic peak quasisymmetric functions Kcyc

n,S recently introduced by Liang [Lia22]. Here, we
shall define the cyclic peak functions Kcyc

n,S in terms of the Kn,S. For brevity, let us say that
S is a cyclic peak set of [n] if S is the cyclic peak set of some permutation of length n. Then,
if S is a cyclic peak set of [n], let

Kcyc
n,S :=

∑
i∈[n]

Kn,(S+i)\{1,n} =
∑
π̄∈[π]

Kn,Pk π̄

where π is any permutation in Pn with cyclic peak set S. We can also write Kcyc
n,[S]

:= Kcyc
n,S

since the Kcyc
n,S are invariant under cyclic shift. Liang showed that the Kcyc

n,[S] are linearly

independent, and they span a subalgebra Λ of cQSym called the algebra of cyclic peaks.3

The following theorem—which is equivalent to Equation (5.10) of [Lia22]—gives a multi-
plication rule for the Kcyc

n,[S]. This multiplication rule also implies that cPk is cyclic shuffle-

compatible, which was first proven by Domagalski et al. [DLM+21] using bijective means.

3The algebra Λ should not be confused with another subalgebra of cQSym commonly denoted Λ: the
algebra of symmetric functions.
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t-kcycmult Theorem 4.5. Let m and n be non-negative integers, let A be a cyclic peak set of [m], and
B a cyclic peak set of [n]. Then

{e-kcycmult}{e-kcycmult} (3) Kcyc
m,[A]K

cyc
n,[B] =

∑
[τ ]∈[π]�[σ]

Kcyc
m+n,cPk[τ ]

where [π] is any cyclic permutation of length m with cyclic peak set [A] and [σ] is any cyclic
permutation (disjoint from [π]) of length n with cyclic peak set [B].

While Liang’s proof of Theorem 4.5 uses enriched toric [D⃗]-partitions, we shall now use
Theorem 3.7 to supply an alternative proof.

Proof. First, we take ϕPk : QSym → Π to be the composition of the map FL 7→ πPk with the
map πPk 7→ K|π|,Pkπ from Theorem 4.4 where π is any permutation with Pk π = PkL; then
ϕPk satisfies the conditions in Theorem 3.4.
Let S be a non-Escher subset of [n], and let [P ] be the cyclic peak set of any cyclic

permutation [π] of length n with cyclic descent set [S]. Note that the sets (S + i) ∩ [n− 1]
where i ranges from 1 to n are precisely the descent sets of the n linear permutations in [π].
Hence, we have

ϕcPk(F
cyc
n,S ) =

∑
i∈[n]

ϕPk(Fn,(S+i)∩[n−1]) =
∑
π̄∈[π]

ϕPk(Fn,Des π̄) =
∑
π̄∈[π]

Kn,Pk π̄ = Kcyc
n,[P ].

Clearly, ϕcPk(F
cyc
n,S ) depends only on the cPk-equivalence class of the cyclic composition

cComp[S], and we know that the Kcyc
n,[P ] are linearly independent. Applying Theorem 3.7,

we conclude that cPk is cyclic shuffle-compatible and that Acyc
cPk is isomorphic to Λ via the

isomorphism [π]cPk 7→ Kcyc
|π|,cPk[π], from which the multiplication rule (3) follows. □

c-cPk Corollary 4.6 (Cyclic shuffle-compatibility of cPk). The cyclic peak set cPk is cyclic shuffle-
compatible, and the linear map on Acyc

cPk defined by [π]cPk 7→ Kcyc
|π|,cPk[π] is a Q-algebra isomor-

phism from Acyc
cPk to Λ.

4.3. The cyclic shuffle algebra of (cpk, cdes). We will now use Theorem 3.7 to construct
the cyclic shuffle algebra Acyc

(cpk,cdes) from the linear shuffle algebra A(pk,des). We begin by

recalling the following result about A(pk,des), which is Theorem 5.9 of Gessel and Zhuang
[GZ18]. Below, we will use the notation Q[[t∗]] to denote the Q-algebra of formal power
series in t where the multiplication is given by the Hadamard product ∗, defined by( ∞∑

n=0

ant
n
)
∗
( ∞∑

n=0

bnt
n
)
:=

∞∑
n=0

anbnt
n.

t-pkdes Theorem 4.7 (Shuffle-compatibility of (pk, des)).

(a) The pair (pk, des) is shuffle-compatible.
(b) Let

u
(pk,des)
n,j,k =

tj+1(y + t)k−j(1 + yt)n−j−k−1(1 + y)2j+1

(1− t)n+1
xn.

Then the linear map on A(pk,des) defined by

π(pk,des) 7→

{
u
(pk,des)
|π|,pkπ,desπ, if |π| ≥ 1,

1/(1− t), if |π| = 0,
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is a Q-algebra isomorphism from A(pk,des) to the span of{
1

1− t

}⋃
{u(pk,des)n,j,k }n≥1,

0≤j≤⌊(n−1)/2⌋,
j≤k≤n−j−1,

,

a subalgebra of Q[[t∗]][x, y].

We note that, in the definition of u
(pk,des)
n,j,k , all products should be interpreted as ordinary

multiplication; the Hadamard product in t is only used when multiplying elements in the

span of the u
(pk,des)
n,j,k . The same is true in Theorems 4.8, 4.9, and 4.10 presented later in this

section.

t-cpkcdes Theorem 4.8 (Cyclic shuffle-compatibility of (cpk, cdes)).

(a) The pair (cpk, cdes) is cyclic shuffle-compatible.
(b) Let

v
(cpk,cdes)
n,j,k = ju

(pk,des)
n,j−1,k + ju

(pk,des)
n,j−1,k−1 + (k − j)u

(pk,des)
n,j,k−1 + (n− j − k)u

(pk,des)
n,j,k

= [j(y + t)(1 + yt)(1 + y + t+ yt)

+ ((k − j)(1 + yt) + (n− j − k)(y + t))t(1 + y)2]

× tj(y + t)k−j−1(1 + yt)n−j−k−1(1 + y)2j−1

(1− t)n+1
xn.

Then the linear map on Acyc
(cpk,cdes) defined by

[π](cpk,cdes) 7→

{
v
(cpk,cdes)
|π|,cpk[π],cdes[π], if |π| ≥ 1,

1/(1− t), if |π| = 0,

is a Q-algebra homomorphism from Acyc
(cpk,cdes) to the span of{

1

1− t
,
t(1 + y)

(1− t)2
x

}⋃
{v(cpk,cdes)n,j,k }n≥2, 1≤j≤⌊n/2⌋, j≤k≤n−j,

a subalgebra of Q[[t∗]][x, y].
(c) For all n ≥ 2, the nth homogeneous component of Acyc

(cpk,cdes) has dimension ⌊n2/4⌋.

Proof. We shall apply Theorem 3.7 using st = (pk, des). In doing so, we take ϕ(pk,des) to be
the composition of the map FL 7→ π(pk,des) with the map from Theorem 4.7 (b), where π is
any permutation with pkπ = pkL and des π = desL.
Let π be a permutation of length n ≥ 2 with cyclic descent set S, and let j = cpk[π] and

k = cdes[π] (which only depend on S and not the specific choice of π). Let us consider the n
linear permutations in [π], whose descent sets are given by (S + i) ∩ [n− 1] where i ranges
from 1 to n. Among these n permutations, the following hold:

• Exactly j of these permutations have cpk[π]− 1 peaks and cdes[π] descents, which
are those that have a cyclic peak in the first position.

• Exactly j of these permutations have cpk[π]− 1 peaks and cdes[π]− 1 descents, which
are those that have a cyclic peak in the last position.

• Exactly k− j of these permutations have cpk[π] peaks and cdes[π]− 1 descents, which
are those that have a cyclic descent in the last position which is not a cyclic peak.

• The remaining n− j − k permutations have cpk[π] peaks and cdes[π] descents.
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Therefore, we have

ϕ(cpk,cdes)(F
cyc
n,S ) =

∑
i∈[n]

ϕ(pk,des)(Fn,(S+i)∩[n−1])

= ju
(pk,des)
n,j−1,k + ju

(pk,des)
n,j−1,k−1 + (k − j)u

(pk,des)
n,j,k−1 + (n− j − k)u

(pk,des)
n,j,k

= v
(cpk,cdes)
n,j,k .

For n = 0 and n = 1, we have

ϕ(cpk,cdes)(F
cyc
0,∅ ) =

1

1− t
and ϕ(cpk,cdes)(F

cyc
1,∅ ) =

t(1 + y)

(1− t)2
x.

Clearly, ϕ(cpk,cdes)(F
cyc
n,S ) depends only on the (cpk, cdes)-equivalence class of cComp[S].

To prove linear independence, let us order monomials in the variables t and y lexicographi-
cally by the exponent of t followed by the exponent of y, that is, tayb > tcyd if and only if
either a > c, or if a = c and b > d. Since Corollary 4.3 implies j ≥ 1, it is readily verified

that the least monomial in (1− t)n+1v
(cpk,cdes)
n,j,k /xn is tjyk−j; thus{

(1− t)n+1

xn
v
(cpk,cdes)
n,j,k

}
1≤j≤⌊n/2⌋
j≤k≤n−j

is linearly independent for each n ≥ 2, and this in turn implies that{
1

1− t
,
t(1 + y)

(1− t)2
x

}⋃
{v(cpk,cdes)n,j,k } n≥2

1≤j≤⌊n/2⌋
j≤k≤n−j

is linearly independent. Corollary 4.3 ensures that we have the correct limits on j and k, so
we can use Theorem 3.7 to conclude that parts (a) and (b) hold.

From Corollary 4.3, we know that for n ≥ 2, the number of (cpk, cdes)-equivalence classes
of cyclic permutations of length n is

⌊n/2⌋∑
j=1

((n− j)− j + 1) =

⌊n/2⌋∑
j=1

(n− 2j + 1),

and it is straightforward to show that this is equal to ⌊n2/4⌋. Thus, part (c) follows. □

4.4. The cyclic shuffle algebras of cpk and cdes. Next, we use our characterization of
the cyclic shuffle algebra Acyc

(cpk,cdes) along with Theorem 2.1 to characterize Acyc
cpk and Acyc

cdes,

which also provides an alternative proof for the cyclic shuffle-compatibility of cdes and cpk.
Let N be the set of non-negative integers. In the theorems below, we use the notation

Q[x]N to denote the algebra of functions N → Q[x] in the non-negative integer variable p.
For example, the map p 7→

(
p
2

)
x + p3—which we write simply as

(
p
2

)
x + p3 for brevity—is

an element of Q[x]N. Moreover, in Theorem 4.9 below,
((

n
k

))
is the number of k-element

multisubsets of [n].

t-cpk Theorem 4.9 (Cyclic shuffle-compatibility of cpk).

(a) The cyclic peak number cpk is cyclic shuffle-compatible.
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(b) The linear map on Acyc
cpk defined by

[π]cpk 7→
(cpk[π](1 + t)2 + 2(|π| − 2 cpk[π])t)(4t)cpk[π](1 + t)|π|−2 cpk[π]−1

(1− t)|π|+1
x|π|, if |π| ≥ 1,

1/(1− t), if |π| = 0,

is a Q-algebra isomorphism from Acyc
cpk to the span of{

1

1− t
,

tx

(1− t)2

}⋃{
(j(1 + t)2 + 2(n− 2j)t)(4t)j(1 + t)n−2j−1

(1− t)n+1
xn
}

n≥2,
1≤j≤⌊n/2⌋

,

a subalgebra of Q[[t∗]][x].
(c) Let

wcpk
n,j = j4j

p−j∑
k=0

((
n+ 1

k

))(
n− 2j + 1

p− j − k

)
xn

+ 2(n− 2j)4j
p−1−j∑
k=0

((
n+ 1

k

))(
n− 2j − 1

p− j − k − 1

)
xn.

Then the linear map on Acyc
cpk defined by

[π]cpk 7→

{
wcpk

|π|,cpk[π], if |π| ≥ 1,

1, if |π| = 0,

is a Q-algebra isomorphism from Acyc
cpk to the span of

{1} ∪ {wcpk
n,j }n≥1,

1≤j≤⌊n/2⌋
,

a subalgebra of Q[x]N.
(d) For all n ≥ 2, the nth homogeneous component of Acyc

cpk has dimension ⌊n/2⌋.

Proof. Let ϕ : Acyc
(cpk,cdes) → Q[[t∗]][x] be the composition of the map from Theorem 4.8 (b)

and the y = 1 evaluation map. Since

v
(cpk,cdes)
n,j,k

∣∣∣
y=1

=
(j(1 + t)2 + 2(n− 2j)t)(4t)j(1 + t)n−2j−1

(1− t)n+1
xn

for all n ≥ 1, we see that ϕ is precisely the map in part (b) of this theorem. Note that

v
(cpk,cdes)
n,j,k |y=1 depends only on n and j, so the v

(cpk,cdes)
n,j,k |y=1 correspond to cpk-equivalence

classes. Furthermore, it is straightforward to verify that the v
(cpk,cdes)
n,j,k |y=1 are linearly inde-

pendent, so we may apply Theorem 2.1 to complete the proof for parts (a), (b) and (d). Part
(c) follows from part (b) and the identity

∞∑
p=0

wcpk
|π|,cpk[π]t

p =

(
4t

(1 + t)2

)cpk[π](
1 + t

1− t

)|π|−1(
cpk[π] +

2 |π| t
(1− t)2

)
x|π|

=
(cpk[π](1 + t)2 + 2(|π| − 2 cpk[π])t)(4t)cpk[π](1 + t)|π|−2 cpk[π]−1

(1− t)|π|+1
x|π|,
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where the first equality follows from [Lia22, Proposition 5.13 and Corollary 5.18]. □

t-cdes Theorem 4.10 (Cyclic shuffle-compatibility of cdes).

(a) The cyclic descent number cdes is cyclic shuffle-compatible.
(b) The linear map on Acyc

cdes defined by

[π]cdes 7→


cdes[π]tcdes[π] + (|π| − cdes[π])tcdes[π]+1

(1− t)|π|+1
x|π|, if |π| ≥ 1,

1/(1− t), if |π| = 0,

is a Q-algebra isomorphism from Acyc
cdes to the span of{

1

1− t
,

tx

(1− t)2

}⋃{
ktk + (n− k)tk+1

(1− t)n+1
xn
}

n≥2,
1≤k≤n−1

,

a subalgebra of Q[[t∗]][x].
(c) The linear map on Acyc

cdes defined by

[π]cdes 7→


(
p+ |π| − cdes[π]− 1

|π| − 1

)
px|π|, if |π| ≥ 1,

1, if |π| = 0,

is a Q-algebra isomorphism from Acyc
cdes to the span of

{1, px}
⋃{(

p+ n− k − 1

n− 1

)
pxn
}

n≥2,
1≤k≤n−1

,

a subalgebra of Q[x]N.
(d) For all n ≥ 2, the nth homogeneous component of Acyc

cdes has dimension n− 1.

Proof. The proofs for parts (a), (b), and (d) follow in the same way as in for Theorem 4.9,
except that we evaluate at y = 0 as opposed to y = 1. Part (c) follows from part (b) and the
identity

ktk + (n− k)tk+1

(1− t)n+1
=

∞∑
p=0

(
p+ n− k − 1

n− 1

)
ptp,

which was established in [AGRR21, Lemma 5.8]. □

5. Cyclic permutation statistics induced by linear permutation statistics
s-induced

Recall that the cyclic permutation statistics cDes and cPk are defined by

cDes[π] := {{ cDes π̄ : π̄ ∈ [π] }} and cPk[π] := {{ cPk π̄ : π̄ ∈ [π] }}.
In other words, cDes[π] is simply the distribution of the linear permutation statistic cDes
over all linear permutations in [π], and similarly with cPk[π]. In fact, any linear permutation
statistic st induces a multiset-valued cyclic permutation statistic (which we also denote st by
a slight abuse of notation) if we let

st[π] := {{ st π̄ : π̄ ∈ [π] }}.
In this section, we study these multiset-valued cyclic statistics induced from various linear
permutation statistics.
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5.1. The cyclic statistics Des, des, Pk, and pk. To begin, we note that the cyclic statistics
induced from the linear statistics Des, des, Pk, and pk are equivalent to cDes, cdes, cPk, and
cpk, respectively.

l-Desequiv Lemma 5.1. The cyclic permutation statistics Des and cDes are equivalent.

Proof. Let π ∈ Pn. For any π̄ ∈ [π], we have Des π̄ = cDes π̄\{n} if n ∈ cDes π̄ and
Des π̄ = cDes π̄ otherwise. Therefore, we can obtain Des[π] from cDes[π] by removing every
n from the cyclic descent sets in cDes[π], and we can obtain cDes[π] from Des[π] by adding
n to each descent set in Des[π] with one fewer element than the others. □

l-desequiv Lemma 5.2. The cyclic permutation statistics des and cdes are equivalent.

Proof. Let π ∈ Pn. For any π̄ ∈ [π], we have des π̄ = cdes[π] − 1 if n ∈ cDes π̄ and
des π̄ = cdes[π] otherwise. The unique permutation in [π] beginning with its largest letter
does not have n as a cyclic descent, so we can determine cdes[π] from the multiset des[π] by
taking the largest value in des[π].
Conversely, among the n rotations of π, there are exactly cdes[π] permutations with a

cyclic descent in the last position; this implies that des[π] is the multiset with cdes[π] copies
of cdes[π]− 1 and n− cdes[π] copies of cdes[π], so we can determine des[π] from cdes[π] as
well. □

l-Pkequiv Lemma 5.3. The cyclic permutation statistics Pk and cPk are equivalent.

Proof. Let π ∈ Pn. For any π̄ ∈ [π], we have Pk π̄ = cPk π̄\{1} if 1 ∈ cPk π̄, Pk π̄ =
cPk π̄\{n} if n ∈ cPk π̄, and Pk π̄ = cPk π̄ otherwise. (Note that cPk π̄ cannot simultaneously
contain 1 and n.) Hence, we can obtain Pk[π] from cPk[π] by removing every 1 and n from
the cyclic peak sets in cPk[π].
Conversely, suppose that we are given Pk[π] and wish to recover cPk[π]. Let i ∈ [n] be

arbitrary. Notice that, among all n representatives of [π], the index of πi spans the entire
range {1, 2, . . . , n}. If i is a cyclic peak of π in particular, this means that the index of πi
will be a peak of all n representatives of [π] except for the linear permutation beginning with
πi and the one ending with πi; hence, if one adds up pk π̄ over all π̄ ∈ [π], then each of these
πi will contribute n− 2 to the summation. It follows that the sum of the sizes of all peak
sets in Pk[π] is equal to (n− 2) cpk[π]; in other words, we can determine cpk[π] from Pk[π].
It remains to show that we can recover cPk[π] from cpk[π] and Pk[π]. To do so, we divide
into two cases:

• Case 1 : Suppose that there exists a peak set Pk π̄ in Pk[π] with cpk[π] elements.
Then Pk π̄ = cPk π̄, and we can recover the entire multiset cPk[π] by taking all n
cyclic shifts of Pk π̄.

• Case 2 : Suppose instead that all peak sets in Pk[π] have cpk[π]− 1 elements. Then,
every linear permutation in [π] has either 1 or n as a cyclic peak. In general, among
the n representatives of [π], there are exactly 2 cpk[π] of them with a cyclic peak at
one end. This means that 2 cpk[π] = n, and since cyclic peak sets cannot contain
two consecutive indices, it follows that every cyclic peak set in cPk[π] is of the form
{1, 3, . . . , n− 1} or {2, 4, . . . , n}. More precisely, we must have

cPk[π] = {{ {1, 3, . . . , n− 1}n/2, {2, 4, . . . , n}n/2 }}.

Since cPk[π] can be recovered from Pk[π] in both cases, we are done. □
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l-pkequiv Lemma 5.4. The cyclic permutation statistics pk and cpk are equivalent.

Proof. Let π ∈ Pn. As shown in the proof of Lemma 5.3, the sum of the sizes of all peak
sets in Pk[π] is equal to (n− 2) cpk[π], but this is the same as the sum of all elements of the
multiset pk[π]. Thus, cpk[π] can be determined from pk[π].

For the converse, we use the observation (also used in the proof of Lemma 5.3) that among
the n representatives of a cyclic permutation [π], there are exactly 2 cpk[π] of them with a
cyclic peak at one end. This implies that the multiset pk[π] has 2 cpk[π] copies of cpk[π]− 1
and n− 2 cpk[π] copies of cpk[π]. Hence, cpk[π] completely determines pk[π]. □

Since cDes, cdes, cPk, and cpk are cyclic shuffle-compatible, it follows from these equiva-
lences and Theorem 2.2 that the cyclic statistics Des, des, Pk, and pk are as well.

Theorem 5.5 (Cyclic shuffle-compatibility of Des, des, Pk, and pk). The cyclic statistics
Des, des, Pk, and pk are cyclic shuffle-compatible, and we have the Q-algebra isomorphisms

Acyc
Des

∼= Acyc
cDes, Acyc

des
∼= Acyc

cdes, Acyc
Pk

∼= Acyc
cPk, and Acyc

pk
∼= Acyc

cpk.
ss-symrev

5.2. Symmetries revisited. Let f be a length-preserving involution on permutations that is
both shuffle-compatibility-preserving and rotation-preserving. In Section 2.3, we proved that
if the cyclic permutation statistics cst1 and cst2 are f -equivalent and if cst1 is cyclic shuffle-
compatible, then cst2 is also cyclic shuffle-compatible with cyclic shuffle algebra isomorphic
to that of cst1. We now show that f -equivalence of two linear permutation statistics induces
f -equivalence of their induced cyclic statistics.

l-fequivinduced Lemma 5.6. Let f be rotation-preserving. If st1 and st2 are f -equivalent linear permutation
statistics, then their induced cyclic permutation statistics st1 and st2 are f -equivalent.

Proof. Since st1 and st2 are f -equivalent linear permutation statistics, we have st1 π
f = st1 σ

f

if and only if st2 π = st2 σ. Suppose that st2[π] = st2[σ]. Then, there is a bijective
correspondence g : [π] → [σ] satisfying st2 π̄ = st2 g(π̄) for all π̄ ∈ [π], so st1 π̄

f = st1 g(π̄)
f for

all π̄ ∈ [π]. Because f is rotation-preserving, the permutations π̄f and g(π̄)f over all π̄ ∈ [π]
are precisely the rotations of πf and σf , respectively. Thus, we have st1[π

f ] = st1[σ
f ]. The

converse follows from similar reasoning, so we have st1[π
f ] = st1[σ

f ] if and only if st2[π] =
st2[σ]—in other words, the cyclic permutation statistics st1 and st2 are f -equivalent. □

Theorem 5.7. Let f be shuffle-compatibility-preserving and rotation-preserving, and let st1
and st2 be f -equivalent linear permutation statistics. If the induced cyclic statistic st1 is cyclic
shuffle-compatible, then the induced cyclic statistic st2 is also cyclic shuffle-compatible and
Acyc

st2 is isomorphic to Acyc
st1 .

Proof. This is an immediate consequence of Theorem 2.6 and Lemma 5.6. □

c-syminduced Corollary 5.8. Suppose that the linear permutation statistics st1 and st2 are r-equivalent,
c-equivalent, or rc-equivalent. If the induced cyclic statistic st1 is cyclic shuffle-compatible,
then the induced cyclic statistic st2 is also cyclic shuffle-compatible and its cyclic shuffle
algebra Acyc

st2 is isomorphic to Acyc
st1 .

Given π ∈ Pn, recall that the valley set Val statistic is defined by

Val π := { i ∈ [n] : πi−1 > πi < πi+1, },
and let us also define the cyclic valley set cVal by

cVal π := { i ∈ [n] : πi−1 > πi < πi+1 where i is considered modulo n }.
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As a sample application of Corollary 5.8, observe that Val is c-equivalent to Pk (as linear
permutation statistics) and similarly with cVal and cPk. Combining this with Lemma 5.3 we
immediately obtain the following.

Theorem 5.9 (Cyclic shuffle-compatibility of Val and cVal). The cyclic statistics Val and
cVal are cyclic shuffle-compatible, and we have the Q-algebra isomorphisms

Acyc
Val

∼= Acyc
Pk

∼= Acyc
cPk

∼= Acyc
cVal.

ss-cmaj
5.3. Cyclic major index. A natural question to ask is if there is a nice cyclic analogue of
the major index. This question was raised in [AGRR21] and again in [DLM+21]. One first
needs to explain what one means by “nice.”

If π ∈ Pm and σ ∈ Pn, then

|π� σ| =
(
m+ n

m

)
.

From Stanley’s theory of P -partitions [Sta72], one gets the following q-analogue

{maj:gf}{maj:gf} (4)
∑

τ∈π�σ

qmaj τ = qmajπ+majσ

[
m+ n

m

]
where

[
m+n
m

]
is a q-binomial coefficient. Note that (4) implies that maj is shuffle-compatible.

It can be shown that

|[π]� [σ]| = (m+ n− 1)

(
m+ n− 2

m− 1

)
,

so one could ask that the cyclic major index give a q-analogue of this identity, similar to (4),
or at least for the cyclic major index to be cyclic shuffle-compatible.

Stanley also refined Equation (4) as follows. Let

π�k σ = { τ ∈ π� σ : des τ = k }.

If des π = i and desσ = j, then

{majdes:gf}{majdes:gf} (5)
∑

τ∈π�kσ

qmaj τ = qmajπ+majσ+(k−i)(k−j)

[
m− j + i

k − j

][
n− i+ j

k − i

]
;

in particular, this implies that (des,maj) is shuffle-compatible, and so we would like a cmaj
statistic for which cmaj and (cdes, cmaj) are both cyclic shuffle-compatible.

In [AGRR21], Adin et al. computed the cardinality of

[π]�k [σ] = { [τ ] ∈ [π]� [σ] : cdes[τ ] = k }

which inspired Ji and Zhang [JZ22] to define a cmaj statistic which gives a q-analogue of this
count. They proved a generating function formula analogous to (5), but unfortunately, the
formula does not simplify into single product, and one could hope for a different cyclic major
index whose generating function would do so. Furthermore, their formula does not actually
show that their (cdes, cmaj) is cyclic shuffle-compatible; in fact, neither of their cmaj and
(cdes, cmaj) are cyclic shuffle-compatible.

Each of the cyclic statistics cDes, cdes, cPk, and cpk is (or is equivalent to) a multiset-valued
cyclic statistic induced by a corresponding linear permutation statistic, so a natural alternative
definition for a cyclic major index would be to define cmaj first on linear permutations and
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then consider the multiset-valued statistic induced by the linear cmaj. To that end, given a
linear permutation π, let

cmaj π :=
∑

k∈cDesπ

k.

Unfortunately, the induced statistics cmaj and (cdes, cmaj) are not cyclic shuffle-compatible.
As a counterexample, take π = 14 7 6 9 10 8 2 5 3, σ = 13 5 4 7 6 9 10 8 2, and ρ = 11. Then
cdes[π] = cdes[σ] = 5 and cmaj[π] = cmaj[σ] = {{20, 254, 304, 35}}, but cmaj([π]� [ρ]) ̸=
cmaj([σ] � [ρ]). For instance, the multiset {{22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35}} is an
element of cmaj([π]� [ρ]) but not cmaj([σ]� [ρ]).
Another option is to consider the cyclic statistic induced by the usual major index maj,

as opposed to cmaj. Even if cmaj and (cdes, cmaj) are not cyclic shuffle-compatible, it’s
conceivable that maj and (des,maj) are. It turns out that maj is equivalent to cmaj and
similarly with (des,maj) and (cdes, cmaj), so by Theorem 2.2, neither maj nor (des,maj) are
cyclic shuffle-compatible.

l-desmajequiv Lemma 5.10. The cyclic permutation statistics (des,maj) and (cdes, cmaj) are equivalent.

Proof. Fix a cyclic permutation [π] = {π = π(1), π(2), . . . , π(n)} of length n where, for each
i ∈ [n], π(i+1) is obtained from π(i) by rotating its last element to the front of the permutation
and i is taken modulo n. We claim that, for all i ∈ [n],

{e-cmaj1}{e-cmaj1} (6) cmajπ(i+1) =

{
cmaj π(i) + cdes[π]− n, if n ∈ cDes π(i),

cmaj π(i) + cdes[π], if n /∈ cDesπ(i).

To prove (6), first assume that n ∈ cDesπ(i), and let k = cdes[π]. Then

cDes π(i) = {j1 < j2 < · · · < jk = n}
whereas

cDes π(i+1) = {1 < j1 + 1 < j2 + 1 < · · · < jk−1 + 1}.
So

cmaj π(i) − cmaj π(i+1) = n− k,

which is equivalent to the first case of (6). The second case is proven using a similar
computation.

Observe that Equation (6) is equivalent to

{e-cmaj}{e-cmaj} (7) cmaj π(i+1) = maj π(i) + cdes[π],

which allows us to determine cmaj[π] from maj[π] and cdes[π]. Moreover, cdes[π] can be
determined from des[π] by Lemma 5.2, so (cdes, cmaj)[π] can be determined from (des,maj)[π].
Conversely, we can use (7) to determine maj[π] from cmaj[π] and cdes[π], and des[π] can

be determined from cdes[π] by Lemma 5.2; altogether, this means that we can also determine
(des,maj)[π] from (cdes, cmaj)[π]. □

Lemma 5.11. The cyclic permutation statistics maj and cmaj are equivalent.

Proof. Let π ∈ Pn. We first claim that cdes[π] can be determined either from maj[π] or from
cmaj[π]. Fix i ∈ cDes π. Among all n representatives of [π], the index of πi spans the entire
range {1, 2, . . . , n}. Hence, if one adds up maj π̄ over all π̄ ∈ [π], then πi will contribute
1 + 2 + · · · + (n − 1) =

(
n
2

)
to the summation. Similarly, in taking the sum of all cmaj π̄,

each πi will contribute 1 + 2 + · · ·+ n =
(
n+1
2

)
. Thus, the sum of all elements of the multiset

27



maj[π] is equal to
(
n
2

)
cdes[π] and the sum of all elements of cmaj[π] is equal to

(
n+1
2

)
cdes[π],

and it follows that cdes[π] can be determined from maj[π] or cmaj[π].
Now we are ready to prove the equivalence between maj and cmaj. For one direction, maj[π]

completely determines cdes[π] and hence determines des[π] by Lemma 5.2. In addition, maj[π]
and des[π] together determine (cdes, cmaj)[π] by Lemma 5.10, so cmaj[π] can be determined
from maj[π]. One can similarly prove the other direction using the above claim and Lemma
5.10. □

The comajor index comaj, defined by

comaj π :=
∑

k∈Desπ

(n− k)

for π ∈ Pn, is a classical variation of the major index statistic. Because the linear permutation
statistics maj and comaj are rc-equivalent and the induced cyclic statistic maj is not cyclic
shuffle-compatible, it follows from Corollary 5.8 that the induced cyclic statistic comaj is not
cyclic shuffle-compatible either. We may also define the cyclic comajor index ccomaj by

ccomaj π :=
∑

k∈cDesπ

(n− k)

for π ∈ Pn; then it follows similarly that the induced cyclic statistics ccomaj, (des,comaj),
and (cdes,ccomaj) are not cyclic shuffle-compatible either.
Perhaps surprisingly, adding just a little bit of structure to our cmaj statistic gives a

statistic which is equivalent to cDes. As in the proof of Lemma 5.10, given π ∈ Pn, let us
write

[π] = {π = π(1), π(2), . . . , π(n)}
where π(i+1) is obtained from π(i) by rotating its last element to the front of the permutation
and i is taken modulo n. Define the ordered cyclic major index of [π] to be the cyclic word

ocmaj[π] := [cmaj π(1), cmaj π(2), . . . , cmaj π(n)],

i.e., the equivalence class of the sequence (cmaj π(1), cmaj π(2), . . . , cmaj π(n)) under cyclic
shift.

Theorem 5.12. The cyclic permutation statistics cDes and ocmaj are equivalent.

Proof. Let us assume throughout this proof that n ≥ 2, as the cases n = 0 and n = 1 are
trivial. To see that cDes is a refinement of ocmaj, suppose cDes[π] = cDes[σ] where π and σ
have the same length n. So, we can write [σ] = {σ(1), . . . , σ(n)} where cDesπ(i) = cDesσ(i)

for all i ∈ [n]. It follows that

cmaj π(i) =
∑

k∈cDesπ(i)

k =
∑

k∈cDesσ(i)

k = cmajσ(i)

for all i, so ocmaj[π] = ocmaj[σ].
For the converse, it is sufficient to show that the cyclic descent composition cComp[π] can

be reconstructed from ocmaj[π]. First, recall Equation (6):

cmaj π(i+1) =

{
cmaj π(i) + cdes[π]− n, if n ∈ cDesπ(i),

cmaj π(i) + cdes[π], if n /∈ cDesπ(i).
28



Since n ≥ 2, we have 1 ≤ cdes[π] ≤ n− 1, and together with the above equation, we have
that n ∈ cDes π(i) if and only if cmaj π(i) > cmaj π(i+1). A similar argument shows that we
can never have cmajπ(i) = cmaj π(i+1).

Now, suppose we are given ocmaj[π] = [m1,m2, . . . ,mn] where mi = cmaj π(i). Let s and t
be two consecutive cyclic descents of ocmaj[π], i.e.,

ms > ms+1 < ms+2 < · · · < mt > mt+1

where subscripts are modulo n as usual. From the previous paragraph, it follows that n is
in both cDes π(s) and cDes π(t), and that the penultimate descent in cDesπ(s) becomes the
descent n ∈ cDes π(t) with n never being a descent for any of the intermediate cyclic descent
sets. So t− s (modulo n) is a part of the cyclic composition cComp[π]. Therefore, all the
parts of cComp[π] can be determined, and their order will be the same as that induced by
the consecutive cyclic descents in ocmaj[π]. Thus we have reconstructed cComp[π] from
ocmaj[π], completing the proof. □

Corollary 5.13 (Cyclic shuffle-compatibility of ocmaj). The ordered cyclic major index
ocmaj is cyclic shuffle-compatible, and its cyclic shuffle algebra Acyc

ocmaj is isomorphic to Acyc
cDes.

Of course, one could wonder if the unordered multiset of cmaj values is also equivalent
to cDes for cyclic permutations, but this is not the case. Indeed, if the cyclic permutation
statistics cmaj and cDes were equivalent, then the cyclic shuffle-compatibility of cDes would
imply that cmaj is cyclic shuffle-compatible as well, which we know to be false.

ss-otherdes
5.4. Other descent statistics. To conclude this section, let us consider the cyclic permuta-
tion statistics induced by the following linear descent statistics:

• The valley number val, which we defined earlier to be the number of valleys of a
permutation.

• The double descent set Ddes and the double descent number ddes. We call i ∈
{2, 3, . . . , n− 1} a double descent of π ∈ Pn if πi−1 > πi > πi+1. Then Ddes π is the
set of double descents of π, and ddesπ the number of double descents of π.

• The left peak set Lpk and the left peak number lpk. We call i ∈ [n− 1] a left peak of
π ∈ Pn if i is a peak of π, or if i = 1 and π1 > π2. Then Lpk π is the set of left peaks
of π, and lpkπ the number of left peaks of π.

• The right peak set Rpk and the right peak number rpk. We call i ∈ {2, 3, . . . , n} a
right peak of π ∈ Pn if i is a peak of π, or if i = n and πn−1 < πn. Then Rpk π is the
set of right peaks of π, and rpkπ the number of right peaks of π.

• The exterior peak set Epk and the exterior peak number epk. We call i ∈ [n] an
exterior peak of π ∈ Pn if i is a left peak or right peak of π. Then Epk π is the set of
exterior peaks of π, and epkπ the number of exterior peaks of π.

• The number of biruns br and the number of up-down runs udr. A birun of π is a
maximal consecutive monotone subsequence of π; an up-down run of π is a birun of
π, or the first letter π1 of π if π1 > π2. Then brπ and udr π are the number of biruns
and the number of up-down runs, respectively, of π.

For example, take π = 713942658. Then we have valπ = 3, Ddes π = {5}, ddesπ = 1,
Lpkπ = {1, 4, 7}, lpk π = 3, Rpk π = {4, 7, 9}, rpkπ = 3, Epk π = {1, 4, 7, 9}, epkπ = 4,
brπ = 6, and udr π = 7.

Aside from Ddes, ddes, and br, all of the above statistics (as linear permutation statistics)
are shuffle-compatible. Also, because these are all descent statistics, each of the induced
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cyclic statistics are cyclic descent statistics. Indeed, if we are given cDes[π] and the length
of π, then we can determine Des[π] by Lemma 5.1, and we can then use the descent sets in
Des[π] to obtain the multiset st[π] for any descent statistic st.

Let us begin by examining the double descent statistics Ddes and ddes. Since neither Ddes
nor ddes are shuffle-compatible as linear permutation statistics, it is perhaps unsurprising
that their induced cyclic statistics are not cyclic shuffle-compatible. As a counterexample,
let π = 1234, σ = 1324, and ρ = 5. Then both Ddes[π] = Ddes[σ] and ddes[π] = ddes[σ],
but we have Ddes([π]� [ρ]) ̸= Ddes([σ]� [ρ]) and ddes([π]� [ρ]) ̸= ddes([σ]� [ρ]). For
instance, {{∅5}} appears three times in Ddes([π]� [ρ]) but only twice in Ddes([σ]� [ρ]), and
accordingly {{05}} appears three times in ddes([π]� [ρ]) but only twice in ddes([σ]� [ρ]).

While the linear statistic br is not shuffle-compatible, Domagalski et al. [DLM+21] noted
that the cyclic statistic cbr giving the number of cyclic biruns—maximal consecutive monotone
cyclic subsequences—is cyclic shuffle-compatible as it is precisely twice the number of cyclic
peaks.

Theorem 5.14 (Cyclic shuffle-compatibility of cbr and (cbr, cdes)). The cyclic statistics cbr
and (cbr, cdes) are cyclic shuffle-compatible, and we have the Q-algebra isomorphisms

Acyc
cbr

∼= Acyc
cpk and Acyc

(cbr,cdes)
∼= Acyc

(cpk,cdes).

Because des and cdes are equivalent as cyclic permutation statistics and similarly with pk
and cpk, one might expect the cyclic statistics br and cbr to be equivalent as well, but this
is not the case because br is not actually cyclic shuffle-compatible. For instance, consider
π = 25673489, σ = 24567389, and ρ = 1. Then br[π] = br[σ], but the multiset {{54, 64, 7}}
appears four times in br([π]� [ρ]) but only twice in br([σ]� [ρ]). One can also use the same
permutations π, σ, and ρ to show that (br, des) is not cyclic shuffle-compatible.

Even though the linear statistics Lpk and Epk are shuffle-compatible, their induced cyclic
statistics are not cyclic shuffle-compatible. As a counterexample, take

π = 11 6 3 7 1 4 12 10 2 9 6 8, σ = 13,

π′ = 13 7 2 9 5 3 10 4 8 12 6 11, and σ′ = 1.

Then we have Lpk[π] = Lpk[π′], Lpk[σ] = Lpk[σ′], Epk[π] = Epk[π′], and Epk[σ] = Epk[σ′],
yet Lpk([π]� [σ]) ̸= Lpk([π′]� [σ′]) and Epk([π]� [σ]) ̸= Epk([π′]� [σ′]) as the multiset

{{ {1, 5, 8, 11}, {2, 6, 9, 12}, {3, 7, 10}, {1, 4, 8, 11}, {2, 5, 9, 12}, {1, 3, 6, 10},
{1, 4, 7, 11}, {2, 5, 8, 12}, {3, 6, 9}, {1, 4, 7, 10}, {2, 5, 8, 11}, {1, 3, 6, 9, 12}, {1, 4, 7, 10} }}

belongs to Lpk([π]� [σ]) but not Lpk([π′]� [σ′]), and the multiset

{{ {1, 4, 7, 10}, {1, 4, 8, 11}, {2, 5, 8, 11}, {2, 5, 8, 12}, {2, 5, 9, 12},
{2, 6, 9, 12}, {3, 6, 9, 13}, {3, 7, 10, 13}, {1, 3, 6, 9, 12},
{1, 3, 6, 10, 13}, {1, 4, 7, 10, 13}, {1, 4, 7, 11, 13}, {1, 5, 8, 11, 13} }}

belongs to Epk([π]� [σ]) but not Epk([π′]� [σ′]).
The left peak number lpk, number of up-down runs udr, and the pairs (lpk, des) and

(udr, des) are also shuffle-compatible linear statistics whose induced cyclic statistics are not
cyclic shuffle-compatible. For example, take π = 87516439, σ = 53187649, and ρ = 2. Then
(lpk, des)[π] = (lpk, des)[σ] and (udr, des)[π] = (udr, des)[σ] (and thus lpk[π] = lpk[σ] and
udr[π] = udr[σ]). However:

30



• {{(3, 5)6, (3, 6)3}} is in (lpk, des)([π]� [ρ]) but not (lpk, des)([σ]� [ρ]),
• {{(6, 5)3, (6, 6)3, (7, 5)3}} is in (udr, des)([π]� [ρ]) but not (udr, des)([σ]� [ρ]),
• {{39}} is in lpk([π]� [ρ]) but not lpk([σ]� [ρ]),
• and {{66, 73}} is in udr([π]� [ρ]) but not udr([σ]� [ρ]).

Observe that Rpk is r-equivalent to Lpk and rpk is r-equivalent to lpk. Hence, by Corollary
5.8, neither Rpk nor rpk are cyclic shuffle-compatible either. One can also define “left”,
“right”, and “exterior” versions of the valley set and valley number statistics; by similar
symmetry arguments, none of these are cyclic shuffle-compatible either.
In contrast, the exterior peak number epk and the pair (epk, des) are cyclic shuffle-

compatible because they are equivalent to cpk and (cpk, cdes), respectively. To prove these
equivalences, we will also need to consider the cyclic valley number statistic cval: we say
that i ∈ [n] is a cyclic valley of π ∈ Sn if πi−1 > πi < πi+1 with the indices considered
modulo n, and cval[π] is defined to be the number of cyclic valleys of any permutation in [π].
Equivalently, cval[π] is the cardinality of the cyclic valley set cVal[π] defined in Section 5.2.

l-valcvaleq Lemma 5.15. The cyclic permutation statistics val and cval are equivalent.

Proof. We have val[π] = pk[πc] for all π—that is, val and pk are c-equivalent—and similarly
with cval and cpk. By Lemma 5.4, pk and cpk are equivalent, so the same is true of val and
cval. □

l-cvalcpkeq Lemma 5.16. For any cyclic permutation [π], we have cval[π] = cpk[π].

Proof. Each cyclic birun starts with a cyclic peak and ends with a cyclic valley or vice-versa.
So 2 cpk[π] = cbr[π] = 2 cval[π]. □

l-epkcpkeq Lemma 5.17. The cyclic permutation statistics epk and cpk are equivalent.

Proof. For any linear permutation π, we have epk π = valπ + 1 [GZ18, Lemma 2.1 (e)], so
epk and val are equivalent as linear permutation statistics and thus as cyclic permutation
statistics. (We can obtain val[π] from epk[π] by subtracting 1 from each element in the
multiset, and epk[π] from val[π] by adding 1 to each element.) Moreover, val is equivalent to
cval (Lemma 5.15) which is in turn equivalent to cpk (Lemma 5.16); hence, epk is equivalent
to cpk. □

Theorem 5.18 (Cyclic shuffle-compatibility of val, cval, epk, (val, des), (cval, cdes), and
(epk, des)). The cyclic statistics val, cval, epk, (val, des), (cval, cdes), and (epk, des) are
cyclic shuffle-compatible, and we have the Q-algebra isomorphisms

Acyc
val

∼= Acyc
cval

∼= Acyc
epk

∼= Acyc
cpk and Acyc

(val,des)
∼= Acyc

(cval,cdes)
∼= Acyc

(epk,des)
∼= Acyc

(cpk,cdes).

Proof. The cyclic shuffle-compatibility of val, cval, and epk, and the corresponding isomor-
phisms, follow from the cyclic shuffle-compatibility of cpk and the equivalences between these
four statistics. Furthermore, (val, des) is equivalent to (cpk, cdes) because val is equivalent to
cpk and des is equivalent to cdes, and similarly (cval, cdes) and (epk, des) is equivalent to
(cpk, cdes) as well. Because (cpk, cdes) is cyclic shuffle-compatible, the results for (val, des),
(cval, cdes), and (epk, des) follow. □

Finally, we provide counterexamples showing that neither (Pk,Val) nor (pk, val) are cyclic
shuffle-compatible. Let π = 214, σ = 536, π′ = 123, and σ′ = 546. Then (Pk,Val)[π] =
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(Pk,Val)[π′] and (Pk,Val)[σ] = (Pk,Val)[σ′], which imply (pk, val)[π] = (pk, val)[π′] and
(pk, val)[σ] = (pk, val)[σ′] as well. However,

{{ (∅, ∅), (∅, {5}), ({2}, ∅), ({3}, {2}), ({4}, {3}), ({5}, {4}) }}
is an element of (Pk,Val)([π]� [σ]) but not (Pk,Val)([π′]� [σ′]), and

{{ (0, 0), (0, 1), (1, 0), (1, 1)3 }}
is an element of (pk, val)([π]� [σ]) but not (pk, val)([π′]� [σ′]).

6. Open problems and questions
s-openprob

In Section 5, we studied various multiset-valued cyclic statistics induced from linear
statistics, as well as a ocmaj—an ordered version of the cmaj statistic—which we found to be
equivalent to cDes. We can generalize the construction of ocmaj in the following way. Given
any linear permutation statistic st, let ost[π] be the cyclic word defined by

ost[π] := [stπ(1), st π(2), . . . , st π(n)],

where [π] = {π = π(1), π(2), . . . , π(n)} and π(i) is defined as in Section 5.3.

Problem 6.1. Study the cyclic statistics ost for various linear permutation statistics st.

It would be interesting to find new cyclic shuffle-compatibility results stemming from
these statistics—i.e., if one of the ost is cyclic shuffle-compatible and is not equivalent to
another statistic already known to be shuffle-compatible. On the other hand, it would also
be interesting to find nontrivial equivalences between these statistics and others, regardless
of whether they are cyclic shuffle-compatible.
Next, we pose a question related to the lifting lemma of Domagalski et al. [DLM+21,

Lemma 2.3], which provides an avenue for proving cyclic shuffle-compatibility of a cyclic
descent statistic using the shuffle-compatibility of a related linear descent statistic. The
lifting lemma involves two maps Si and M , defined as follows. Given π ∈ Sn and i ∈ [n],
let Si[π] be the unique linear permutation in [π] which starts with i, and let M [π] be the
linear permutation of length n− 1 obtained by first applying Sn to [π] and then removing
the initial n. For example, we have S4[162453] = 453162 and M [162453] = 24531.

Lemma 6.2 (Lifting lemma). Let cst be a cyclic descent statistic and st a shuffle-compatible
linear descent statistic for which the following conditions hold:

(a) For any π, π′ ∈ Sn, we have

st(M [π]) = st(M [π′]) implies cst[π] = cst[π′].

(b) For any π, π′ ∈ Sn with cst[π] = cst[π′], there exists a bijection f : [n] → [n] such that

st(Si[π]) = st(Sf(i)[π
′])

for all i ∈ [n].

Then, cst is cyclic shuffle-compatible.

We would like to understand how the lifting lemma fits into our algebraic framework. In
particular, we have tried to prove the lifting lemma from Theorem 2.8, but our attempts
have been unsuccessful because it is unclear to us how the conditions in the lifting lemma
relate to the linear independence condition of that theorem.

Question 6.3. Can the lifting lemma be proven from Theorem 2.8?
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Finally, every statistic which is known to be cyclic shuffle-compatible is a cyclic descent
statistic, so it is natural to ask whether any cyclic shuffle-compatible statistics are not cyclic
descent statistics. In the linear setting, Gessel and Zhuang [GZ18] had conjectured that every
shuffle-compatible statistic is a descent statistic, but a counterexample was found by Kantarcı
Oğuz [KO22]. So, we will pose this as a question rather than as a conjecture.

Question 6.4. Is every cyclic shuffle-compatible statistic a cyclic descent statistic?
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