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Abstract

In their study of cyclic pattern containment, Domagalski et al. [4] conjecture dif-
ferential equations for the generating functions of circular permutations avoiding con-
secutive patterns of length 3. In this note, we prove and significantly generalize these
conjectures. We show that, for every consecutive pattern σ beginning with 1, the
bivariate generating function counting occurrences of σ in circular permutations can
be obtained from the generating function counting occurrences of σ in (linear) per-
mutations. This includes all the patterns for which the latter generating function is
known.

1 Introduction

1.1 Pattern containment and avoidance

Given two permutations π = π1π2 . . . πn ∈ Sn and σ1σ2 . . . σm ∈ Sm, we say that π contains
the classical pattern σ1σ2 . . . σm if there is a subsequence πi1πi2 . . . πim , where 1 ≤ i1 < i2 <
· · · < im ≤ n, that is order-isomorphic to σ1σ2 . . . σm, meaning that πia < πib if and only
if σa < σb for all 1 ≤ a, b ≤ m. We say that π contains the consecutive pattern σ1σ2 . . . σm
(we underline consecutive patterns to distinguish them from classical ones) if there is a
consecutive subsequence πiπi+1 . . . πi+m−1, where 1 ≤ i ≤ n−m+1, that is order-isomorphic
to σ1σ2 . . . σm. Writing σ = σ1σ2 . . . σm, such a subsequence is called an occurrence of σ in
π, and the number of such occurrences is denoted by oσ(π). If π does not contain a pattern,
we say that π avoids the pattern.

While classical patterns have been extensively studied for over half a century [18], the
systematic study of consecutive patterns in permutations started only two decades ago [9].
Around the same time, vincular patterns, which generalize classical and consecutive patterns
by requiring certain positions to be adjacent, were introduced in [2] by the name generalized
patterns.
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Several authors [3, 20, 4] have considered another variation of the notion of pattern
containment, where one allows the patterns to wrap around from the end of the permutation
to the beginning. This variation has received different names in the literature.

Denote the set of rotations of a permutation π = π1π2 . . . πn ∈ Sn by

[π] = {π1π2 . . . πn, π2 . . . πnπ2, . . . , πnπ1 . . . πn−1}.

(These are sometimes called horizontal rotations [11, 12] to distinguish them from vertical
rotations, which are obtained when shifting the values of the entries instead of their po-
sitions.) This set is called a circular permutation by Callan [3], a cyclic arrangement by
Vella [20], and a cyclic permutation by Domagalski et al. [4]. In this note, we will use the
term circular permutations for such sets, in order to distinguish them from permutations
whose cycle structure consists on a single cycle, which, incidentally, are also quite interesting
from a pattern avoidance perspective [1, 8]. As in [4], we denote by [Sn] the set of circular
permutations of length n, namely, the set of equivalence classes of permutations in Sn under
rotation. Permutations in Sn may be called linear permutations when we want to distinguish
them from circular ones.

For any pattern σ, whether classical (σ = σ1σ2 . . . σm) or consecutive (σ = σ1σ2 . . . σm),
we say that the circular permutation [π] contains σ if there is some rotation π′ ∈ [π] that
contains σ according to the above definition for linear permutations; otherwise, we say that
[π] avoids σ. Following [4], we denote by Avn[σ] the set of circular permutations in [Sn] that
avoid σ.

While the enumeration of circular permutations avoiding classical patterns of length 3
is trivial, Vella [20] and Callan [3] determined |Avn[σ]| for all classical patterns σ of length
4. In a recent preprint, Domagalski et al. [4] enumerate circular permutations avoiding
any subset of patterns of length 4. All the formulas that have been obtained so far have
simple expressions involving binomial coefficients, linear terms, powers of 2, constants, and
Fibonacci numbers.

On the other hand, the enumeration of circular permutations avoiding consecutive pat-
terns has not yet been explored. This is left as an open problem in [4], where some conjectures
are made [4, Conjecture 6.4] in the special case of patterns of length 3, in the form of dif-
ferential equations hypothetically satisfied by the generating functions for the permutations
avoiding them. These are stated as Equations (6) and (10) below. The goal of this note is to
prove these conjectures, and to generalize them in two directions. On the one hand, we enu-
merate not only circular permutations avoiding each pattern, but also circular permutations
with any given number of occurrences of the pattern. On the other hand, we extend the
results to other consecutive patterns, namely all of those for which the generating function
tracking their occurrences in linear permutations is currently known.

In the rest of the paper, we let σ = σ1σ2 . . . σm be a consecutive pattern. We define
an occurrence of the consecutive pattern σ in a circular permutation [π] ∈ [Sn] to be a
subsequence πiπi+1 . . . πi+k−1 or πiπi+1 . . . πnπ1π2 . . . πk−n+i−1 (i.e., allowed to wrap around),
where 1 ≤ i ≤ n, that is order-isomorphic to σ1σ2 . . . σm. We denote by cσ[π] the number of
occurrences of σ in [π]. This number is well defined, in the sense that it does not depend
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on the chosen representative of [π], since rotating π simply changes the positions of the
occurrences of σ, but not the actual subsequences or how many there are. Note also that
cσ[π] = 0 precisely if [π] avoids σ. For example, c132[25314] = 2, since 253 and 142 are
occurrences of σ in [π]. On the other hand, c132[24531] = 0, so [24531] ∈ Av5[132].

1.2 Generating functions

We denote by

Pσ(u, z) =
∑
n≥0

∑
π∈Sn

uoσ(π)
zn

n!

the exponential generating function counting occurrences of a consecutive pattern σ in linear
permutations, and let ωσ(u, z) = 1/Pσ(u, z). Formulas and differential equations for Pσ(u, z)
and ωσ(u, z), for various patterns σ, have been given in [9, 10], see also [14, 16, 15, 5] for
related work.

In this paper, we are interested in the analogues for circular permutations of these gen-
erating functions. Let

Cσ(u, z) =
∑
n≥0

∑
[π]∈[Sn]

ucσ [π]
zn

n!
(1)

be the exponential generating function counting occurrences of σ in circular permutations,
and note that

Cσ(0, z) =
∑
n≥0

|Avn[σ]| z
n

n!
.

As in the case of consecutive patterns in linear permutations, letting σr = σm . . . σ2σ1
and σc = (m+ 1− σ1)(m+ 1− σ2) . . . (m+ 1− σm), it is clear that

Cσ(u, z) = Cσc(u, z) = Cσr(u, z) = Cσrc(u, z),

since occurrences of σ in [π] correspond to occurrences of σr in [πr], and to occurrences
of σc in [πc]. For example, for patterns of length 3, we have C123(u, z) = C321(u, z) and
C132(u, z) = C312(u, z) = C213(u, z) = C231(u, z).

For a function F (u, z), we will use F ′(u, z) to denote its partial derivative with respect
to the variable z.

2 Counting patterns in circular permutations

Our central result relates consecutive patterns in the circular case with those in the linear
case. The requirement σ1 = 1 can be replaced, by the above symmetries, with any of σ1 = m,
σm = 1, or σm = m, where m is the length of σ.

For the purposes of the proof we will let a permutation be any linear or cyclic ordering of a
finite set of positive integers. Any set of circular permutations [Π] = {[π(1)], [π(2)], . . . , [π(k)]}
will be given weight

wt[Π] = ucσ [π
(1)] · ucσ [π(2)] · · ·ucσ [π(k)],
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and any linear permutation π will be given weight wt π = uoσ(π). Finally, the left-right
minima of π = π1π2 . . . πn are the elements πi such that

πi = min{π1, π2, . . . , πi}.

These elements give rise to the left-right minima factorization of π which is

π = π(1)π(2) . . . π(k) (2)

where π(i) is the factor (consecutive subword) of π starting at the ith left-right minimum
and ending just before the (i+ 1)st.

Theorem 1. Let σ = σ1σ2 . . . σm be a consecutive pattern with σ1 = 1. Then

Cσ(u, z) = 1 + lnPσ(u, z).

Proof. Exponentiating the equation in the statement of the theorem, it suffices to prove that

Pσ(u, z) = eCσ(u,z)−1.

By the Exponential Formula (see Theorem 4.5.1 in Sagan’s book [17]), it suffices to show
that there is a bijection φ between permutations π ∈ Sn and sets of circular permutations
[Π] = {[π(1)], [π(2)], . . . , [π(k)]} such that

(a)
⊎k
i=1 π

(i) = {1, 2, . . . , n}, the union being of the underlying sets of the π(i), and

(b) wt π = wt[Π].

Define
φ(π) = {[π(1)], [π(2)], . . . , [π(k)]}

where the π(i) are the factors in (2). Then (a) holds because every element of {1, 2, . . . , n}
must appear in exactly one of the factors of the factorization. To prove (b), let us show that
any occurrence of σ in π is entirely contained in one of the π(i). Indeed, if the occurrence
overlaps two or more factors, then the left-right minimum of the second factor is smaller
than the first element of the occurrence. This contradicts the fact that σ begins with 1.

To show φ is bijective, we construct its inverse. Given [Π], rotate each circular permu-
tation so that π(i) starts with its minimum element. Then concatenate these linear permu-
tations in order of decreasing first element to form π. It is easy to check that this describes
the inverse of φ.

3 Applications to specific patterns

Expressions for Pσ = Pσ(u, z) are known for certain consecutive patterns σ, often in the form
of differential equations satisfied by its reciprocal ωσ = 1/Pσ. In fact, up to symmetry, all
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the patterns σ for which explicit differential equations have been found so far satisfy σ1 = 1.
Thus, Theorem 1 can be applied to these patterns to deduce an expression for Cσ = Cσ(u, z).

Restating Theorem 1 to relate Cσ and ωσ, we have Cσ = 1 − lnωσ, from where C ′σ =
−ω′σ/ωσ, and

ωσ = e1−Cσ . (3)

In some cases, this relation allows us to obtain differential equations directly in terms of Cσ,
as we will see below.

3.1 Monotone patterns

It is proved in [9, Theorem 3.1] (see also [10, Theorem 2.1]) that, for σ = 12 . . .m with
m ≥ 3, the function ωσ = ωσ(u, z) satisfies the differential equation

ω(m−1)
σ + (1− u)(ω(m−2)

σ + · · ·+ ω′σ + ωσ) = 0 (4)

with initial conditions ωσ(u, 0) = 1, ω′σ(u, 0) = −1, and ω
(i)
σ (u, 0) = 0 for 2 ≤ i ≤ m− 2. In

[10, Theorem 2.4], similar differential equations are given for ωσ whenever σ is a so-called
chain pattern (see [10, Definition 2.2]). Chain patterns generalize monotone patterns, but
they still satisfy σ1 = 1 (up to symmetry), as shown in [10, Lemma 2.3]. Thus, for all such
patterns σ, Theorem 1 can be used to determine Cσ = 1− lnωσ.

It is possible to rewrite (4) as a differential equation for Cσ using the identity (3). For
example, when m = 3, we obtain the following.

Corollary 2. Let D = D123(u, z) = C ′123(u, z). Then D satisfies the differential equation

D′ = D2 + (u− 1)(D − 1) (5)

with initial condition D(u, 0) = 1. An explicit expression is given by

D123(u, z) =
1

2

(
1− u− tanh

(
z
√
u2 + 2u− 3

2
− arctanh

(
u+ 1√

u2 + 2u− 3

))√
u2 + 2u− 3

)
,

which, for u = 0, simplifies to

D123(0, z) =
1

2
+

√
3

2
tan

(√
3

2
z +

π

6

)
.

Proof. Differentiating Equation (3), we get ω′σ = −C ′σ e1−Cσ and ω′′σ = (−C ′′σ + (C ′σ)2) e1−Cσ .
Substituting these expressions into Equation (4) for m = 3, and dividing both sides by e1−Cσ ,
we obtain Equation (5).

Setting u = 0 in Equation (5) gives

D′123(0, z) = D123(0, z)
2 −D123(0, z) + 1, (6)

proving part 1 of [4, Conjecture 6.4]1. For m = 4, a similar computation yields the following.

1Precisely speaking, the statement in part 1 of [4, Conjecture 6.4] is slightly inaccurate, since the equation
that it gives is the one satisfied by C ′

123(0, z), rather than by C123(0, z).
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Corollary 3. Let D = D1234(u, z) = C ′1234(u, z). Then D satisfies the differential equation

D′′ = 3D′D −D3 + (u− 1)(D′ −D2 +D − 1) (7)

with initial conditions D(u, 0) = 1, D′(u, 0) = 1. For u = 0, an explicit expression is given
by

D1234(0, z) =
cos z + sin z + e−z

cos z − sin z + e−z
.

In the case of linear permutations, explicit expressions for P123(u, z), P123(0, z) and
P1234(0, z) have been given in [9, Theorems 4.1 and 4.3]. Let us also point out that, for
σ = 12 . . .m, the generating function Dσ = C ′σ coincides with the generating function de-
noted by R in the proof of [9, Theorem 3.1].

3.2 Non-overlapping patterns

A consecutive pattern σ of length m is called non-overlapping if two occurrences of σ cannot
overlap in more than one position; in other words, there is no permutation π ∈ S2m−2 with
oσ(π) ≥ 2.

Generalizing [9, Theorem 3.2], it is shown in [10, Theorem 3.1] that, for any non-
overlapping consecutive pattern σ of length m ≥ 3 with σ1 = 1, the function ωσ = ωσ(u, z)
satisfies the following differential equation, where b = σm:

ω(b)
σ + (1− u)

zm−b

(m− b)!
ω′σ = 0, (8)

with initial conditions ωσ(u, 0) = 1, ω′σ(u, 0) = −1, and ω
(i)
σ (u, 0) = 0 for 2 ≤ i ≤ b − 1.

Again, by Theorem 1, this determines Cσ = 1− lnωσ for all such patterns. In this case, the
generating function C ′σ coincides with the generating function denoted by R in the proof of
[9, Theorem 3.2].

In the case b = 2, rewriting (8) as a differential equation for Cσ using (3) and its deriva-
tives, we obtain the following.

Corollary 4. Let σ be a non-overlapping pattern of length m ≥ 3 with σ1 = 1 and σm = 2,
and let D = Dσ(u, z) = C ′σ(u, z). Then D satisfies the differential equation

D′ = D2 + (u− 1)
zm−2

(m− 2)!
D (9)

with initial condition D(u, 0) = 1. An explicit expression is given by

Dσ(u, z) =
e(u−1)

zm−1

(m−1)!

1−
∫ z
0
e(u−1)

tm−1

(m−1)! dt
,

or equivalently,

Cσ(u, z) = 1− ln

(
1−

∫ z

0

e(u−1)
tm−1

(m−1)! dt

)
.
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Setting u = 0 in Equation (9) for m = 3 gives the equation

D′132(0, z) = D132(0, z)
2 − zD132(0, z).

Dividing both sides by D132(0, z), integrating, and using that D132 = C ′132, we obtain
lnC ′132(0, z) = C132(0, z)− z2/2, or equivalently,

C ′132(0, z) = eC132(0,z)−z2/2, (10)

proving part 2 of [4, Conjecture 6.4].

3.3 Other patterns and future work

In [10], differential equations are also given for ωσ(u, z) when σ is any of 1324, 12534, or
13254. For each of these patterns, Theorem 1 can again be applied to obtain Cσ(u, z).

A natural problem for further research would be to find Cσ(u, z) for consecutive patterns
σ that do not begin with 1 (even after applying the basic symmetries).

In a different direction, it is shown in [6] that, for n large enough, the number of (linear)
permutations in Sn that avoid a consecutive pattern σ of length m is largest when σ is
a monotone pattern, and it is smallest when σ = 12 . . . (m− 2)m(m− 1) (or any of its
symmetries). One could ask if there is an analogue of this theorem for consecutive patterns
in circular permutations.
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